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1 Introduction

Here is the usual way philosophers think about science and induction. Scientists do many things— aspire,
probe, theorize, conclude, retract, and refine— but successful research culminates in a published research
report that presents an argument for some empirical conclusion. In mathematics and logic there are sound
deductive arguments that fully justify their conclusions, but such proofs are unavailable in the empirical
domain because empirical hypotheses outrun the evidence adduced for them. Inductive skeptics insist
that such conclusions cannot be justified. But “justification” is a vague term— if empirical conclusions
cannot be established fully, as mathematical conclusions are, perhaps they are justified in the sense thas
they are partially supported or confirmed by the available evidence. To respond to the skeptic, one merely
has to ezplicate the concept of confirmation or partial justification in a systematic manner that agrees,
more or less, with common usage and to observe that our scientific conclusions are confirmed in the
explicated sense. This process of explication is widely thought to culminate in some version of Bayesian
confirmation theory.

Although there are nearly as many Bayesianisms as there are Bayesians, the basic idea behind Bayesian
confirmation theory is simple enough. At any given moment a rational agent is required to assign a unique
degree of belief to each proposition in some collection of propositions closed under “and”, “or”, and “not”.
Furthermore, it is required that degrees of belief satisfy the axioms of probability. Conditional probability

is defined as follows: P(h and )
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Confirmation can then be explicated like this:
evidence e confirms hypothesis h (for agent P) if and only if P(hle) > P(h).

In other words, confirmation is just positive statistical dependence with respect to one’s degrees of belief
prior to their modification in light of e. In a similar spirit, the degree of confirmation can be explicated
as the difference P(h|e) — P(h).

So defined, confirmation depends on the structure of the prior probability function P to the extent
that for some choice of P, the price of tea in China strongly confirms that the moon is green cheese.
Personalists embrace this subjectivity, whereas objective Bayesians impose further restrictions on the
form of P to combat it (cf. P. Maher’s article in this volume).

Confirmation theory’s attractiveness to philosophers is obvious. First, it responds to the skeptic’s
challenge not with a proof, but with a conceptual analysis, conceptual analysis being the special skill
claimed by analytic philosophers. Second, confirmation theorists seem to derive the pure “ought” of
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scientific conduct from the “is” of manifest practice and sentiment. No further argument is required



that confirmation helps us accomplish anything, like finding the truth, for confirmation is (analytically)
justification of belief and justification of belief that h is justification of belief that h is true. Third, in
spite of the dependence on prior probability, Bayesian confirmation provides a simple unification of a
variety of qualitative judgments of evidential relevance, some of which will be described below (cf. P.
Maher’s article in this volume). Fourth, explications are hard to refute. Celebrated divergences between
human behavior and the Bayesian ideal can be chalked up as “fallacies” due to psychological foible or
computational infeasibility. What matters is that the explication provides a unified, simple explanation
of a wide range of practice and that when violations are called to attention, the violator (or at least
you, as a third party), will agree that the violation should be corrected (Savage 1951). Fifth, there are
unexpected, a priori arguments in favor of Bayesian principles called Dutch Book arguments (DeFinetti
1937, Teller 1973). The basic idea is that you can’t guard against possible disasters when you bet on
the future, but at least you can guard against necessary disasters (i.e., combinations of bets in which
one loses no matter what). It is then argued that Bayesian methodology is the unique way to avoid
preferences for sure-loss bets. That isn’t what anybody ever thought scientific method is for, but who
ever said that philosophy can’t make novel discoveries? Finally, confirmation theory restricts philosophical
attention to a tractable subdomain of scientific practice. Confirmation stands to science as proof stands
to mathematics. There are interesting psychological questions about how we find proofs, but regardless
of their intrinsic psychological and sociological interest, such issues are irrelevant to the resulting proof’s
validity. Similarly, science is an ongoing social process that retracts, repairs, and revises earlier theories;
but the philosophical relevance of these social, psychological, and historical details is “screened off” by
confirmation (Hempel 1965, Laudan 1980).

So what'’s not to like? One might dwell upon the fact that scientists from Newton through Einstein
produced, modified, and refined theories without attaching probabilities to them, even though they were
capable of doing so had they so desired (Glymour 1980). Or on the fact that the sweeping consistency
conditions implied by Bayesian ideals are computationally and mathematically intractable even for simple
logical and statistical examples (Kelly and Schulte 1995). Or on the fact that, in Bayesian statistical
practice, the selection of prior probabilities often has more to do with mathematical and computational
tractability than with anyone’s genuine degrees of belief (Lee 1989). Or on gaps in the Bayesians’
pragmatic Dutch book arguments (Kyburg 1978, Maher 1997, Levi 2002). Or on the fact that Bayesian
ideals are systematically rejected by human subjects even when cognitive loading is not at issue (e-g.,
Ellsberg 1961 , Allais 1953, Kahneman and Tversky 1972). Or on the fact that a serious attempt
to explicate real scientific practice today would reveal classical (non-Bayesian) statistics texts on the
scientist’s bookshelf and classical statistical packages running on her laboratory’s desktop computer.

But we shall not dwell upon any of those concerns. Our objection is less familiar but more funda-
mental. It is that Bayesian confirmation is not even the right sort of thing to serve as an explication of
scientific justification. Bayesian confirmation is just a change in the current output of a particular strat-
egy or method for updating degrees of belief, whereas scientific justification depends on the truth-finding
performance of the methods we use, whatever they might be. The argument goes like this.

1. Science has many aims, but its most characteristic aim is to find true answers to one’s questions
about nature.

2. So scientific justification should reflect how intrinsically difficult it is to find the truth and how
efficient one’s methods are at finding it. Difficulty and efficiency can be understood in terms of
such cognitive costs as errors or retractions of earlier conclusions prior to convergence to the truth.

3. But Bayesian confirmation captures neither: conditional probabilities can fluctuate between high
and low values any number of times as evidence accumulates, so an arbitrarily high degree of
confirmation tells us nothing about how many fluctuations might be forthcoming in the future or
about whether an alternative method might have required fewer.



4. Therefore, Bayesian confirmation cannot explicate the concept of scientific justification. It is better
to say that Bayesian updating is just one method or strategy among many that may or may not be
justified depending on how efficiently it answers the question at hand.

The reference to truth in the first premise is not to be taken too seriously. We are not concerned here
with the metaphysics of truth, but with the problem of induction. Perhaps science aims only at theories
consistent with all future experience or at theories that explain all future experience of a certain kind or
at webs of belief that don’t continually have to be repaired as they encounter novel surface irritations in
the future. Each of these aims outruns any finite amount of experience and, therefore, occasions skeptical
concerns and a confirmation theoretic response. To keep the following discussion idiomatic, let “truth”
range over all such finite-evidence-transcending cognitive goals.

The second premise reflects a common attitude toward procedures in general: means are justified
insofar as they efficiently achieve our ends. But immature ends are often infeasible— we want everything
yesterday with an ironclad warranty. Growing up is the painful process of learning to settle for what is
possible and learning to achieve it efficiently. Truth is no exception to the rule: there is no foolproof,
mechanical process that terminates in true theories. Faced with this dilemma, one must either give up
on finding the truth or abandon the infeasible requirement that inductive procedures must halt or signal
success when they succeed. Confirmation theorists adopt the first course, substituting confirmation,
which can be obtained for sure, for truth, which cannot. We prefer the latter option, which retains
a clear connection between method and truth-finding (Kelly 2000). As William James (1948) wryly
observed, no bell rings when science succeeds, but science may, nonetheless, slip across the finish line
unnoticed.’ Although one cannot demand that it do so smoothly and without a hitch, one may hope
that due diligence will at least minimize the number of ugly surprises we might encounter as well as the
elapsed time to their occurrence. Empirical justification is not a static Form in Plato’s heaven waiting to
be recollected through philosophical analysis. If it is anything at all worth bothering about, it is grounded
in the intrinsic difficulty of finding the truths we seek and in the relative efficiency of our means for doing
50.

The third premise is the crucial one. Confirmation theory encourages hope for more than efficient
convergence to the truth by promising some sort of “partial justification” the short run. The terms
“partial justification” and “partial support” hint at something permanent, albeit incomplete. But high
degrees of belief are not permanent at all: arbitrarily high confirmation can evaporate in a heartbeat
and can fluctuate between extremes repeatedly, never providing a hint about how many bumps might be
encountered in the future or about whether some other method could guarantee fewer. Hence, Bayesian
confirmation, or any other notion of confirmation that can be arbitrarily high irrespective of considerations
of truth-finding efficacy, cannot explicate scientific justification.

Shifting the focus from confirmation relations to the feasibility and efficiency of truth-finding turns
traditional, confirmation-based philosophy of science on its head. Process, generation, refinement and
retraction— the topics relegated to the ash-heap of history {or sociology or psychology) by confirmation
theorists— are placed squarely in the limelight. Confirmation, on the other hand, is demoted to the
status of a cog in the overall truth-finding process that must earn its keep like all the other parts. At
best, it is a useful heuristic or defeasible pattern for designing efficient methods addressed to a wide range
of scientific questions. At worst, rigid adherence to a preconceived standard of confirmation may prevent
one from finding truths that might have been found efficiently by other means (Kelly and Schulte 1995,
Osherson and Weinstein 1988).

1The fallible convergence viewpoint on inquiry was urged in philosophy by James, Peirce, Popper, Von Mises, Reichen-
bach, and Putnam. Outside of philosophy, it shows up in classical estimation theory, Bayesian convergence theorems, and
computational learning theory. Several of the points just made (e.g., non-cumulativity) were argued on purely historical
grounds by Kuhn and others.



2 Inductive Performance and Complexity

Suppose you are watching a sequential experiment that exhibits a green or a blue light at each stage.
If the question is the color of the next outcome, there is an easy method for deciding the question with
certainty: simply wait and report what you see. This procedure has the attractive property that it halts
with the right answer whatever the answer happens to be. But that is clearly because the next observation
entails the right answer, so the problem is not really inductive when the right answer is obtained.

Next, consider the properly inductive question whether the color will remain green forever. The
obvious procedure guesses that the color won’t change until it does and then halts with the certain
output that it does. This procedure is guaranteed to converge to the right answer whatever it is, but
never yields certainty if the color never changes. It simply keeps waiting for a possible color change. We
may say that such a method can refute the unchanging color hypothesis with certainty. This “one-sided”
performance is reminiscent of Karl Popper’s (1959). “anti-inductivist” philosophy of science— we arrive
at the truth, but there is no such thing as accumulated “support” for our conviction, aside from the fact
that we must leap, after a sufficiently long run of unchanging colors, to the conclusion that the color will
never change if we are to converge to the right answer in the limit. In other words, the inductive leap is
* not pushed upward or supported by evidence; it is pulled upward by the aim of answering the question
correctly.

One would prefer a “two-sided” decision procedure to the “one-sided” refutation procedure just de-
scribed, but no such procedure exists for the problem at hand. For suppose it is claimed that a given
method can decide the question under consideration with certainty. Nature can then feed the method
constantly green experience until it halts with the answer that experience will always remain green (on
pain of not halting with the true answer in that case). The method’s decision to halt cannot be reversed,
but Nature remains free to present a color change thereafter. In the stream of experience so presented, the
method converges to the wrong answer “forever green”, which contradicts the reductio hypothesis that
the method converges to the truth. So by reductio ad absurdum, no possible method decides the question
with certainty. This is essentially the classical argument for inductive skepticism. We recommend the
opposite conclusion: since no decision procedure is feasible in this case, a refutation procedure yields the
best feasible sort of performance and, hence, is justified in light of the intrinsic difficulty of the problem
addressed. Of course, this “best-we-can-do” justification is not as satisfying as a “two-sided” decision
procedure would be, but that kind of performance is impossible and the grown-up attitude is to obtain
the best possible performance as efficiently as possible rather than to opine the impossible.

Next, suppose that the question is whether the color will never change, changes exactly once, or at
least twice. The obvious method here is to say “never” until the color changes, “once” after it changes
the first time and “at least twice” thereafter. The first problem {about the color tomorrow) requires no
retractions of one’s initial answer. The second question {about unchanging color) requires one, and this
question requires two. It is easy to extend the idea to questions requiring three, four, etc. retractions.
Since retractions, or non-cumulative breaks in the scientific tradition, are the observable signs of the
problem of induction in scientific inquiry, one can measure the intrinsic difficulty or complexity of an
empirical question by the least number of retractions that Nature could exact from an arbitrary method
that converges to the right answer.

Some problems are not solvable under any fixed, finite bound on retractions. For example, suppose
it is known a priori that the color will change only finitely often and the question is how many times it
will change. Then Nature can lead us to change our minds any number of times by adding another color
change just after the point at which we are sure we will never see another one. But the question is still
decidable in the limit in the sense that it is possible to converge to the right answer, whatever it might
be {e.g., by concluding at each stage that the color will never change again).

There are also problems for which no possible method can even converge to the truth in the limit of
inquiry. One of them is a Kantian antinomy of pure reason: the question whether matter is infinitely
divisible. Let the experiment of attempting to cut matter be successively performed (failures to achieve



a cut are met with particle accelerators of ever higher energy). Nature can withhold successful cuts until
the method guesses that matter is finitely divisible. Then she can reveal cuts until the method guesses
that matter is infinitely divisible. In the limit, matter is infinitely divisible (new cuts are revealed in
each “fooling cycle”), but the method does not converge to “infinitely divisible”. Nonetheless, it is still
possible to converge to “yes” if and only if matter is only finitely divisible: just answer “yes” while no
new cuts are performed and “no” each time a new cut is performed. Say that this method verifies finite
divisibility in the limit. If we reverse “yes” and “no”, the resulting method converges to “no” if and only
if infinite divisibility is false, and may be said to refute infinite divisibility in the limit. These “one-sided”
concepts stand to decision in the limit as verificiation and refutation with certainty stand to decision with
certainty. Of course, we would prefer a two-sided, convergent, solution to this problem, but none exists,
so one-sided procedures are justified insofar as they are the best possible.

There are even questions that are neither refutable in the limit nor verifiable in the limit, such as
whether the limiting relative frequency of green observations exists. This problem has the property that
a method could output “degrees of belief” or “confirmation values” that converge to unity if and only if
the limiting relative frequency exists, but no possible method of this kind converges to unity if and only
if the limiting relative frequency does not exist. And then there are problems that have neither of these
properties. At this point it starts to sound artificial to speak of convergent success in any sense.

Changes in background information can affect solvability. For example, let the question be whether
a sequence of observed colors will converge to blue. Absent further background knowledge, the best
one can do is to verify convergence to blue in the limit (the analysis is parallel to that of the finite
divisibility example). But if we know a priori that the sequence of colors will eventually stabilize (e-g.,
the current color corresponds to which magnet a damped pendulum is nearest to), then the question
is decidable in the limit: just respond “yes” while the color is blue and respond “no” otherwise. This
shows that extra assumptions may make a problem intrinsically easier to solve without giving the game
away altogether. Accordingly, an inductive problem consists of a pair (g, k), where g is a question (with
mutually incompatible potential answers) and k is a background constraint on empirical possibility.

In mathematical logic and computability theory, it is a commonplace that formal problems have
intrinsic complerities and that a problem’s intrinsic complexity determines the best possible sense in
which a procedure can solve it. For example, the unavailability of a decision procedure for the first-
order predicate calculus justifies the use of a one-sided verification procedure for inconsistency and of a
one-sided refutation procedure for consistency. The notion that background presuppositions can make
a problem easier is also familiar, for the predicate calculus is decidable if it is known in advance that
all encountered instances will involve only monadic (one-place) predicates. All we have done so far is
to apply this now-familiar computational perspective, which has proven so salutary in the philosophy of
deductive reasoning, to the empirical problem of induction.

Philosophers of science are accustomed to think in terms of confirmation and underdetermination
rather than in terms of methods and complexity, but the ideas are related. Bayesian updating, on our
view, is just one method among the infinitely many possible methods for attaching numbers to possible
answers. Underdetermination is a vague idea about the difficulty of discerning the truth of the matter
from data. We propose that a problem’s intrinsic complexity is a good explication for this vague notion,
since it determines the best possible sense in which the problem is solvable.

Using retractions to measure inductive complexity is a more natural idea than it might first appear.
First, the concepts of refutability and verifiability have a long standing in philosophy and these concepts
constititute just the first step in the retraction hierarchy (verifiability is success with one retraction
starting with initial guess —h and refutability is success with one retraction starting with k). Second,
Thomas Kuhn (1970) emphasized that science is not cumulative because in episodes of major scientific
change some content of rejected theories is lost. These are retractions. Kuhn also emphasized the
tremendous cost of cognitive retooling that these retractions occasion. Unfortunately, he did not take the
next logical step of viewing the minimization of retractions as a natural aim that might provide alternative
explanations of features of scientific practice routinely explained along confirmation-theoretic lines. Third,



by generalizing resource bounds in a fairly natural way (Freivalds and Smith 1993, Kelly 2002), one can
obtain the equation that each retraction is worth infinitely many errors (w many, to be precise), so that
the aim of minimizing the number of errors committed prior to convergence generates exactly the same
complexity classes as minimizing retractions. Fourth, the concept of minimizing retractions is already
familiar in logic and computability. In analysis, retraction complexity is called difference complexity
(Kuratowski 1966) and in computability, it is known as “n-trial” complexity, a notion invented by Hilary
Putnam (1965). Finally, the idea has been extensively studied in empirical applications by computational
learning theorists (for an extended summary and bibliography, cf. Jain et al. 1999).

3 Explanations of Practice

Bayesian confirmation theorists have some foundational arguments for their methods (e.g., derivation
from axioms of “rational” preference, Dutch book theorems) but one gets the impression that these are
not taken too seriously, even by the faithful. What really impresses confirmation theorists is that Bayesian
updating provides a unified, if highly idealized, explanation of a wide range of short-run judgments of
evidential relevance. Such explanations are facilitated Bayes’ theorem, a trivial logical consequence of
the definition of conditional probability:

P(hle) = ZEMER) (ezljl()e]; ),

It follows immediately, for example, that initial plausibility of A is good (P(h) is upstairs), that prediction
of e is good and refutation by e is bad (P(e|h) is upstairs) and that surprising predictions are good (P(e)
is downstairs). Successive confirmation by instances has diminishing returns simply because the sum of
the increases is bounded by unity. These explanations are robust: they work for any prior probability
assignment such that P(e) > 0. Other explanations depend on prior probability. For example, it seems
that black ravens confirm “all ravens are black” better than white shoes, and under some plausible
assignments of prior probability, this judgment is accommodated. Under others, it isn’t (cf. P. Maher’s
article in this volume).

The trouble with this naively hypothetico-deductive case for Bayesianism (even by Bayesian standards).
is that it ignores competing explanations. In particular, it ignores the possibility that some of the same
intuitions might follow from truth-finding efficiency itself, rather than from the details of a particular
method. For an easy example, consider the maxim that scientific hypotheses should be consistent with
the available evidence. If we assume that the data are true (as the Bayesian does), then any method
that produces a refuted answer obviously hasn’t converged to the truth yet and it is possible to do better
(Schulte 19992, 1999b). To see how, suppose that a method produces an answer h inconsistent with
current evidence e but eventually converges to the truth. Since the answer is inconsistent with true data
e and the method converges to the truth, the method eventually converges to an answer other than A in
each world compatible with e. Let n be the least stage by which the method converges to the true answer
R’ (distinct from h) in some world w compatible with e. Now construct a new method that returns &’ in w
from the end of e onward. This method converges to the truth immediately in w, but converges no slower
in any other world, so in decision theoretic jargon one says that it weakly dominates the inconsistent
method in convergence time or that the inconsistent method is inadmissable with respect to convergence
time. Since science is concerned primarily with finding the truth, avoiding needless delays is a natural
and direct motive for consistency.

The preceding argument does not take computability into account. In some problems, a computable
method can maintain consistency at each stage only by timidly failing to venture substantive answers,
so it fails to converge to the truth in some worlds (Kelly and Schulte 1995, Kelly 1996). In other words,
computable methods may have to produce refuted theories if they are to converge to the truth. In that



case, a committed truth-seeker could rationally side with convergence over consistency, so the Bayesian’s
blanket insistence on idealized consistency as a necessary condition for “rationality” is too strong.

Consider next the maxim that it is better to predict the data than to merely accommodate them.
Recall the example whether the color will change no times, exactly once, or at least twice and suppose
we have seen ten green observations. The only answer that predicts the next datum in light of past data
is “the color never changes”. Neither of the other answers is refuted, however, so why not choose one of
them instead? Here is a reason based on efficiency: doing so would result in a needless retraction. For
Nature can continue to present green inputs until, on pain of converging to the wrong answer, we cave
in and conclude “the color never changes”. Thereafter, Nature can exhibit one color change followed by
constant experience until we revise to “the color changes exactly once” and can then present another
color change to make us revise again to “the color changes at least twice”, for a total of three retractions.
Had we favored “the color never changes” on constant experience, we could have succeeded with just two
retractions in the worst case. Furthermore, after seeing a color change, we should prefer the answer “one
color change”, which is the only answer compatible with experience that entails the data until another
color change occurs. To do otherwise would result in the possibility of two retractions from that point
onward when one retraction should have sufficed in the worst case.

Consider the question whether “all ravens are black”, and suppose that Nature is obligated to show us
a black raven, eventually, if one exists. Then the most efficient possible method (in terms of retractions
and convergence time) is to assume that the hypothesis is true until a counterexample is encountered
and to conclude the contrary thereafter, since this method uses just one retraction and is not weakly
dominated in convergence time by any other method. Now suppose one were to filter shoes out of the
data stream and to reject “all ravens are black” as soon as a non-black raven is encountered. We would
succeed just as soon and with no more retractions than if we were to look at the unfiltered data. If one
were to filter out ravens, however, no possible method could converge to the truth, even in the limit. More
generally, a kind of datum is érrelevant (for the purposes of efficient inquiry) if systematically filtering
data of that kind does not adversely affect efficiency. Suppose we know in advance that all observed
ravens are within one meter of a white paint can. Then by the time the sphere with that radius is filled
with positive instances, “all ravens are black” is conclusively refuted and an efficient method must reject
it immediately. No mystery there: different problems call for different solutions. Indeed, the performance
viewpoint explains what background information “is for”: extra background constraints tend to make an
empirical problem easier to solve.

4 Ockham’s Razor and Efficiency

In this section, we show how efficiency explains one of the great mysteries of scientific method better
than Bayesian confirmation can. A quick survey of the major scientific revolutions {(e.g., the Copernican,
the Newtonian, the Lavoisierian, the Darwinian, etc.) reveals an unmistakable pattern, described already
by William Whewell (1840). The received theory of some domain achieves broad, shallow coverage over
a range of phenomena by positing a large number of free parameters and then tweaking them until
the various phenomena are accounted for. Then another, narrower, but more unified explanation is
proposed that involves fewer parameters. The new theory appears implausible to those trained in the
older tradition, but its ability to unify previously unrelated facts makes it ultimately irresistable.
Twenty years ago, one of us (Glymour 1980) proposed that the unified theory is better confirmed
because it is cross-tested in more different ways than the disunified theory by the same data. This has a
tough, Popperian ring: the simpler or more unified theory survives a more rigorous, self-inflicted, cross-
testing ordeal. But a theory is not a long distance runner who needs training and character development
to win— it just has to be true. Since reality might be disunified and complex (indeed, it is more complex
than we used to suspect), how is the quest for ¢ruth furthered by presuming the true theory to be simple
and severely cross-testable? If there is no clear answer to this question, then science starts to look like



an extended exercise in sour grapes (if the world isn’t the way I want it to be, I don’t care what it is like)
or in wishful thinking (I like simplicity, so the world must be simple).

Of course, Bayesians have no trouble accommodating simplicity biases: just assign greater prior prob-
ability to simpler hypotheses (e.g., Jeffreys 1985). But that approach evidently presupposes the very bias
whose special status is to be explained. One doesn’t have to favor the simple theory outright, however;
one need only “leave the door open” to it (by assigning it nonzero prior probability) and it still wins
against a strong a priori bias toward its complex competitor (cf. Rosencrantz 1983). For suppose that
one merely assigns nonzero prior probabilitly to the simple, unified theory s, which entails evidence e
without extra assumptions, so that P(e|s) = 1. The complex competitor ¢ = 360.9(0) has a free param-
eter ¢ to wiggle in order to account for future data. In the strongest possible version of the argument,
there is a unique value 6y of the parameter such that P(e|g(6p)) = 1 and at every other value of 8,
P(elq(6)) = 0. Finally, a “free parameter” isn’t really free if we have sharp a priori ideas about the best
way to set it, so suppose that P(g(0lc) is zero for each value of ¢ including 8y. Given these assumptions,
Plelc) = [ P(elq(6))P(q(8)|C)d6 = 0. Hence,

Plcle) _ P(c) P(ele)  P(c)0 0
P(sle)  P(s)Ple]s) ~ P(s)1

So the simple theory trounces its complex competitor, as long as P(s) > 0. This accounts for the
temptation to say that it would be a miracle if the parameters of the complex theory were carefully
adjusted by nature to reproduce the effects of s. If the hard-edged assumptions of the preceding argument
are softened a bit, then the complex theory may end up victorious, but only if it is assigned a much greater
prior probability than the simple theory.

This improved argument merely postpones the objectionable circularity of the first version, however.
For focus not on the contest between ¢ and s, but on the contest between ¢(fy) and s. Since both of these
theories account for e equally well, there is no external or objective reason to prefer one to the other. In
fact, the only reason s wins is because P(s) > 0 whereas P(q(6o)) = P(q(80)|c))P(c)+ P(q(60)|s))P(s) =
0 P(c) +0- P(s) = 0. In other words, probabilistic “fairness” to s in the contest against ¢ necessarily
induces an infinite bias for s in the contest against ¢(6y). But one could just as well insist upon “fairness”
in the contest between s and ¢(9). Since we don’t think ¢(6) is more plausible a priori than q(0"), for any
other value ¢', it follows that P(q(#)) = P(s) = 0. Then P(c) = 1 — P(s) = 1, so the complex theory
¢ wins a priori (because it covers so many more possibilities). The moral is that neither Bayesian prior
is really “open minded”— we are being offered a fool’s choice between two extreme biases. What open-
mindedness really dictates in this case is to reject the Bayesian’s forced choice between prior probabilities
altogether; but then the Bayesian explanation of Ockham’s razor evaporates, since it is grounded entirely
in prior probability.

Here is an alternative, efficiency-based explanation that presupposes no prior bias for or against
simplicity and that doesn’t even mention prior probabilities. Recall the question whether the observed
color will change zero times, once, or at least twice. Three different intuitions about simplicity lead to the
same simplicity ranking over these answers. First, the hypothesis that the color never changes is more
uniform than the hypotheses that allow for color changes. Second, the hypothesis that there are no color
changes is the most testable since it is refutable in isolation, whereas the other answers are refutable only
given extra auxiliary hypotheses (e.g., the hypothesis that the color changes exactly once is refutable only
under the extra assumption that the color will change at least once). Third, the theory that there are no
color changes has no free parameters. The theory that there is one color change has one free parameter
(the time of the change). The theory that there are at least two has at least two parameters (one for
each change). So the constant color hypothesis seems to carry many of the intuitive marks of simplicity.
Now suppose we prefer the needlessly complex theory that the color will change prior to seeing it do
so. Nature can withhold all color changes until, on pain of converging to the wrong answer, our method
outputs “no changes”. Then Nature can exact two more retractions, for a total of three, when two would




have sufficed had we always sided with the simplest hypothesis compatible with experience {once for the
first color change and another for the second).

Easy as it is, this argument suggests a general, performance-based understanding of the role of simplic-
ity in science that sheds new light on the philosophical stalemate over scientific realism. The anti-realist
is right that Ockham’s razor doesn’t point at or indicate the truth, since the truth might be simple or
complex, whereas Ockham’s razor points at simplicity no matter what. But the realist is also right that
simplicity is more than an arbitrary, subjective bias that is washed out, eventually, by future experi-
ence. It is something in between: a necessary condition for minimizing the number of surprises prior to
convergence. So choosing the simplest answer compatible with experience is better justified (in terms
of truth-finding efficacy) than choosing competing answers , but such justification provides no security
whatever against multiple, horrible surprises in the future. The two theses are consistent, so the realism
debate isn’t a real debate. It is a situation. Our situation.

Suppose one were to ask whether the “grolor” changes no times, once, or at least twice, where the
“grolor” of an observation is either “grue” or “bleen”, where “grue” means “green prior to ny and blue
thereafter” and “bleen” means “blue prior to ng and green thereafter” (Goodman 1983). The preceding
argument now requires that one guess “no grolor change” until a grolor change occurs. But there is no
grolor change if and only if there is a color change, so it seems that the whole approach is inconsistent.
The right moral, however, is that simplicity is relative to the problem addressed. That is as it must be, for
if simplicity is to facilitate inquiry over a wide range of problems, simplicity must somehow adapt itself
to the contours of the particular problem addressed. There must be some general, structural concept of
simplicity that yields distinct simplicity rankings in different problems.?

Here it is. Simple worlds are those in which Nature has opportunities to fool us but never exercises
them. The least simple worlds are those in which all the opportunities are actually used up, so eventually
no further inductive uncertainty remains. More precisely, say that a finite chunk of experience verifies
an answer to a question relative to background information k just in case each world satisfying k that
presents the same experience also satisfies the answer. Then a world has simplicity degree zero in a
problem just in case it eventually presents experience that verifies some answer to the problem. A world
has simplicity degree n + 1 just in case it eventually presents experience that verifies some answer given
the assumption that the world has simplicity at least n+ 1. For example, recall the problem in which one
must say whether the color changes zero times, once or at least twice. In this problem, worlds in which
the color changes twice verify the answer “at least two color changes”, so they have simplicity degree
zero. Worlds in which the color changes exactly once verify the answer “exactly once” given that the
world has at least unit simplicity, so they have unit simplicity, and so forth.

The simplicity of an answer is defined as the maximum simplicity degree over all worlds satisfying the
answer and the structural complezity of a problem can be defined as the supremum of the simplicities of
the worlds in the problem (recall that simplicity is a matter of avoiding dirty tricks by Nature forever,
so problems with extremely simple worlds afford lots of retractions, and hence are complex). Ockham’s
razor can now be stated in the obvious way: never output an answer unless it is the uniquely simplest
answer compatible with current experience. The important point is this: it is a mathematical theorem
that any violation of Ockham’s razor implies either that one fails to decide the question at hand in the
limit or that one uses more retractions than necessary in the subproblem entered when Ockham’s razor
is violated. Hence, efficiency in each subproblem requires that one follow Ockham’s razor at each stage
of inquiry (the proofs of the claims in this paragraph are in Kelly 2002). Furthermore, one can show
that following Ockham’s razor is equivalent to minimizing errors prior to convergence, assuming that the

2Goodman’s own response to this issue was that there is a special family of projectible predicates out of which confirmable
generalizations may be formulated. That approach grounds simplicity and justification in personal sentiment, which strikes
us as wrong-headed. For us, sentiment is relevant only to the selection of problems. Justification then supervenes on
objective efficiency with respect to the problems sentiment selects. Hence, our approach involves a middle term (problems)
that “screens off” sentiment from justification, allowing us to give an objective proof of the truth-finding efficacy of Ockham’s
razor over a broad range of problems.



method converges to the truth in the limit and that success under a (transfinite) error bound is possible
at all. Finally, success under a transfinite error bound is possible in each problem (g, k) whose background
presupposition k is itself decidable in the limit.

To see how the idea applies in a different context, consider an idealized version of the problem of
inferring conservation laws in particle physics (Schulte 2000). The standard practice in this domain has
been to infer the most restrictive conservation laws compatible with the current reactions (Ford 1963).
Retraction efficiency demands this very practice, for suppose one were to propose looser conservation
laws than necessary. Then Nature could withhold the unobserved reactions incompatible with the most
restrictive laws until we give in (on pain of converging to the wrong laws) and propose the most restrictive
laws. Thereafter, Nature can exhibit reactions excluded by these laws, forcing a retraction, and so forth
for the remaining degrees of restrictiveness. Notice that tighter conservation laws are “simpler” in our
general sense than are looser laws, for in worlds in which the tighter laws hold, Nature forever reserves
her right to exhibit reactions violating these laws, but in worlds in which looser laws are true, eventually
Nature has to reveal reactions refuting simpler laws, assuming that all the reactions are observable.

5 Statistical Retractions

There is something admittedly artificial about examples involving ravens and discrete color changes.
Both the world and the measurements we perform on it are widely thought to involve chance, and where
chance is involved, nothing is strictly verified or refuted: it is always possible for a fair coin to come
up heads every time or for a measurement of weight to be far from the true value due to a chance
conspiracy of disturbances. In this section, we extend the preceding efficiency concepts, for the first
time, to properly statistical problems. Doing so illustrates clearly how the problem of induction arises in
statistical problems and allows one to derive Ockham’s razor from efficiency in statistical settings, with
applications to curve fitting and causal inference. Readers who are willing to take our word for it are
invited to skip to the next section, in which the applications are sketched.

In a statistical problem concerning just one continuous, stochastic measurement X, each possible
statistical world w determines a probability density function p,, over possible values of X. If we repeatedly
sample values of X for n trials, we arrive at a sample sequence (X1 = z1,..., X, = Z,) in which X; = x;
is the outcome of the ith trial. If the sampling process is independent and identically distributed, then
samples are distributed according to the product density:

Po(X1 =21, ., Xn = @) = pu(Xs = 31) .. - puo(X = 7).

Increasing sample size will serve as the statistical analogue of the notion of accumulating experience
through time.

A statistical question partitions the possible statistical worlds into mutually incompatible potential
answers, a statistical presupposition delimits the set of worlds under consideration and a statistical problem
consists of a question paired with a presupposition. A statistical method is a rule that responds to an
arbitrary sample of arbitrary size with some guess at the correct answer to the question or with ‘7,
which indicates a refusal to commit at the current time. In a familiar, textbook example, the background
presupposition is that the the observed value of X is normally distributed with known variance o2 and
unknown mean g. Then each possible value of the mean p determines the normal sampling density with
mean p and variance o?. The question might be whether # = 0. A method for this problem returns
g =0, pu#0or‘? for an arbitrary sample of arbitrary size.

There is always some small probability that the sample will be highly unrepresentative, in which
case the most sensible of statistical methods will produce spurious results. Hence, there is no way to
guarantee that one’s method actually converges to the truth. It is better to focus on how the probability
of producing the right answer evolves as the sample size increases. Accordingly, say that M solves a
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problem in the limit (in probability) just in case in each world satisfying the problem’s presupposition,
the probability of producing the right answer for that world approaches unity as the sample size increases.

Statistical retractions occur when a method’s chance of producing some answer drops from a high
to a low value. Let 1 > v > 0.5. Method M ~y-retracts h between stages n and n’ in w just in case
PMM = h) > v and P2 (M # h) > . Then M vy-retracts at least k times in w iff there exist
ng > ny > ... > ng such that M ~y-retracts some answer to the question between ngy and ny, between n,
and ng, etc. Also, M ~y-retracts exactly & times iff k is the greatest &’ such that M v-retracts at least k'
times in w. Moreover, M solves a given statistical problem with at most k y-retractions just in case M
solves the problem in the limit in probability and ~-retracts at most k times in each world. Finally, M
solves a given statistical problem with at most k y-retractions starting with h just in case M solves the
problem with at most k retractions and in each world in which which M uses all k y-retractions, h is the
first answer produced by M with probability -.

'The v-retraction complexity of a statistical problem starting with h is the least y-retraction bound
under which some method can solve the problem starting with h. The «-retraction complezity of a
statistical problem is the least «y-retraction bound under which some method can solve it. It turns out
that y-retraction complexity doesn’t depend on « as long as 1 > v > 0.5, so we may speak simply of
retraction complexity. As before, y-verifiability is solvability with one v-retraction starting with —h,
y-refutability is solvability with one y-retraction starting with h and y-decidability is solvability with zero
vy-retractions.

To see how it all works, recall the textbook problem described earlier, in which observed variable X
is known to be normally distributed with variance o2 and the question is whether or not k is true, where
h says that the mean of X is zero. Let M7 be the standard statistical test of the point null hypothesis A
at sample size n and signifance level . In this test, one rejects h if the average of the sampled values of
X deviates sufficiently from zero. The significance level of the test is just the probability of mistakenly
rejecting h when h is true (i.e., when the true sampling distribution is p,). It won’t do to hold the
significance level fixed over increasing samples, for then the probability of producing h when h is true
will not go to unity as n increases. That is readily corrected, however, by “tuning down” o according
to a monotone schedule a(n) that decreases so slowly that the successive tests Mg,y have ever-narrower
acceptance zones.

It is a familiar fact that Mg(n) solves the preceding problem in the limit (in probability), but the
current idea is to attend to -y-retractions as well, where 1 > v > 0.5. Suppose that the initial significance
level is low— less than 1 —v. Then Mg(n) starts out producing h with high probability in w. Also, since
the significance level drops monotonically to zero as the sample size increases, the probability of producing
h rises monotonically to unity in w, so there are no y-retractions of h. If w’ satisfies —h, then since the
sample mean’s density peaks monotonically around the true mean in w’ and the acceptance zone shrinks
monotonically around w, the probability that Mg(n) produces —h approaches unity monotonically. If w’
is very close to w, then the method may start out producing k with high probability in w’, because py,
will be very similar to p,s. But since the probability of producing —h rises monotonically in w’, h is
y-retracted just once. Far from w there are no +y-retractions at all, because h is never produced with
high probability. So Mg(n) succeeds with one 7-retraction starting with h and, hence, h is y-refutable,
for arbitrary v such that 1 > v > 0.5.

That doesn’t suffice to justify the proposed method. We still have to argue that no possible method
can decide the problem in the more desirable, two-sided sense. For this, it suffices to show that no possible
method ~y-verifies h in probability when 1 > + > 0.5. Suppose, for reductio, that M solves the problem
with one retraction starting with —h. Suppose w satisfies h. Since M succeeds in the limit and v < 1,
there exists an ng in w such that P2°(M = h) > 7. Since P2(M = b) is continuous with respect to
parameter w, there exists an open interval I around w such that for each world w’ in I, P (M = h) > 7.
Choose w’ # w in I. Then since M succeeds in the limit and w’ does not satisfy h, there exists n; > g
such that Pj}(M = —h) > 7. Since w’ is in I, we also have that P"?(M = h) > =, so at least one
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7y-retraction occurs in w'. By the reductio hypothesis, the first answer output with probability > « in
w’ is —h. So another retraction occurs by stage ng, for a total of two retractions. This contradicts the
reductio hypothesis and closes the proof. A corollary is that no possible method solves the problem with
zero y-retractions if 1 > v > 0.5, for any such method would count as a <y-verifier of h. Hence, h is
v-refutable but is not +y-verifiable or y-decidable.

'This asymmetry is not so surprising in light of the familiar, statistical admonition that rejections
of tests are to be taken seriously whereas acceptances are not. Less familiar is the question whether
statistical problems can require more than one retraction, so that neither side of the question is refutable
(in probability). In fact, such problems are easy to construct. Suppose that we have two independent,
normally distributed variables X and Y and we want to know which of the variables has zero mean
(both, one or the other or neither). This problem is solvable with two y-retractions starting with “both
zero”, but is not solvable with two ~y-retractions starting with any other answer, as long as 1 > v > 0.5.
The negative claim can be shown by the following extension of the preceding argument. Let hg be the
answer that exactly the variables in § have zero means, so we have possible answers he, hix}, hiyy and
hix,yy. Suppose, for reductio, that M solves the problem with two y-retractions starting with some
answer other than A(x yy. Bach possible world corresponds to a possible value of the joint mean (z,y).
Since M succeeds in the limit and v < 1, there exists an ngy such that P(’Z)?O)(M = hyg X,y}) > «. Since
Ppo(M = h{xy}) is continuous in w, there exists a small open disk By around world (0,0) such that
for each world w' in By, P? (M = hix,y}) > 7. Choose (0,7) in By so that (0,) satisfies h{xy. Since
M succeeds in the limit, there exists an n; > ng such that P(’(‘)l’r) (M = hy x}) > 7. By continuity again,
there exists a small open disk B; around (0,7) such that for each world w’ in By, PO M = hyxy) > .
Choose (r',r) in B; so that (r,r) satisfies h{x,y}. Since M succeeds in the limit, there exists an
ng > ny such that P(’;?YT) (M = hy) > ~. Since world (r',7) is in both By and By, we also have that
P(T'),r)(M = h{x,y}) > 7 and that P(Z},T)(]VI = h{x}) > 7, for a total of at least two retractions in
(r',r). By the reductio hypothesis, the first answer output with probability > v in w’ is not hyx,y}. But
then another retraction occurs by ng, for a total of three. This contradicts the reductio hypothesis and
closes the proof. It follows as an immediate corollary that no possible method solves the problem with one
y-retraction if 1 > v > 0.5, for any such method would count as succeeding with two retractions starting
with an arbitrary answer different from hixyy-

So the best one can hope for is two retractions starting with the hypothesis that all the means are zero.
The following, natural strategy does as well as possible. Choose the usual statistical tests for tx = 0 and
for uy = 0. Tune down the significance levels to make both tests y-refute their respective hypotheses, as
in the preceding example. Let M produce hg if both tests reject, hixy if only the X test rejects, hiyy if
the Y test rejects and hyx vy if neither test rejects. The probability of producing the right answer rises
monotonically toward unity in each test, as was described above. The probability that M produces the
right answer is the product of the marginal probabilities that the component tests are right. In the worst
case, the right answer is hy and the actual world (r,7') has the property that r is quite small and 7’ is
even smaller. In such a world, the probability that the X test rejects will rise late and the probability
that the Y test rejects will rise later. Then at worst, there is a time at which both tests probably accept
followed by a time at which the X test probably rejects and the Y test probably accepts followed by a
time after which both tests probably reject. Since the joint probability is the product of the marginal
probabilities, M ~-retracts at most twice. Furthermore, each worst-case world in which two retractions
oceur has hyx v} as the first output produced with probability > . Hence, this problem’s complexity is
exactly “two retractions starting with hix,yy”- It is clear that each new variable added to the problem
would result in an extra retraction, so there is no limit to the number of retractions a statistical problem
can require.

The multiple mean problem has suggestive features. In order to minimize retractions, one must start
out with the hypothesis that both means are zero. This is the most uniform hypothesis (if a mean
distinct from zero is close to zero, that fact will become apparent only at large sample sizes, resulting
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in a “break” in the signal from the environment as sample size increases). It is also the most testable
hypothesis (the reader may verify that this answer is y-refutable but none of the alternative answers is).
Finally, h{x,y} no free parameters (both ux and py are fixed at zero) whereas hyx} allows adjustment
of piy and hy allows for adjustment of both both uy and py. These features suggest that retraction
efficiency should explain intuitive simplicity preferences in more interesting statistical problems, such as
curve fitting, model selection, and causal inference.

6 Curves and Causes
Suppose we know that the true law is of form
y=oax® + Bz + vz +e,

where ¢ is normally distributed measurement error and the question is whether the law is linear, quadratic,
or cubic. Simplicity intuitions speak clearly in favor of linearity, but why should we agree? Minor variants
of the preceding arguments show that the problem requires at least two retractions and requires more if
the method starts with a non-linear answer. Moreover, any method that probably outputs a law of higher
order than necessary in a world that is simplest in some subproblem uses more retractions than necessary
in the subproblem. We conjecture that the usual, nested sequence of tests (Jeffreys 1985) succeeds with
two retractions starting with linearity.

Another sort of simplicity is minimal causal entanglement. The key idea behind the contemporary
theory of causal inference is to axiomatize the appropriate connection between the true causal network
and probability rather than to attempt to reduce the former to the latter (Spirtes et al. 2000, Pearl 2001).
The principal axiom is the causal Markov condition, which states that each variable is probabilistically
independent of its non-effects given its immediate causes. A more controversial assumption is faithfulness,
which states that every conditional probabilistic independence follows from causal structure and the causal
Markov condition alone (i.e., is not due to causal pathways that cancel one another out exactly). If all
variables are observable and no common causes have been left out of consideration, it follows from the
two axioms that there is a direct causal connection between two variables (one way or the other) just in
case the two variables are statistically dependent conditional on each subset of the remaining variables.

The preceding principles relate the (unknown) causal truth to the (unknown) probabilistic truth. The
methodological question is what to infer now, from a sample of the current size. Spirtes et al. have
proposed the following method (which we now oversimplify— the actual method is much more efficient
in terms of the number of tests performed). For each pair of variables X,Y, and for each subset of the
remaining variables, perform a statistical test of independence of X and Y conditional on the subset.
If every such test results in rejection of the null hypothesis of independence, add a direct causal link
between X and Y (without specifying the direction). Otherwise, conclude provisionally that there is no
direct causal connection. In other words, presume against a direct causal connection until rejections by
tests verify that it should be added.

The proposed method is, again, a Boolean combination of standard statistical tests, because the edges
in the output graph result from rejections by individual tests and missing edges correspond to acceptances.
Since it uses familiar marginal tests, the procedure can be implemented on a laptop computer and it has
been used with success in real problems. However, it is neither Bayesian nor Neyman-Pearsonian: the
significance levels and powers of the individual tests do not really pertain to the overall inference problem.
For some years, the principal theoretical claim for the method has been that it solves the causal inference
problem in the limit (in probability); a rather weak property. But now one can argue, as we have done
above several times, that (a) the problem of inferring immediate causal connections requires as many
probable retractions as there are possible edges in the graph and that (b) an extra retraction is required
in the current subproblem if the method ever probably outputs a complex graph in one of the simplest
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worlds in the subproblem. Furthermore, we conjecture that the proposed method (or some near variant
thereof) succeeds under the optimal retraction bound.

7 Confirmation Revisited

Bayesian methods assign numbers to answers instead of producing answers outright. This hedging is
thought to be an especially appropriate attitude in the face of possible, nasty surprises in the future.
It is, rather, a red herring, for there is a natural sense in which Bayesian methods must retract just as
much and as painfully as methods that leap straight for the answers themselves. Say that Bayesian P(.].)
y-retracts between n and n’ in w just in case PR(P(hl.) > v) > v and P (P(-h|.) > v) > 7. Also,
P(.|.) starts with h (relative to k, ) iff in each world in which k is realized, the first answer assigned
more than -y probability by P(.|.) with chance > v is h. Now suppose Bayesian P(.].) solves a problem
with k retractions starting with h. Let ordinary method M produce whichever answer P(.].) assigns a
confirmation value > .5 to and produce ‘7’ if there is no such answer yet. Then M succeeds with no
more retractions than P(.|.). So if no method could succeed with k retractions starting with h, neither
could a Bayesian. Indeed, you are invited to run your favorite Bayesian method through the negative
arguments of the preceding section. Be as tricky as you like; assign point mass to simple answers or
assign continuous priors. Either your agent fails to converge to the truth in probability in some world or
it realizes the worst case retraction bound in some world.

That doesn’t mean Bayesian methods are bad. We are not like the classical statisticians who re-
ject Bayesian methodology unless the prior corresponds to a known chance distribution. Nor are we
like the idealistic extremists in the Bayesians camp, who always call their arbitrary prior distributions
“knowledge”, even when nothing is known. We advocate the middle path of letting problems speak for
themselves and of solving them as efficiently as possible by whatever means. Bayesian means may be as
good as any others, but they are not and cannot be better than the best.

The moral for confirmation theory is that good Bayesian methods are only good methods. The
probabilities they assign to hypotheses are just the current outputs of good methods which, at best,
converge to the truth with the minimum of surprises. The same efficiency could be had by attaching the
numbers in other ways or by dispensing with the numbers and producing theories outright, as scientists
have always done until fairly recently. There is no special aptness about softening one’s views in the face
of uncertainty: Nature can wreak as much havoc on a high confirmation value as on outright acceptance
of an answer. And definitely, high confirmation provides no guarantee or partial guarantee of a smooth
inductive future. There are just smooth problems, bumpy problems, methods that add extra bumps and
methods that avoid all the avoidable ones.
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