Local Interactions with

Influence Neighborhoods

Peter Vanderschraaf and J. McKenzie Alexander

May 12, 2003

Technical Report No. CMU-PHIL-142

Philosophy
Methodology
Logic

Carnegie Mellon

Pittsburgh, Pennsylvania 15213



Local Interactions with Influence Neighborhoods
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Introduction

Game theorists analyze the strategic aspects of interactions. Social network
theorists focus on the structures that determine who interacts with whom. Game theory
and social network theory meet when those who are connected via a network play a game.
An emerging literature explores how players engaged in such network games can
gradually settle into an equilibrium. In this literature, the network game is modeled as a
dynamical system of players who interact with their neighbors! and who adjust their
strategies over time.? The attracting points of certain dynamical adjustment processes are
Nash equilibria of the network game. Some Nash equilibria are also stochastically stable,
in the sense that these equilibria emerge and persist when the dynamical system is
perturbed with independent random changes in strategy or mutations.3 Game theorists
have proved some powerful convergence theorems for network games that evolve
according to dynamics perturbed with independent mutations (Ellison 1993, 2000, Young
1998, Morris 2000). Some argue that these theorems are important in explaining the
evolution of social institutions.

In this essay we introduce a dynamical édjustment process for network games
where mutations can be correlated. Previous convergence results for the dynamics of
network games rely upon strong assumptions. For example, it is often assumed that the
random mutations that perturb the network game are stochastically independent and
identically distributed. This assumption is clearly false in many cases of interest. People
often imitate others, even in experimental situations, which prevents random mutations
from being stochastically independent. In this paper, we present a model that relaxes this
assumption by allowing some players in the network game to imitate the behavior of a

single player who mutates spontaneously. This introduces a certain number of correlated
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mutations. This kind of correlated mutation has a natural interpretation: If a given player
in the network game plans to experiment and can signal her plan to some of the other
players, those who receive the signal might imitate this signaler if she has sufficient
influence over them. The players in this influence neighborhood who do imitate the
signaler “follow the leader”. We show that the dynamical properties of evolutionary
games in which influence neighborhoods can appear differ dramatically from ones where
all mutations are stochastically independent. We also argue that this dynamics mirrors
the process by which societies sometimes reform more closely than the dynamics of
stochastically independent mutation.

This essay is organized as follows: In §1 we review some of the basic notions of
games played over networks. We use the familiar Assurance game to develop motivating
examples. In §2 we discuss how inductive best-response dynamics are applied to network
games, and give an example of a network game where best-response dynamics perturbed
with independent random mutation never reaches the stochastically stable equilibrium in
a feasible amount of time. We argue that this result casts doubt upon the explanatory
power of models that assume stochastically independent mutations. In §3 we relax the
independence assumption by introducing influence neighborhoods. We show how
influence neighborhoods can greatly accelerate the transition of a network game from a
suboptimal equilibrium to an optimal and stochastically stable equilibrium. We also
show how influence neighborhoods can drive a network game out of a stochastically
stable equilibrium, and even converge to an optimal equilibrium that is not stochastically
stable. In §4 we give the formal definitions of influence neighborhoods and best-
response dynamics with correlated mutations, together with some basic convergence

results.

§1. The Assurance Game Played With Neighbors

Figure 1 summarizes the symmetric 2-player Assurance game.*
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Figure 1. The Assurance Game

Player j

S1 59

Playeri  s; (z,z) | (0,y)

s2 | (1,0) | (22)

z>y>2>0

The Assurance game plays an important role in moral and political philosophy and
illustrates some of the fundamental challenges of accounting for equilibrium selection in
games. Philosophers use Assurance games to represent collective action problems
ranging from cooperation in the Hobbesian State of Nature to pollution control to
political revolutions.> As one can see, the structure of Assurance games contains an
apparent conflict between optimality and risk. In the game of Figure 1, (s1, s1) and
(s2, 82) are both coordination equilibria (Lewis 1969) with the property that neither
player's payoff is improved if one of them deviates from either (sy, s1) or (sg, s3). The
equilibrium (sy, s1) is Pareto optimal, and yields each player his highest possible payoff.
However, each player is certain to gain a positive payoff only if he follows s5. Should
rational players contribute to an optimal outcome or play it safe?

The classical game theory of von Neumann and Morgenstern (1944) and Nash
(1950, 1951a,b) gives no determinate answer to this question. Harsanyi and Selten
(1988) attempted to answer this question by introducing a refinement of the Nash
equilibrium concept they dubbed risk dominance. A strategy s is a player's best response

to a strategy profile of the other players or a probability distribution over these profiles
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when s maximizes the player's payoff given this profile or distribution. If the players in a
symmetric 2 X 2 game each assign a uniform probability distribution over the other's pure
strategies and s* is the unique best response for both, then (s*, s*) is the risk dominant
equilibrium. In the game shown in Figure 1, (s1, 1) is risk dominant if z > y + z and
(83, 82) is risk dominant if y + z > x. Harsanyi and Selten give the following rationale
for claiming that a risk dominant equilibrium is the players' correct choice: One should
follow one's part of a risk dominant equilibrium because this is the least risky strategy, in
the sense that it is the best response over the larger share of possible probabilities with
which the other player follows his pure strategies (Harsanyi and Selten 1988, pp. 82-83).
Risk dominance is an important concept in rational choice game theory, but it raises
obvious pointed questions: Why shouldn't a player's probabilities over her opponent's
strategies lie outside the range that makes her end of the risk dominant equilibrium her
best response? Why shouldn't a player optimistically ascribe a high probability to her
counterpart choosing s; even if (sg, 2) is risk dominant, or pessimistically ascribe a high
probability to her counterpart choosing s, even if (s1, s1) is risk dominant? In the end,
there really is no determinate solution to the Assurance Game. Given appropriate
probabilities reflecting a player's beliefs about what the other player will do, either pure
strategy can be a best response. Rational players might fail to follow an equilibrium at
all, even if they have common knowledge of their rationality.® |

Now suppose that, in a population of players, each player plays the Assurance
game with each of a given set of the others, who are her “neighbors”. At a given time of
play, each player follows one strategy in her interactions with all her neighbors.”
Explicitly identifying the neighbors with whom each player interacts embeds their
Assurance game in a local interaction structure or network. Formally, a network is a
graph in which the nodes represent the players. Player j is Player i's interaction neighbor

if the nodes representing Player ¢ and Player j are linked with an edge. If n;(s;) of Player
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i's neighbors follow s; and 7, (¢) of Player i's neighbors follow s, then s1 is a best
response for Player ¢ if

(1.1) ni(s1)x > ni(s1)y + ni(s2)z .

and s is a best response if the reverse inequality is satisfied. In the special case where
y = 2z, (1.1) is equivalent to

ni(s1)
(12) z ni(sl) + ni(Sg) 22

that is, s; is a best response if the weighted average of payoffs Player ¢ receives from her
neighbors who follow s; exceeds the guaranteed payoff of following s,. To illustrate,
Figure 2 depicts a “propellor” graph with 9 players, where eight outer players are each
linked with the same central player and one outer player. The outer players form the
central player's Moore-8 neighborhood. The Figure 2 graph together with the Figure 1
game define a network game in which each player plays the Assurance game with every

interaction neighbor.
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Figure 2.

Black players follow sy, Light players follow s;

If, for instance, z = 9and y = z = 5, then by (1.2) s; is a best response for the central
Player i if 9 - @ > 5orn(s1) > 4 > 4, s0at least 5 of Player i's neighbors must
follow s; in order for s; to be Player ¢'s best response.

A priori analysis cannot predict what players in a network game will do, any more
than classical game theory can predict what a pair of players who meet in the Assurance
game will do. Indeed, local interaction structures complicate the equilibrium selection
problem. If a set of players play the Assurance game with their interaction neighbors,
then this system is at one equilibrium if all follow s; and another if all follow s5. In
addition, there are polymorphic equilibria where some players follow s; while others
follow s. If the players in the Figure 2 graph play Assurance withz = 9andy =2 =15
for each Player 14, then along with the all-s; and all-s; equilibria, any state where the
central player follows s; and exactly two of the outer players linked with each other

follow s; is an equilibrium. Figure 2 depicts one of these polymorphic equilibria.
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Which, if any, of all these equilibria will the players in a local interaction structure

follow?

§2. Best-response Dynamics, and an Apparent Anomaly

In recent years, game theorists have made increasing use of dynamical adjustment
processes to analyze equilibrium selection. This approach to equilibrium selection
explores how individuals test and revise their strategies over time until, gradually, they
converge to an equilibrium of a game. The formal model of the process by which players |
update their behavior characterizes a dynamical system. The popularity of this dynamical
systems approach is recent, but the underlying idea appears early in the history of game
theory. John Nash included a dynamical updating method for equilibrium selection in his
original presentation of the Nash equilibrium concept (Nash 19515).8 Strikingly, David
Hume's analysis of convention in A Treatise of Human Nature foreshadows both the Nash
equilibrium concept and a dynamical approach to equilibrium selection (Hume 1740, p.
490).°

Over the past decade, several authors (Young 1993, 1998, Kandori, Mailath and
Rob 1993, Ellison 1993, 2000, Morris 2000) have proved a set of results that establish
important connections between risk dominant equilibria in a wide class of games and the
stochastically stable equilibria (Foster and Young 1990, Young 1998) of a variety of
adaptive dynamics. One can perturb an adaptive dynamic so that each player occasionally
mutates by following a new strategy chosen at random. Informally, an equilibrium is
stochastically stable if it is robust against a low but steady “bombardment” of
stochastically independent random mutations in the dynamics. If a game has a
stochastically stable equilibrium of an adaptive dynamic, then over an infinite sequence
of plays players who update according to this dynamic perturbed with independent

random mutations will gravitate to this equilibrium a nonnegligible part of the time. If
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the game has a unique stochastically stable equilibrium, then over infinitely many plays
the players gravitate to this equilibrium for all but a negligible part of the time.

With network games, game theorists standardly investigate the properties of the
best-response dynamic with random perturbations. According to the best-response
dynamic, a player follows a strategy that yields the highest payoff against the strategies
her neighbors have just followed. This dynamic tacitly assumes that players usually react
myopically to their situation. If the players in a local interaction structure play a game
with a risk dominant equilibrium, the strategy of this equilibrium characterizes the unique
stochastically stable equilibrium of the system for the best-response dynamic with
independent random mutation (Ellison 1993, Young 1998). So we evidently have a
dynamical account of the emergence of risk dominant equilibrium play between
interaction neighbors.

The relationship between risk dominance, a static concept from rational choice
game theory, and stochastic stability, a dynamical concept, is of fundamental theoretical
importance. Nevertheless, it is not so clear how far these analytic stochastic stability
results can go in explaining how players in the real world might interact more

successfully. The following example illustrates this point.

Example 1. Assurance Played on a Torus with Independent Mutations
Let m > 1be an integer and let N = {1,...,n} where n = m?2. Define a bijective
functione : N — {1,...,m} x {1,...,m}. ¢ assigns to each Player i a unique index
(i) = (11(%),¢2(2)) . The graph
N = {ij: [11(2) — 11(5)| = 1 mod m and/or |e2(%) — t2(j)| = 1 mod m}

consists of links between each Player ¢ and the 8 neighbors that immediately surround
Player ¢. These links define Player ¢'s Moore-8 neighborhood. This 2-dimensional graph
is topologically equivalent to a torus, and can be mapped onto a square whose edges

“wrap around”. A number of authors use this graph to model various local interactions
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because it roughly approximates the interactions of agents who neighbor each other in a
geographic region or even around the globe.l0 We set m = 100, so that the entire
network contains 10, 000 players.

| Next we augment the local interaction structure with strategies and payoffs. Each
player in the network plays the Figure 3 Assurance game with each of his Moore-8

neighbors, and must choose a single strategy for interaction.
Figure 3. Assurance with (s1, s1) Risk dominant
Player j

S1 S9

Player ¢ 51 (6,6) | (0,3)

82 (3v 0) (27 2)

(s1, 51) is the risk dominant equilibrium of the Figure 3 game. So if the players in this
system update according to the best-response dynamic with independent random
mutations, then the stochastically stable equilibrium of this system is the equilibrium
where all follow s;. The all-s; equilibrium is the unique stable attractor of this dynamic
for any positive rate of mutation, no matter how small (Young 1998). In particular, if the
system starts in the suboptimal equilibrium with all players following ss, best-response
dynamics with random mutation will eventually move the entire population to the optimal
all-s; equilibrium.

One might well wonder how long it takes for this movement to the all-s;
equilibrium to occur. To test the speed of this convergence, we ran a computer
simulation of this system.!1 All 10, 000 players were initially assigned the strategy so,

starting the system at the suboptimal all-s; equilibrium. At each time period, every player
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played the Figure 3 Assurance game with her Moore-8 neighbors, updating her strategy
according to a perturbed best-response dynamic. Stochastically independent mutants
appeared at a rate of 0.10. Each mutant chose one of the pure strategies s; or s at
random with equal probability. We deliberately chose this rather hi gh mutation rate so as
to bias the dynamics against the initial all-s, equilibrium.

While the all-s; equilibrium is not stochastically stablel, it proves surprisingly
robust in the face of independent random mutations. The system was allowed to evolve
for 1,000,000 periods.!? Figure 4 depicts the state of this 100 x 100 graph, mapped onto

a square, at the final stage of this simulation.

Black players follow s,, Light players follow s;

Even though the mutation rate was set relatively high, so that at any stage an average of
10% of the players mutated, the s;-mutants were consistently overwhelmed and rendered

unable to establish a permanent foothold in the network. So the s1-strategy never started



Local Interactions with Influence Neighborhoods 11

to overthrow the incumbent s;-equilibrium. Indeed, in this simulation the suboptimal all-

sg equilibrium gave the appearance of being stochastically stable! H

One might object that the test of the attracting power of the all-s; equilibrium in
Example 1 is too severe. Perhaps rational agents in such a network would seldom if ever
all begin by following s,. In fact, we did relax the severity of the test, and found that the
perturbed best-response dynamic with a .10 mutation rate can converge to and never
overthrow the suboptimal all-s, equilibrium over 1,000,000 rounds of play even if the
system is initially set with as many as 20% of the network players following the s;-
strategy. Still, we think the conditions of the Example 1 test are not so far-fetched.

Social dilemmas are those situations where individuals are reluctant to contribute towards
a common good, even when they realize that all are better off if all contribute. A network
Assurance game models a social dilemma where a player contributes to the common good
by following s; and withholds his contribution by following s,. Suppose initially that the
benefit of the common good is small compared against the security of not contributing, so
that all tend to follow s, so as to avoid the costs of contribution. Then conditions change,
making the relative benefit of the common good significantly greater. The Example 1
network corresponds to such a situation, since the (sy, s1) equilibrium of the Figure 3
game is both optimal and risk dominant. However, by inequality (1.1) at least half of any
player's neighbors must change from s, to s; before s; becomes this player's best-
response. Example 1 shows that players who best-respond to their neighbors' previous
strategies can have great difficulty making the transition from consistently following s, to
consistently following s;, even when the network is continually “bombarded” by
independent random mutations appearing at a high rate. The initial all-s, equilibrium of
Example 1 models a state that seems ripe for reform. But the dynamical behavior of this

system reflects the fact that the road to social reform can be a long one.
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§3. Influence Neighborhoods

Theory tells us that random mutations will lead players to converge to
stochastically stable equilibria almost surely in the long run. However, Example 1 shows
that this “long run” can be very long, indeed. One would not expect many people in the
actual world to interact exclusively within a fixed neighborhood structure over a million
consecutive rounds of play. The network of interactions between people might well
change, and perhaps dissolve, over so many stages. But we have just seen that players
who do interact this often within a fixed neighbor structure and who mutate
independently can fail to replace a Pareto-inferior equilibrium with an equilibrium that is
both Pareto-optimal and risk dominant.

Yet the apparent failure of our experiment suggests an interesting possibility.
Over a lengthy time frame, best-response dynamics with stochastically independent
mutations can fail to converge to the equilibrium that is the ultimate limit of the
dynamics. What if mutations in the dynamics can be correlated? The following
examples show that the evolution of behavior in a network of best-response updaters can
change dramatically if we relax the assumption that all the mutations are stochastically

independent.

Example 2. Assurance Played on a Torus with Influence Neighborhoods

We revisit the network game of Example 1, with players arranged on a 100 x 100
torus who play the Figure 3 Assurance game with Moore-8 neighbors. Again, each player
updates his strategy according to a perturbed best-response dynamic. However, now we
allow correlation in the mutations across certain individuals. If a given Player 4
spontaneously mutates at stage ¢, then each of this player's Moore-8 neighbors and each
of their Moore-8 neighbors also mutate by imitating Player i's stage ¢ strategy with
probability A;(¢). The probability \;(t) is sampled from the uniform distribution over

[0, 1]. The 24 players whose stage ¢ strategies are now correlated with Player 5's
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experiment are Player ¢'s Moore-24 neighborhood in the torus. We set the spontaneous
mutation rate for a “leader” player at a low 0.0001, so that an average of only one
“leader” player per period appears in the entire network. A “leader” spontaneously
mutates to s; with probability £ and to s, with probability .13

We tested the properties of this dynamic with a series of computer simulations.
As in Example 1, in every simulation we ran of this dynamic we started the network game
at the suboptimal all-s, equilibrium. In each of these simulations, in fewer than 800
generations the s;-followers had spread throughout the entire system of players so that all
followed s; except for occasional areas of sy-followers that emerged due to this
correlated mutation. These occasional sy-following clusters were quickly overwhelmed
and converted back to s;-following. Figure 5 depicts the state of this 100 x 100 graph at .

the 100th, 300th, 500th and 700th generations of one of our simulations.
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Figure 5.
100 generations 300 generations

700 generations

R
Black players follow s,, Light players follow s,

Note that the system converged rapidly to the all s;-equilibrium even though at any given

stage, the overall mutation rate was bounded from above by 25 - 1‘0%% = 0.0025, the
overall expected mutation rate if all of a “leader” player's Moore-24 neighbors imitated

the “leader's” strategy. W

The correlation in mutations described in Example 2 is a correlation over a
“leader's” influence neighborhood. In this example if Player i is a leader mutant at period
¢, then his influence neighborhood Z;(¢) is the set of his Moore-24 neighbors. At period
t, each j € Z;(t) imitates Player ¢ with probability A;(¢). A natural to way to justify this

sort of correlation in strategies is to allow for the possibility of costless communication,
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or what game theorists call cheap talk. If communication is effectively suppressed
throughout the network, then no player has an influence neighborhood including any
other player, and players cannot correlate their mutations. But if communication is
possible, then players can correlate their strategies with the leader players whose
messages they receive. When Player ¢ is a leader at period ¢, Player ¢ mutates to strategy
si(t) and communicates this fact to each player j € Zi(t). Xi(t) is a measure of the
strength of Player 7's influence over those in the neighborhood Z;(t). Those in Z;(t) who
imitate Player 4's strategy s;(¢) at period ¢ “follow their leader”. Tn Example 2, the
correlated mutation of influence neighborhoods steadily moves the network game from
the suboptimal to the optimal equilibrium, even though the influence neighborhoods
appear at a low rate. The road to reform in this example is considerably shortened by the
introduction of influence neighborhoods.

Example 2 shows that risk dominant play can overtake an interaction network
fairly rapidly when some players' strategies are correlated via influence neighborhoods.
The next examples show that players who update according to a perturbed best-response
dynamic are by no means guaranteed to converge to risk dominant play when correlated

influence neighborhood mutations are possible.

Example 3. Assurance Played on a Bounded Degree Network with Influence
Neighborhoods

Figure 6 depicts a bounded degree network, where each of the 30 nodes is linked
with at least 4 and at most 8 other nodes. Again the nodes in the graph represent players,

and the edges define each player's interaction neighbors.
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Black players follow sg, Light players follow s;

Each player plays the Figure 7 Assurance game with each of her interaction neighbors in

the network.

Figure 7. Assurance with (s3, s2) Risk dominant

Player j

Player ¢ S1 (9,9) | (0,5)

89 (5,0) | (5,5)
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In the Figure 7 game, the suboptimal (s2, $2) equilibrium is risk dominant. Consequently,
the all-s9 equilibn'ﬁm is the unique stochastically stable equilibrium of the best-response
dynamic over this network game. In computer simulations, we found that when updating
occurred according to the best-response dynamic with independent random mutations, the
network converged to the all-s, equilibrium even if it was initially set at the all-s;
equilibrium. Moreover, these random mutations never generated a permanent foothold of
s1-followers in the network, even when the system was “bombarded” by a high mutation
rate of 0.10 for 100,000 periods. These results were not surprising, given that only all-sy
is stochastically stable.

However, the all-s9 equilibrium does not retain its high attracting power when
mutations can be correlated via influence neighborhoods. In a second set of computer
simulations, the spontaneous mutation rate was set at 0.001, and again a spontaneous
mutant followed s; or sy at random with equal probability. If a leader Player ¢
spontaneously mutated to s;, then Player ¢'s interaction neighbors together with their
interaction neighbors each followed s; with probability A;(¢) sampled from the uniform
distribution over [0, 1]. In these simulations, even when the network was initially set at
the stochastically stable all-s equilibrium, it oscillated between all-ss and all-s;. Figure
8 summarizes the evolution of strategies over this network during 5,000 periods of best-

response updating perturbed with these influence neighborhoods.
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Figure 8.
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Frequency of s;-followers in the 30-player bounded degree network game who
update according to a best-response dynamic with influence neighborhoods

In this network, no equilibrium is stable with respect to these correlated mutations. W
In Examples 2 and 3, influence neighborhoods appear in the network at a fixed
rate and a fixed size across pure strategies. In the next example, influence neighborhoods

appear at different rates and in different sizes across the pure strategies.

Example 4. Assurance Played on a Bounded Degree Network with Differential
Influence Neighborhoods

We consider another bounded degree network game, where each of 50 players is
linked with at least 4 and at most 8 other players. Each player plays the Figure 7 game

with her interaction neighbors. As in the bounded degree network game of Example 3, in
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this network game the all-s, equilibrium is the unique stochastically stable equilibrium of
the best-response dyhamic. As expected, we found in computer simulations that when
the system was set at the all-sy equilibrium, the best-response dynamic with independent
random mutations could never establish a stable foothold of s1-followers over 100,000
periods even with a mutation rate as high as 0.10. We also found that the all-sy
equilibrium is not robust against the introduction of influence neighborhoods of the sort
we applied to the network game of Example 3.

We next tested the following variant of best-response dynamics: At each time
period, independent mutants of sy-followers appear with probability 0.1, and s;-mutants
appear spontaneously at a rate of 0.001. When an s;-mutant appears spontaneously, her
interaction neighbors together with their interaction neighbors each mutate with
probability A;(t) sampled from the uniform distribution over [0, 1). We found that this
dynamic always led the network game to converge to the optimal all-s; equilibrium, even
though all-s is stochastically stable and at any time period an average of 10% of the
players spontaneously mutated to s,. The results of one of our computer simulations over

5000 periods of updating are summarized in Figure 9.
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Figure 9.
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Frequency of s;-followers in the 50-player bounded degree network game who
update according to a best-response dynamic with influence neighborhoods

In this network game, all-s; is the unique stable attractor of the best-response dynamics
perturbed with these influence neighborhoods. This result is especially striking because
s2-following mutants appear 100 times as often as leader s;-following mutants appear,
and of course even when an s;-following leader Player ¢ appears at period ¢, the
correlation in behavior over her influence neighborhood might be weak depending upon
Ai(t). The reason the high influx of s;-mutants cannot prevent the overthrow of the all-ss
equilibrium or later destabilize the new all-s; equilibrium is precisely because the s;-
following mutations are correlated. s;-following leader mutants appear seldom in the

network game, but the coordinated play of players in their influence neighborhoods
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enables the s;-followers to conquer the network game and to suppress the high influx of
so-mutants over time. M

Example 4 shows that influence neighborhoods that appear at random in a
network game can drive this game to an optimal equilibrium that is robust against a high
rate of independent mutations even when the suboptimal equilibrium of the 2-player base
game is risk dominant. The stability of the optimal equilibrium with respect to this
dynamic depends upon the s;-mutants being correlated, while the s, mutants remain
independent. To explain this asymmetry, one can allow for differences in ability to
communicate across mutants. That is, leader s;-following mutants might have access to
some communication channel they use to send messages to others in their influence
neighborhoods, while s;-mutants have no reliable means of communicating with others.
So even though leader s;-mutants appear seldom in the interaction network, their
relatively effective ability to signal their plans to others enables those in their influence
neighborhoods to coordinate their activity to a certain extent. On the other hand, even
though sy-mutants appear at a much higher rate than s;-mutants, they are unable to
communicate with others and consequently cannot coordinate their activity. So s:-
followers can overthrow an incumbent all-s; equilibrium and even fight off a continual
high influx of new s,-followers.

Our examples suggest a method for testing Hardin's (1995) dual coordination
explanation of the duration of regimes and successful revolt. Hardin maintains that a
generally despised regime will remain in power so long as the agents of the regime can
simultaneously coordinate their activity and prevent those under their jurisdiction from
coordinating. This would explain why repressive regimes suppress communication. On
the other hand, Hardin argues that if dissidents suddenly gain the ability to communicate
and thereby coordinate while the regime's agents lose these abilities, the regime becomes
vulnerable. One can interpret the network game and the influence neighborhood structure

of Example 4 as follows: To follow s, is to obey a regime all dislike. Dissident s;-
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followers establish an underground broadcasting network that enables them to send
messages to others and also to jam the attempts of new so-followers sent by the regime to
communicate with others. Given these conditions, the s;-followers stage a successful

revolt.

§4. The Formal Model

We first review some basic notions of network games to establish notation.
N = {1, ...,n} is the set of players. ij denotes the subset {4, j} C N. Eachij C N,
i # j,1is an undirected link over N. A" denotes the complete graph over N, that is, the
set of all links over N. A subset N' C N'Y defines an interaction network, or N -network.
If ij € NV, then ¢ and j are interaction neighbors, or N -neighbors, and are said to be N -
linked. The set N; = {j € N : ij € N'} is Player i's N-neighborhood. N; # 0 for each
1 € N. This guarantees that each player interacts with at least one other player, that is,
each player “gets to play”. The base game I is a symmetric noncooperative 2-player
game with pure strategy set S and payoff matrix u:S x § — R?. With each of her NV-
neighbors, Player ¢ plays I” and receives a payoff u; (Sk,-, skj) =1Io u(skl., skj) , where
I () projects z € R? onto its 1st component, for each Player j € N;. Ny = (N, I') is
the network game characterized by the network A/ and the base game I

A state of a network game N is a vector 8 = (s, ..., Sk, ), Sk; € S. Player i's
payoff at state s is the sum of the payoffs Player i receives from playing with each of her
N-neighbors. A strategy sy, is a best response for Player i to s_;14 if s;, maximizes

Player ¢'s payoff, that is,

(3.1) Z ;i (8K, S1;) > Z u;(s},, si;) for each sy, €85
i EN; jEN;

* *

SX(s_;) denotes the set of Player i's best responses to s_;. A state s* = (53,555 ) s
a Nash equilibrium of N if

(3.2) s;, € SX(s*;)foreachi € N.
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and s is strict if exactly one strategy satisfies (3.2) for each s € N.
We need a few additional bits of notation to define the states of a network game
when players interact with their A -neighbors over time. At each period ¢, each Player i
follows a strategy s;(t) € S. The state of the network game N at ¢ is the vector
s(t) = (s1(t), ..., sa(t)). Clearly, s(t) is a Nash equilibrium if s(t) = s* satisfies (3.2).
In the sequel, 14 is the indicator of a proposition A C (2, thatis, 14 = 1if A is
the case and 14 = 0 otherwise. p(A) denotes the probability that A C {2 obtains.15
Next we define the dynamics of our examples. Each dynamic presupposes an
initial state s(0). s(0) is the boundary condition of the dynamic. The (inductive) best-
response-dynamic (BR-dynamic) on a network game N is defined as follows: For each
i€ N,let f; : 25 — 0 — S be a (possibly random) choice function.!6 At each period

t>0,

(3.3) BRi(t) = fi({sk € S : sp € S¥(s_k(t—1))}) .

In words, at period ¢ each Player ¢ adopts a strategy that is a best response to the strategies
Player ¢'s neighbors followed at period ¢ — 1. If Si* contains more than one pure strategy,
then Player ¢ selects one of these best responses according to the choice function.
Clearly, BR;(t) = BR;(t — 1) for each i € N only if s(¢) = s(t — 1) is a Nash
equilibrium of A7, that is, the fixed points of the BR-dynamic are Nash equilibria of the
network game. Of course, the converse need not hold, for if s(t — 1) is a Nash
equilibrium but not strict, then at stage ¢ some players might choose best responses other
than their respective parts of s(¢ — 1). However, any strict Nash equilibrium is a fixed
point of the BR-dynamic, since by definition each player's part of such an equilibrium is
her unique best response to the others' strategies.

Let o; denote a completely mixed strategy!” for Player i and Af , ..., A! denote
stochastically independent propositions such that ,u(Aﬁi) = ¢;. Then the BR-dynamic

with independent random mutation is defined by
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(3.4) BRi(t,i,01) = (1 1ag ) - BRi(t) + Ly, - 5.

That is, at each stage ¢, Player ¢ best responds with probability 1 — €;, and with
probability €; chooses a pure strategy at random. ¢; is Player ¢'s mutation rate. One may
interpret a mutation o; as Player ¢ experimenting or making an error, or as one individual
being replaced by a fresh individual unfamiliar with the history of play. Our conception
of mutations as being dependent upon the influence neighborhood of a player may be

formally defined as follows:

Definition. Given a network game AT, at each period ¢ and for each 7 € IV there is an
associated probability distribution A;(t) = (A1 (¢), ..., Ain(t)) over the players in N.
Player ¢'s influence neighborhood (Z-neighborhood) at time t is the set
Z(t) = {j € N : \ji(t) > 0}. The size of a Z-neighborhood is |Z;(t)|, the number of
players in Z;(t). If j € Z;(t), A;s(¢) is Player 4's influence probability over Player j. All
of the influence neighborhoods over N at period ¢ are specified by the matrix
An(t) = (A1(t); - An(t)). W
The probabilities that characterize the influence neighborhoods can vary over time
periods, while the graph that defines the local interaction structure of the network game
remains fixed. The underlying intuition here is that changing one's interaction neighbors
is prohibitively costly, but cost-free communication with nearby players might at times be
possible. So the players' interaction subnetworks, the N -neighborhoods, remain fixed.
But their communication subnetworks, the Z-neighborhoods, can change rapidly. Note
that for a given ij € A we can have A;;(t) # Aj;(¢). This reflects the idea that influence
need not be a symmetric relation between players. The weights can vary across players in
a Z-neighborhood so that influence might vary across players as well as across time.

The precise manner by which players correlate their strategies is defined by a

variant of the best-response dynamic that incorporates influence neighborhoods:
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Definition. Let Af, ..., A%, be mutually exclusive propositions such that
;/,(Aﬁj) = Aj(t). Then the BR*-dynamic with influence neighborhoods (Ay(t)) is

defined as follows: Fori € N,

3.5) BRI, (1)) = ) si(t)luy
jEN

where s;(t) = BR;(t, €;,0;). B

In words, Player ¢ imitates the strategy of Player j with probability A;;(¢) if Player ¢ falls
in Player j's influence neighborhood. Frequently, if not predominantly, a Player ¢ will not
fall in any other player's influence neighborhood. In this case, A;(¢) is characterized by
Aii(t) = 1, and Player ¢ simply follows the best-response dynamic with independent
random mutations. If at period ¢ we have A;(t) = 1 for all ¢ € N, then every influence
neighborhood is a singleton, that is, Z;(t) = {3} for each ¢ € N. Intuitively, in this case
no player communicates with any other player. Also for this case, at this period the BR*-
dynamic with influence neighborhoods reduces to the BR-dynamic with independent
random mutations. At another extreme, if a Player ¢ has a number of other players falling
in her Z-neighborhood at period ¢ and Aj;(t) = 1 for each j € Z;(t), then all of the players
in Player j's influence neighborhood are certain to correlate their strategies with Player j
at period ¢. One might think of this case as a “perfectly disciplined” influence
neighborhood whose members all follow the command of their leader.

In Examples 2, 3, and 4, a leader Player ¢ with an influence neighborhood
T;(t) # {4} appears at random in the network game, and this leader's influence
probability is constant over the influence neighborhood. This is why in these examples it
makes sense to write Aj;(t) = A;(¢) for each Player j € Z;(¢). In these examples, a
leader's influence over his Z-neighbors is set at random and lasts only for a single time
period, save for the unlikely event that this leader spontaneously mutates over

consecutive time periods. Of course, many other configurations of influence
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neighborhoods are possible. A leader player might have a fixed influence neighborhood
over part of the network game and over an indefinite number of consecutive periods.
Such fixed influence neighborhood leaders have their analogous counterparts in real life,
such as political leaders and military commanders. If a single Player ¢ is such that

Aji(t) = 1forall ¢ and all j € N, then the entire network is Player 4's perfectly
disciplined influence neighborhood. In this special case, Z;(t) = N, Z;(t) = 0 for i # j,
and Player ¢ plays a role analogous to Hobbes' absolute sovereign. As noted above,
perfect discipline is an extreme case. One would expect that in many actual situations, a
leader's “clout” varies over those falling within his sphere of influence. Varying
influence probabilities over the Z-neighborhood reflect a leader's uneven sway over those
who receive his messages. And in the real world, actual influence over others at
particular times is likely to be neither completely fixed nor purely random.

When correlated mutations are possible, a variety of long term outcomes can
emerge in a network game, depending upon the payoff structure of the base game, the
configurations of the interaction network and the influence neighborhoods. If influence
neighborhoods remain fixed and perfectly disciplined over a stretch of time periods, then
the network can remain at a polymorphism of strategies where those in the influence
neighborhoods follow their leaders and the rest follow the strategy that defines the
stochastically stable equilibrium. Examples 3 and 4 show that stochastically stable
equilibria neéd not be robust against influence neighborhoods even when these
neighborhoods appear momentarily at random at very low rates. These examples show
that there is no universal convergence property of the best-response dynamic perturbed
with influence neighborhoods that is the analog of stochastic stability when all mutations
are stochastically independent.

On the other hand, it is possible to define convergence concepts for the BR*-
dynamic and to identify some sufficient conditions for convergence. Example 2 shows

that influence neighborhoods can sometimes greatly accelerate the convergence of the
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network to the strategy of the risk dominant equilibrium in the base game. This example

and Example 4 suggest the following

Definition. A state s* = (s], ..., s}) of a network game N is an attractor of the BR*-
dynamic with influence neighborhoods (Ay(t)) if for some state 8’ # s*, when

8(0) = &’ then BR} (t, A;(t)) in (3.5) is such that

(3.6) u(tlimsi(t) - (1 . 1A5_)s;-k + ailAg_) — 1foreachi € N.
— 00 ) )

If (3.6) is satisfied for every state s % s8*, then s* is the global attractor of the BR*-

dynamic.

This definition says that s* is an attractor of the BR*-dynamic with the Z-neighborhoods
(An (%)) if, with probability one, from s(0) players who update according to this dynamic
all eventually follow s* except when they mutate, either spontaneously or by imitating the
leader of a Z-neighborhood. In Example 2, (s1, ..., s1) is the global attractor of the BR*-
dynamic where each Z-neighborhood is a Moore-24 neighborhood of varying discipline.
For any initial state of this network, under this BR*-dynamic all the players eventually
follow s; except for the occasional Z-neighborhood of ss-followers that appears and is

then eliminated. We have the following elementary result:

Proposition 1. If s* = (s*, ..., s*) is an attractor of the BR*-dynamic with influence
neighborhoods (Ay(t)), then s* is a Nash equilibrium.

PROOF. By hypothesis, given some s(0) = s # s* this BR*-dynamic satisfies (3.6).
Hence as ¢ — oo, with probability one each Player ¢ € N follows s} unless Player ¢
mutates spontaneously or imitates the strategy of a leader in case Player ¢ falls in this
leader's Z-neighborhood. But then s} must be a best response for each Player i € N

under the unperturbed BR-dynamic, and so (3.2) is satisfied. [J

Example 2 shows that a system of BR*-updaters can converge to an optimal Nash

equilibrium even when the Z-neighborhoods appear randomly in the network at a very
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low rate and the initial state is a suboptimal but strict equilibrium. In the remainder of
this section we show why this is the case and at the same time establish some
convergence conditions for BR*-dynamics. First, we define the notion of BR-stability for

the unperturbed best-response dynamic.

Definition. Given the network game N, aset B C N is BR-stable with respectto s € S
if, given s;(t) = sforeach ¢ € B, BR;(t + 1) = s for each ¢ € B. If B is BR-stable with

respect to s, we say that s is BR-stable over B. l

Intuitively, a set B of the players is BR-stable with respect to the pure strategy s if when
all in B start to follow s, the BR-dynamic cannot “erode” the s-following throughout B
even when all the rest of the players in A do not follow s.

In the following proposition, we show that if the influence neighborhoods of a
BR*-dynamic introduce BR-stable sets, this dynamic can converge to a Nash equilibrium

from any initial state no matter how infrequently these influence neighborhoods appear.

Proposition 2. Let the network game N be given. Let Z-neighborhoods of bounded
size b < n appear in N with probability u(Z;(t)) = € where for Z;(t), u(s;(t) = si) is
uniformly distributed across pure strategies. Let u(|Z;(t)| = b) > ¢ > Oand

p(s;(t) = si for all j € Z;(t)) > p > O for each Z;(t) that appears in M. If for each
Z;(t) of maximum size b, s* is the unique BR-stable strategy of some subset B; C Z;(t),
then 8* = (s%, ..., s*) is the global attractor of this BR*-dynamic.

PROOF. Let (Z,) denote the sequence of Z-neighborhoods that appears in the network
lexically ordered according to time periods of play. With probability one, a perfectly
disciplined Z-neighborhood of maximum size b whose players follow s* appears
infinitely often in the sequence of plays. Let (Z,, ) denote the subsequence of (Z,,) such
that 7, is of size b and each ¢ € Z,, follows s*, and let (B,, ) denote the sequence of BR-
stable sets of s*-followers that appear in A as a result. We claim that s* satisfies (3.6),

that is, s* overtakes the network game with probability one. For each B,, introduces a
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number of s*-followers that remain in the network over time until B,, is disrupted by
some influence neighborhood whose players follow some strategy other than s*. So the
By,'s gradually increase the number of s*-followers in the network until all but mutants
follow s* unless all but some fixed finite number of the B, 's are disrupted by “counter”
Z-neighborhoods whose “leaders” follow strategies other than s* that appear and overlap
the By,'s. But for this containment of the B,,'s to occur, a sequence (Ay,) of Z-
neighborhoods synchronized with the Z,, 's must appear in AT such that all but a fixed
number of the Ay, s satisfy the following properties: (i) the leader Player 4,, of each Ay,
follows some strategy other than s*, (if) Player i,, appears in a part of the network where
Ay, overlaps T,,, and (iii) enough players in .4,, imitate Player i,,'s strategy to disrupt
the s*-stability of B,, so that the players in B,,, do not continue to follow s*. (If these
conditions are not met, then a subsequence of the B,,'s is not contained by the A,,'s and
this subsequence then overtakes the whole network.) But if A;,, denotes the proposition
that for a given B,, a matching A, appears satisfying (i), (ii) and (ii), then p (A} )is
some value 7, < 1. For note that the probability that (i) occurs is fixed by hypothesis.
The probability that (i) occurs is some fixed number, for there are only so many ways a
T-neighborhood of size b can overlap one of the B,,'s. The probability that (iif) occurs is
bounded from above, since the “best case” scenario for the “disrupters” is if .A,, overlaps
perfectly with B,, and then sufficiently many players in A,, imitate Player 3, to
destabilize the s* strategy in B,,. So the n,,'s are bounded from above by some 1 < 1.
Hence if A’ denotes the event that the necessary sequence of \A,,'s appears to contain the
B,,'s, then

p(A’) = p(Aj, for all but finitely many uy)
= M fuy -+ 7,
< limny™=0. 0

m—0o0
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The key idea behind Proposition 2 is that BR-stable sets of s*-followers appear in the
network game and persist, even when they do not appear in consecutive time periods and
are not contiguous in the network. So with probability one, the appearance of these BR-
stable sets together with the forces of the BR*-dynamic results in s* overtaking the entire
network game. This argument is quite different from the proofs of the stochastic stability
results for independent random mutations in works such as Young (1993, 1998), Ellison
(1993, 2000), and Morris (2000), which consider the behavior of a network game in the
rare event that sufficiently many independent mutations occur consecutively so as to drive
the system out of and away from an equilibrium. Note also that the premises of
Proposition 2 do not bias the BR*-dynamic so that the influence neighborhoods of any
particular strategy are more likely to appear or to persist over time periods. Finally, note
that the proof of Proposition 2 does not depend upon specific values of €, g or p as stated
in the hypotheses. So the BR*-dynamics that satisfy these hypotheses ultimately overtake
the entire network game no matter how infrequently BR-stable sets of s*-followers
appear, so long as they appear with some positive probability at each period.

We can now identify certain network structures where a BR*-dynamic that is not
biased in favor of any pure strategy will converge to risk dominant equilibrium play. An
interaétion network V' is c-uniformly linked if each i € N, |N;| = c, that is, each Player i
is A/-linked with exactly c other players.

Corollary 3. Let AT be such that V' is c-uniformly linked and (s*, s*) is the risk
dominant equilibrium of I". Let Z-neighborhoods of bounded size b < n appear in N
where 1(Z;(t)) = € and where for Z;(¢), u(s;(t) = s3) = g Letu(|Zi@®) =b) > ¢>0
and p(s;(t) = s for all j € Z;(t)) > p > 0 for each Z;(t). If for each Z;(t) where

|Z;(t)| = b, a nonempty subset B; C Z;(t) is such that each Player 4 is A-linked with at

least £ players in Z;(t), then 8* = (s¥, ..., s*) is the global attractor of this BR*-dynamic.
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PROOF. As in the proof of Proposition 2, let (Z,) denote the sequence of Z-
neighborhoods that appears in the network lexically ordered according to time periods.
With probability one, a subsequence (Z,, ) where Z,, is of size b and each 7 € Z,, follows
s* appears in the sequence of plays. By hypothesis, each Z,, contains a nonempty subset
By, whose member nodes are each \/-linked with at least £ players in Z,,,. Since (s*, s*)
is risk dominant, by (1.1) s* is the unique best response for each Player ¢ € B,, at
subsequent time periods because at least half of Player i's A/-neighbors followed s*.
Hence s* is the unique BR-stable strategy for each B,,, in thé sequence (B, ), so all of the

hypotheses of Proposition 2 are satisfied. [J

Corollary 3 establishes that when the base game has a risk dominant equilibrium, a large
class of BR*-dynamics will converge to risk dominant equilibrium play in the special case
where the interaction network is uniformly linked, as are the 1-dimensional circular
network games analyzed by Ellison (1993) and the 2-dimensional lattice network game of
Examples 2 and 3. Moreover, we can now explain why random mutations failed to
overthrow the suboptimal (ss, ..., s2) equilibrium of the lattice network of Assurance
games in Example 1 while in Example 2 influence neighborhoods that entered the same
network game rapidly moved the system to the (sy, ..., s1) equilibrium. Even though
(s1, ..., 51) is the unique stochastically stable equilibrium of this network game, over a
million generations no set of the singleton Z-neighborhoods of s;-followers introduced
by independent random mutation appeared together in a BR-stable configuration. While
they appeared at a high rate, the s;-following mutants were relatively isolated from each
other and consequently were not BR-stable with respect to s;. Hence, in Example 1 the
independent s;-mutants failed to establish a stable bridgehead in the network game over a
million generations even though they appeared at the high 0.1 rate.

In Example 2, even though Z-neighborhoods appeared at a rate of only 0.001,

some of the Z-neighborhoods of s;-followers that appeared introduced BR-stable sets.
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Each Z-neighborhood was a Moore-24 neighborhood, and since the network game was 8-
uniformly linked, all but the four “corner” players of a given Z-neighborhood were A -
linked with at least four players in the same Z-neighborhood. So when a perfectly
disciplined Z-neighborhood of s;-followers appeared in the network game surrounded by
sg-followers, the corner players converted to s; on the subsequent round of play but the
remaining 20 players formed a BR-stable set of s;-followers that persisted in the game.
While these BR-stable sets appeared seldom in the network due to the very low leader
mutation rate, they started a steady contagion of s;-followers that rapidly overtook the
network.

Proposition 2 and Corollary 3 are fundamental convergence results for BR*-
dynamics. They show that for certain classes of network games, influence neighborhoods
large enough to introduce BR-stable sets will ultimately drive a network game to a unique
Nash equilibrium, no matter how infrequently leader mutants appear. However, these
results clearly do not generalize to all network games. Example 3 shows that if the
interaction network is not uniformly linked there might be no global attractor, or even a
stable equilibrium, of a BR*-dynamic that introduces influence nei ghborhoods following
each pure strategy at equal rates. Example 4 shows that under a BR* -dynamic that
introduces influence neighborhoods at rates and of sizes that vary across pure strategies, a
nonuniformly linked network game can converge to an equilibrium of non-risk dominant
play that is robust against a high rate of spontaneous mutation. Plainly, the impact of
correlated influence neighborhood mutation varies according to the network structure and

the specifics of the influence neighborhoods.

§5. Conclusion
We have shown that correlation in mutations can profoundly impact the evolution
of strategies across local interaction structures. Previous work established that when the

base game of any network game has a risk dominant equilibrium, risk dominant play
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characterizes the unique stochastically stable state of the best-response dynamic (Ellison
1993, Young 1998). The generality of this result suggests that payoff structure alone
determines the long term limits of dynamical updating. If so, then of course network
structure plays no role in determining the state to which the players ultimately converge,
though it certainly influences how quickly they approach that state. But we believe it
would be a mistake to draw this moral from the stochastic stability literature. The
examples in this paper show that the tight connection between risk dominant play and
dynamic stability dissolves when one relaxes the assumption that all mutations are
stochastically independent. Network structure does play a role in determining where the
players end up when the correlated mutations of influence neighborhoods can appear in
the network game. Correlation via influence neighborhoods can help drive a network of
players to a stable equilibrium of risk dominant play, or to some other stable equilibﬁum.
And it is possible that no state is stable when influence neighborhoods enter into the
network game, even when this game has a unique stochastically stable equilibrium of risk
dominant play.

Correlation via influence neighborhoods also dramatically accelerates the
evolution of equilibria in some network games. We have seen that when only
independent mutations are possible, the players in a network game can find themselves
trapped at a suboptimal equilibrium that is not stochastically stable for a very long time.
While according to theory independent mutations will ultimately drive the network game
to the optimal stochastically stable equilibrium, this process may take so long that
stochastic stability cannot be the basis for any realistic explanation of the emergence of a
new optimal social equilibrium in actual human communities. Communities of people do
occasionally reform their practices, and the process does not typically occur as the result
of independent aberrations in the behavior of individuals over millions of consecutive
interactions. Successful reform requires coordinated departures from incumbent practice.

Typically, such coordination requires planning, communication and leadership. Such
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coordination also succeeds by generating a “bandwagon” effect that spreads quickly
through society. Independent random mutation cannot adequately model this kind of
coordination. But influence neighborhoods are tailor made for modeling this
coordination. And an optimal equilibrium that independent mutation never produces over
a million periods of interaction can emerge quite rapidly under the correlated mutations of
influence neighborhoods. We believe that influence neighborhoods can be a valuable tool
for analyzing social change.

Most of the literature on network games, including the stochastic stability
literature, develops quite general convergence results from powerful assumptions that are
mathematically convenient but not really well founded. In this paper, we have explored
some of the consequences of relaxing one of these assumptions, namely, that all
mutations are stochastically independent. Not surprisingly, we do not get convergence
theorems for influence neighborhood dynamics as general as those of the stochastic
stability literature, but we do get what we think is a more realistic model of how strategies
develop over local interaction structures. Future work should investigate the
consequences of relaxing some of the other robust assumptions common in the network
game literature in conjunction with relaxing the stochastic independence assumption.
Players might not be so myopic as the literature assumes. Updating rules more
sophisticated than the best-response dynamic should be explored. Players might not
always interact with the same neighbors. Some authors have already proposed models in
which the interaction network itself evolves over time (Skyrms and Pemantle 2000, Goyal
and Vega-Redondo 2000, Watts 2001, Jackson and Watts 2001a, 20015). Combining
different learning rules and evolving network structures with influence neighborhood
mutation may produce a theory of network games that has much greater explanatory

power than the existing theory.
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1A Player i is said to be a neighbor of another Player 7 if Players ¢ and 7 are
connected by an edge in the social network.
2Goyal (2002) surveys much of the progress achieved in the dynamical analysis of

network games so far. Interestingly, some of the most original contributions in this new
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literature come from philosophers (Danielson 1992, Grim, Mar and St. Denis 1998,
Alexander and Skyrms 1999, Skyrms 2002, forthcoming) and computer scientists
(Nowak and May 1992, Nowak, Bonhoeffer and May 1994).

3In line with the other literature on network games, in this paper a mutation is a
random change in strategy, not a biological mutation.

4Following standard conventions, Player 1's (Player 2's) payoff at each outcome of
the game is the first (second) coordinate of the payoff vector in the cell of Figure 1 that
characterizes this outcome. For instance, if Player  chooses s; and Player j chooses s,
then Player i's payoff is 0 and player j's payoff is y.

Many authors have argued that versions of the Figure 1 game capture the logic of
Rousseau's celebrated example of the stag hunt, given in Part II, paragraphs 8 and 9 of
Discourse on the Origin and Foundations of Inequality in Men. The Assurance game
gets its name from Sen (1967), the first author we know of who analyzed this game for
Y > 2.

3See especially Taylor and Ward (1982), Kavka (1986), Hampton (1986), Taylor
(1987), Jiborn (1999) and Skyrms (2001, forthcoming).

David Lewis (1969) presented the first analysis of common knowledge. A
proposition A is Lewis-common knowledge among a group of agents if each agent knows
that all know A and knows that all can infer the consequences of this mutual knowledge
(Lewis 1969, pp. 56-57). Lewis-common knowledge implies the following better known
analysis of common knowledge: A is common knowledge for a group of agents if each
agent knows A, each agent knows that each agent knows A, and so on, ad infinitum.

7To motivate this assumption, which is common throughout the network game
literature, one can suppose that each player interacts with all her neighbors
simultaneously, or that she cannot keep track of which of her neighbors follows any

particular strategy, so that she must adopt a single strategy for interacting with them all.
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8Nash's dynamical model foreshadows the fictitious play processes (Brown 1951,
Fudenberg and Levine 1998) that have become a staple tool for analyzing equilibrium
selection in games.

9For extended discussion of Hume's informal game;theoretic insights, see Lewis
(1969), Sugden (1986) and Vanderschraaf (1998).

10See, for instance, Nowak and May (1992), Nowak, Bonhoeffer and May (1994)
and Grim, Mar and St. Denis (1998).

LAl of the simulation experiments summarized in this paper were run using The
Evolutionary Modeling Lab developed by Alexander.

12The pseudorandom number generator that The Evolutionary Modeling Lab
employs to introduce the mutations in our simulation experiments implements the
Mersenne twister algorithm known as MT19937, which has a provable period of
919937 _ 1

130ne can also allow independent random mutations to appear alongside the
mutations correlated with the “leaders”. In this simulation experiment, the independent
mutation rate was set to 0.0 so that “leader” players who might be “followed” by some of
their Moore-24 neighbors received no additional “help” from independent random
mutants.

14The subscript  — 4’ indicates the result of removing the ith component of an n-

tuple or an n-fold Cartesian product. In particular,

8—i = (815 .0y Sic1, Sit1, vy Sn)

denotes the n — 1-tuple of pure strategies that Player 4's opponents follow when they all
follow the state s = (s1, ..., Sp).

15In much of the game-theoretic literature, probabilities are players' subjective
beliefs, which need not agree over all propositions. In our model, the relevant

probabilities are probabilities of mutations, which may be viewed from the perspective of
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any player or an external observer. Hence in our model it makes sense to use a single
probability measure rather than an entire system of subjective probability measures.

1625 — ( denotes the set of all nonempty subsets of a nonempty set B. For a
finite set B = {1, ..., Z, }, a choice function f : 28 — ) — Btakes as an argument any
nonempty subset {z,, ..., Zx, } C B and returns f({z,, ..., Tk, }) = Tk; € {Thy, .os Tk 1
a single element of {xy,, ..., zx, }. In particular, for a singleton {z} C B, f({z}) = .

17A player follows a completely mixed strategy by pegging his pure strategies on
a random experiment such that each pure strategy has a positive probability of being
followed according to the outcome of the experiment (von Neumann and Morgenstern

1944, Nash 1951a).



