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ULTRASHEAVES AND DOUBLE NEGATION
STEVE AWODEY AND JONAS ELIASSON

ABSTRACT. Moerdijk has introduced a topos of sheaves on a cat-
egory of filters. Following his suggestion, we prove that its double
negation subtopos is the topos of sheaves on the subcategory of
ultrafilters - the ultrasheaves. We then use this result to estab-
lish a double negation translation of results between the topos of
ultrasheaves and the topos on filters. i

1. INTRODUCTION

In 1993 I. Moerdijk [6] introduced a model of constructive nonstan-
dard arithmetic in the topos Sh(F), of sheaves on a category of filters
for a certain Grothendieck topology J. Further contributions to this
model were made by I. Moerdijk and E. Palmgren [7] and Palmgren
[9, 10, 11, 12]. A previous work by the second author [2] studies the
sheaves on the full subcategory of ultrafilters, U, hence called ulira-
sheaves. The resulting topos is Boolean, so its internal logic is no
longer intuitionistic, but it is a model of nonstandard set theory. In
fact it is a model of Nelsons internal set theory, see Nelson [8], an
axiomatization of nonstandard set theory.

The question arises what the exact relationship is between the topos
of ultrasheaves, Sh(U), and Sh(F)? The subcategory U is “large” in I,
in the sense that it is a generating family for F. We also know that
“many” sheaves (namely the representable ones) on F are still sheaves
when restricted to U. Moerdijk conjectured that Sh(U) is the double
negation subtopos of Sh(F) and in this paper we show that this is true.

Given a (intuitionistic) logic one can force it to become classical by
adding the law of excluded middle to the assumptions. For a topos
of sheaves there is a corresponding transformation, namely by adding
the double negation topology to the underlying site. Not all of the
original sheaves will be sheaves with respect to the new topology, but
the internal logic in the resulting topos of sheaves will be classical.

In the second section of this paper we collect some definitions and
results we will need subsequently. Then, in the third section, we prove
that the topos Sh(U) is equivalent to a topos of sheaves on F for a finer
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topology than J, thereby showing that Sh(U) is in fact a subtopos of
Sh(F). This is, of course, also useful in a setting (e.g. constructive
mathematics) where you want to avoid using ultrafilters.

In the following foutrth section we prove that this smaller topos on F
is in fact equivalent to the double negation subtopos of Sh(F). Finally,
in the fifth section we establish a double negation translation of results
between Sh(U) and Sh(F).

2. PRELIMINARY DEFINITIONS AND RESULTS

Definition 2.1. The category I has as objects pairs (A, F), where A
is a set and F a filter on A. The morphisms o : (A, F) — (B, G) are
equivalence classes of partial functions o : A — B such that

(i) o is defined on some F € F,

(i) o« YG@) € F, for all G € G.
Two such partial functions o : F — B and o : F' — B are equivalent
if there is E C F'N F' in F such that o|p = o/|5.

This category of filters F was introduced by V. Koubek and J. Reit-
erman [4] and studied further by A. Blass [1].

Note that for almost all equivalence class o : (4,F) — (B,G)
there is a total continuous function f : A — B representing «. The
only exception is if B is the empty set. Then there is a morphism
a: (A, F) — (0,{0}) only if the filter F contains () (we say that F is
improper). In this case, o is the unique such morphism and an isomor-
phism F = (@, {0}). The filter on the empty set, (0, {#}), is the initial
object 0 in F. Terminal object 1 is ({0}, {{0}}).

From Koubek and Reiterman [4] we have the following useful char-
acterizations:

Proposition 2.2. For morphisms o : (A, F) — (B, G) we have:
(i) o is mono if and only if there is a F € F such that o is injective
on F,
(ii) o s epi if and only if a(F) =G.

These characterizations hold true also in U, but the situation is fur-
ther simplified by the fact that all morphisms in U are epi.

Moerdijk (in [6]) defined a subcanonical Grothendieck topology J on
F as follows:

Definition 2.3. A finite family {c; : G; — F}2, is a J-covering if the
induced map

Gi+...+G, > F
is an epimorphism.

Over the resulting site he studied, in particular, the representable
sheaves of the form *S = Homg(—, (S, {S})). At any filter F, *S(F) is
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the reduced power of S over F. Thus restricting the underlying cate-
gory to the full subcategory U one can study ultrapowers as sheaves.

For the ultrafilters in I we have the following result from Palmgren
[10]:

Theorem 2.4.
(i) Any morphism from a proper filter to an ultrafilter is a covering
map.
(i) Any cover of an ultrafilter contains a single map covering the
ultrafilter.

The topology induced on U by (F, J) is the atomic topology. In Elias-
son [2] it is proved that all representable sheaves on I are still sheaves
when restricted to U. Thus the atomic topology is subcanonical.

We now turn our interest to the internal logics of the topoi Sh(F)
and Sh(U). For more details see Palmgren [10] and Eliasson [2].

Let L be a first order language and I = (S, Ry, Ra, ..., f1,.--,¢1,...)
an L-structure. Let *I, the *-transform of I, be the L-structure in
Sh(U) defined as follows:

e Set S: *S the representable sheaf previously defined.
e Constant s € S: *s constant function
Az.s € *SU).
e Relation R C S: *R subsheaf of *S given at I by
a € *R(U) <= (U e U)(Vz € U)a(z) € R.

e Function f : T — S: *f representable natural transformation
from *T to *S given at U by

*fua) = Az.f(a(z)).
We also define what it means to be standard for a v € *S(U):

e St(7y) if and only if v is constant on some U € U{.

Thus every L-structure I (in Sets) gives rise to an LU {St}-structure
*I in Sh(U).

We have the usual interpretation of the the logical symbols in the
two Grothendieck topoi. Below we give the sheaf semantics for Sh(U)
in full detail. For the more complicated case Sh(F) we refer the reader
to Palmgren [10].

Theorem 2.5. Let U be an ultrafilter, ® and ¥ arbitrary formulas and
a € *T(U). Then

(i) U IF ®(a) AU (e) if and only if U IF ®(a) and U I+ T (),
(i) U IF (o) V ¥(e) if and only if U I+ ®(a) or U IF T(a),
(iit) U IF ®(a) — ¥(a) if and only if U I+ ®(c) implies U I+ ¥(a),
(iv) U Ik =®(cx) if and only if U I ®(a),
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(v) U Ik 3z € *S)®(a,z) if and only if for some B:V — U and

se*S(V)
VI &(ao B,d),
(vi) U Ik (Vz € *S)®(a,y) if and only if for all B : V — U and
5 e*S(V)
VI &(ao B, d).

As is evident in the theorem above, the internal logic in Sh(U) is
classical, i.e. the topos is Boolean. Now we state the fundamental
theorem for topoi on filters:

Theorem 2.6 (Moerdijk). Let F be a filter, © an L-formula and o €
*S(U). Then

F I-7O(a) if and only if (IF € F)(Vz € F)O(a(z)).
This result is proved by Moerdijk in [6] for Sh(FF) and by the second
author in [2] for Sh(U). The theorem plays a role analogous to Log’s
theorem, which follows from it, see Eliasson [3]. .

3. Sh(U) 1s EQUIVALENT TO A TOPOS OF SHEAVES ON F

We will study the topos Sh(U) of ultrasheaves and its relation to
sheaves on the category F of filters. For clarity let A be the atomic
topology on U. We first define a new topology Jo, on F.

Definition 3.1. A basis for the J-topology are small families {o; :
Fi = Flier (for any set I) such that the induced morphism

H Fi—F
i€l
is epic.

Note that from Blass [1] we know that the category F has all coprod-
ucts. Now the following theorem holds:

Theorem 3.2. Sh(U, A) = Sh(F, J).
To prove the theorem we will need three lemmas.
Lemma 3.3. (F, J) is a subcanonical site.

Proof. Any epi in F is regular [6, Lemma 1.2]. Hence the covering map
I_L.E 1 Fi — F is regular, and the topology subcanonical. O

Lemma 3.4. The collection of ultrafilters in F generates F.

See Eliasson (2, Prop. 2.2] for a proof, the details of which also imply
the following.

Lemma 3.5. Every object in F is covered (in the sense of Jo) by
objects in U.
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Now the theorem follows by the Comparison Lemma (see, for in-
stance, Mac Lane and Moerdijk [5]). It gives that the restriction
Sets™ — SetsV"” induces an equivalence of categories Sh(U, A)
Sh(F, J)-

4. Sh(U) 18 THE DOUBLE NEGATION SUBTOPOS OF Sh(F,J)

In this section we prove that Sh(U) is the double negation subtopos
of Sh(F, J). Instead of working with sheaves relative the Grothendieck
topology J we will work with the (equivalent) Lawvere-Tierney topol-
ogy j on Sets™ .

A presheaf F in Sets™  is a j-sheaf, with respect to a topology j,
if for every dense monomorphism m : A — E in Sets™ ", every map
A — F extends uniquely to a map E — F.

We will prove that the j__-sheaves are the same as the j.-sheaves in
two steps. First we prove that a subpresheaf of a representable sheaf
is dense with respect to the topology j- if and only if the =—-closure
of it is j-dense. Then we prove that the latter are exactly the dense
subobjects with respect to jo. Note that it is enough to prove this for
subobjects of representable sheaves.

We will prove both lemmas working with sieves on a filter, rather
than in the Heyting algebra of subobjects. So, we will list some sieve
formulations of topological and algebraical concepts.

e A sieve on F is a subpresheaf A — y(F).
e The j-closure of A, which is the sheafification of A, is the set:

A ={h:G > F|h*Ac JG)
={h:G = F|Hgi:G — G}, € J(G)
such that hog; € A, i =1,...n}.

e Ais j-dense if and only if A is a J-covering sieve of F.
o If B is also a sieve on F then

A=>B={h:G>F|Vg:H—>G
hoge A= hoge B},

which is a sieve on F.
We know that the double negation closure of a subpresheaf A, =—A4,
is (A = 0) = 0 and this can be calculated as
~mA={h:G = F|Vg:H —G3f:H — H such that hogo f € A}.
Moreover, from Mac Lane and Moerdijk [5, VI Lemma, 1.2], we have
that the double negation (in Sh(F, J)) of a j-sheaf E is (E = 07) = 0.

Here 0’ is the sheafification of the empty presheaf which is isomorphic
to y(0), the initial object in Sh(F, J). To be precise, as a subobject of
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y(F):

Gj(g) _ {!o f} if G is improper (i.e. isomorphic to 0),
1] if G is proper.

Here f : G — 0 is an isomorphism.
We will prove that, for a subpresheaf A — y(F) of a j-sheaf y(F)
we have:

@ 5 T) =0 =1L tand only if (A5 0 0 = Ly,

First we assume that F is proper.
The righthand side says that for all A : G — F we have h €

(A=0)=0". Hence Vh : G — F 3{g; : Gi » G}, € J(G) such
that hog,€e -—Aforalli=1,...,n
Hence we get the following condition:
Vh:G — FHgi: Gi = G}, € J(G) such that, for any i € {1,...,n},
Vfi:H; = G; e, : ?’LIL — H; such that hOgiOfi oe; € A. (1)

We illustrate this in a commutative diagram:

M,
de; |
M, €4
v fi )
G g ) F

Remember that {g; : G; — G}, is a J-cover of G.

The lefthand side is equivalent to A =0 < 0. We will study it
pointwise, at a filter G, 1.e. (A] = 01)(g) < OJ(Q) We see that (4" =
)G ={h:G—F|Vg:H—Ghoge A H) = hog el (H)}. If
the filter G is proper, then o (G) is empty, and hence (AJ = 0’)(g) is
also empty.

We then have that:

Vh:G — F3g:H — G such that ho g & 0 (H)
and 3{f; : H;, - H}, € J(H) such that,
foranyi€ {1,...,n},hogofic A. (2)
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We illustrate this case too, with a commutative diagram:

3, g A
# G S F

dg Vh
Here we assume that G is proper.

Lemma 4.1. For a subpresheaf A — y(F) of a Jj-sheaf y(F) we have:
@ =0)=70 = lyr) if and only if (A= 0) =0 = Ly(7).
Proof. If the filter F is improper then y(F) is isomorphic to its subsheaf
0’. But both (4’ = ¥) = 0’ and (A= 0) = 0 are j-sheaves and,
thus, greater than or equal to 0°. Hence both sides of the equation are
true, and therefore equivalent. ‘

Now assume F is proper. Then we have the descriptions ((1) and (2)
above) of the left- and righthand sides of the relation, and the scene is
set for proving the equivalence:

“==7: Note that it is enough to find a cover on F (because of
the stability of the topology J). Let F be covered by the identity
t:F — F. Take any f : G — F and prove that thereisae: H — G
such that 1o foe € A.

If G is improper then f: G — F is already in A, and you can take e
as the identity. If G is proper then by assumption, given f:6—>F,
there is g : # — G and f; : H; — H such that fogo fi1 € A. Hence,
lete=go fi. '

“«=": Take any h : G — F. If G is improper prove that (Z] =
0")(G) < 0'(G). Note that (A" = 0')(G) contains at most one map,
since there is only one map h: G — F. But thismap o f: G — F
(where f : G — 0 isomorphism) is in (4’ = 0°)(G) since, for any
9:H =G, (rof)og=lro(fog) €l (H).

If G is proper then find a g : H — G and a cover {f;} of H such that
hogo f; € A. By assumption there are 91:G1 > Gande : Hy =G
such that hog;oidoe; € A. Let g = gyce; and the identity ¢ : Hy — H;
be a covering. Then we have hogoi € A. |

Our second lemma proves that the righthand side in the lemma above
is equivalent to being j..-dense.

Lemma 4.2. A subpresheaf A of a j-sheaf V(F) is joo-dense if and
only if -—A is j-dense. .
Proof. If the ﬁltgr F isimproper then ¥ (F) is isomorphic to its subsheaf

0’. But both A’ and (A= 0) = 0 are j-sheaves and, thus, greater
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than or equal to 0°. Hence both sides of the equation are true, and
therefore equivalent. Now assume F is proper.

“=": Take {; : G; — F}icr a Joo-covering in A. Prove that the
induced map f : [[;c;G; — F is in -—A. Take any g : H — [[,.; G:.
Consider ¢ : G; — [],.; G; (observe that we have foi= q).

Next take the pullback of g : H — [[,; G and i : Gy — [[,.; G
Call the pullback H’ and the projection on H, h : H' — # as indicated
in the diagram.

1

H G
h 7 &
H G; F
g LJ f

Then we have fo(goh) = (foi)om = a;om € A, since A is a
sieve and a; € A. But f: [[,.; G — F is an epimorphism, and hence
a J-covering of F.

“4=": Take {f; : G; = F}*, a J-covering in ~—A. We know that
for every G; there is a J-covering of ultrafilters {g¢ : U! — G;}jey,
(Lemma 3.5).

Now since f; is in =—A there are A} : HI — U}, for i = 1,...,n,
j € I, such that f; 0 g} o h% € A. But the families {f;} and {gi} are
jointly epimorphic and the h:s are epimorphisms (since U; ultrafilter)
and, hence, the family {f;ogioh} : H: — F} is jointly epimorphic and
a Joo-covering of F.

The proof is illustrated in this commutative diagram.

Hi Hy - H H;
B 5 B %
Ut ur - U2 U2
9 9 g2 92
G G

h fo
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]

By Lemma 4.2 we have that a subpresheaf A of a representable sheaf
is joo-dense if and only if its ——-closure is j-dense. By Lemma 4.1 we
have that the ——-closure is j-dense if and only if the j-closure of A
is =—-dense (in Sh(F, J)). Hence, maps from j-dense subobjects of
a sheaf extends to F' if and only if maps from j_.-dense subobjects
extends to F. This gives that Sh_-(F, J) 2 Sh(F, J,,). Together with
the result from section 3 we get the desired result:

Theorem 4.3. A presheaf F' is in Sh_(F,J) if and only if it is in
Sh(F, Jw ), and Sh(F, J) is equivalent to Sh(U), thus

Sh_(F, J) = Sh(U).

5. THE DOUBLE NEGATION TRANSLATION

In this section we show how the previous result can be used to trans-
late true formulas between the topoi Sh(U) and Sh(F). Since this is a
translation between classical and intuitionistic logic it takes the form
of a double negation translation. The translation is fairly routine, but
we have not found it in the literature on ——-sheaves.

Between Sh(FF) and Sh(TF) there is a geometric morphism

a
Sh_(F) =—= Sh(F)
)
consisting of the factors sheafification (with respect to the topology
—=) @ : Sh(F) — Sh_(F) and inclusion ¢ : Sh_(F) — Sh(F).
For any sheaf F' in Sh(IF) we have the corresponding maps

a
Sub_-(F) == Sub(F).

i
The sheafification now corresponds to closure with respect to the dou-
ble negation topology, previously written ——(-) : Sub(F) — Sub_(F).
The inclusion map of course acts as the identity on the closed subob-
jects of F. But given a first order formula ©(c), with a free variable of
the sort F', the interpretations of ©(ca) in Sub__(F') and Sub(F) will be
different, since the interpretations of the logical symbols are different
in the two topoi.

Therefore we will write [©(«a)] for the formula ©(c) interpreted in
Sub(F') (intuitionistic logic) and <©(a)> for the same formula inter-
preted in Sub__(F) (classical logic).

We will now prove translation results in both directions: if a formula
is true in Sh_(F) then its double negation translation is true in Sh(F)
and, if a formula without any universal quantifier is true in Sh(F) then
it is also true in Sh--(IF). We will also give an example of why we can
not have a full translation result in the second direction.
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Theorem 5.1. Let ©(«) be a first order formula with a free variable
of the sort F. Then, if ©(a) is true in Sh_-(F), its double negation
translation ©' () is true in Sh(F).

Here ©'() is the well-known double negation translation, defined
below.

Definition 5.2. Given a formula ©(a) we define ©'(a) by the struc-
tural induction:

O(a) = T then O'(a

)
)

O(a) = L then O'(«a
O(a) = &(ar) A () then 9'(a) = &'(a) A ¥'(a),
O(c) = &(a) v ¥(a) then ©'(a) = =(-®'(a) A ~¥'(a)),
O(a) = ®(a) = ¥(a) then &'(a) = ®'(a) — V'(a),
O(a) = ~®(a) then ©'(a) = ~®(a),
O(a) = 3z (o, z) then ©'(a) = ~Vz &' (q, z),
O(a) = Vz ®(c, z) then ©'(a) = Vz &' (e, 2).
Lemma 5.3. Let O(«a) be a first order formula. Then i(<©’(a)>) =

[©'(c)].
Proof. We know that 7 : Sub_-(F) — Sub(F) preserves 1 (i.e. T), A, —
and Vz since it preserves I-functors. Note that it also preserves 0 (i.e.
1). The inclusion 7 also preserves equations and, hence, all atomic
formulas. Using the bracket notation introduced above we therefore
have: i(<L1>) = [1], i(<® A T>) = i(<P>) A i(<P>) etc.
Now we will prove the lemma by induction on the definition of ©'.
We will only look at the case of the existential quantifier:
i<V ¥ (0, 2)>) = —i(<Vz ¥ (0, 7)>)
= Vz i(<-9' (o, z)>)
= Vz (<P (o, 7)>)
= ~Vz —[® (e, z)] (from the IH)
= [-Vz %' (e, 7).

Now we will prove the theorem.

Proof. We want to prove that if <©(a)>=1 then [0'(c)] = 1.
Assume <O(a)> = 1. Since classical logic holds in Sub__(F) we

know that <O(a)> = <©'(a)>. Hence <©'(a)> = 1. By the lemma

above [0'(a)] = i(<©'(a)>) = i(<T>) = [T] = 1. O

For the translation in the other direction we will need a lemma.

Lemma 5.4. Let ©(«) be a formula without universal quantifiers that
is built up from double negation stable predicates. Then o([O(a)]) =
<O(a)>.
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Proof. We know that a : Sub(F) — Sub__(F) preserves T, A, V and
Jz. The functor ¢ also preserves equations and, hence, all atomic
formulas.

But a corresponds to double negation closure (——(-)) and also pre-
serves L, since a([1]) = —=0 = 0 =< L >, -, since negation in
Sub--(F) is (-) = =0 = (-) = 0 = =(-), and it preserves implication,
since =—(® = ¥) = =—P — .

Using the assumption that all predicates are ~—-stable, we can con-
clude, using induction, that a([0(a)]) =<O(a)>. O

Theorem 5.5. Let ©(c)) be a first order formula with a free variable
of the sort F. Assume ©(«) is without universal quantifiers and has
double negation stable predicates. Then, if ©(c) is true in Sh(F), O(a)
is also true in Sh__(IF).

Proof. We assume that [©(a)] = 1. Then <O(a)>= a([0(c)]) =1. O

Of course, classically any formula is equivalent to a formula without
universal quantifiers, so we have as an easy corollary:

Corollary 5.6. For every first order ©(a) formula with a free variable
of the sort F' and with double negation stable predicates, there is a
classically equivalent formula © () such that if ©* () is true in Sh(F)
then ©(cx) is true in Sh__(F).

Theorem 5.5 cannot be extended to include universal quantifiers, as
can be seen by considering the following fact. . In Moerdijk [6] it is
shown that

Sh(F) = ~(Vz € *N)[St(z) V =St(z)].

Note that the *N and standard predicates are double negation stable.
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