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The above tests could be easily extended to tests for whether a set of categories all have constant relative

where p =

frequencies in a set of populations. In the cases where Zy,---, Z; are small, it is preferred to use bootstrap
method to get the distribution of the test statistics, rather than relying on the asymptotic distribution.

Our asymptotic results also show the possible consequences of treating SAR samples as multinomial
samples. Accordion to Theorems 3 and 4, asymptotically the covariance matrix of a SAR sample is exactly
¢ times the covariance matrix of a multinomial sample of the same size from the same population, where
¢ is the normalizing factor of the SAR sample. When c¢ is close to 1 (c is always greater than 1), it might
be OK to treat the SAR sample as if it were multinomial. However, when c is large, the multinomial
model will significantly underestimate the variance of the SAR sample. For example, suppose we are given
k SAR samples from k populations, and asked to test the null hypothesis that a certain category has the
same relative frequency in all the ¥ populations. If we treated the k SAR samples as multinomial samples,
we would use the traditional x? or G? tests, and thought that they were x2_, distributed under the null
hypothesis. However, the values of the traditional x* and G2 statistics are much higher than that of the
test statistics modified for the SAR samples, which are indeed x2_, distributed under the null hypothesis.
Needless to say, in such a situation, a traditional level o test based on the multinomial model will actually
have a type I error rate much higher than o when applied to the SAR samples.
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¢ Given the above result, conditional on U,, = v/m(X,, — p) = u, it can be shown that:

i (=) = s (= X /20 = N (7, (14905 ) )

Then it is easy to show that, for any z, P(Z,, < z|X,, = x) is decreasing in x, hence there is a dual
distribution function H;, , of x such that Hy, , = P(Zp < 2|Xp, = x) almost surely with respect to
the measure induced by X,,. Thus, by the lemmas of conditional convergence,

o2
Vim (Zym—p) = N <O, (1 + ’yml—ll—z— + ’ym> E,,)
O

Like Theorem 2, Theorem 4 can be generalized to allow different distributions of the amplification factors
for elements belonging to different categories. Let u; be the mean of the amplification factor for the it"
category, X; be the relative frequency of the i** category in the original sample. Using the delta method, we

u1 X1 ] peXx

PARETTD U SargT. ¢
2 is also needed. Otherwise, the proof of Theorem 4 remains largely unchanged. Of course, in this case, the

can get the asymptotic distribution of ( ) . The generalized version of Theorem

covariance matrix for the asymptotic distribution of the relative frequencies will be extremely complicated.

The asymptotic results of Theorems 3 and 4 imply that the relative frequencies in a SAR sample are
consistent estimators of the relative frequencies in the population. In particular, if the amplification factor
is the simple type branch process described in Lemma 1, the relative frequencies in a SAR sample are indeed
unbiased estimators of the relative frequencies in the population.

5 Discussion

In this paper we showed the asymptotic normality of the relative frequencies in the final sample. It is
interesting to note that there is a striking similarity between the asymptotic distribution of the relative
frequencies of the categories in the final sample of an SAR sample, and the asymptotic distribution of
the relative frequencies in a multinomial sample. Let Z be the relative frequencies of the categories in
an SAR sample, according to Theorem 4, (Z,, —p) = N (0, ;—m2p> , where n,, is the size of the final
sample, ¢,, the normalizing factor, and p the relative frequencies o1fnthe categories in the population. Thus,
asymptotically Z,, behaves like the relative frequencies in a multinomial sample of size Pm drawn from the
same population. This observation leads immediately to tests of whether a category hacsmthe same relative
frequency in two or more populations. In particular, we can extend the traditional x? test or the G test for
association in contingency tables in the following way:

Suppose we have k populations, and £ SAR samples obtained from them respectively. Let ny,---,ng
be the sizes of the final samples of the £ SAR samples, and c1,-- -, cx be the normalizing factors for the &
final samples. Suppose Z;,---, Z are the counts of elements belonging to a specific category in the k final
samples respectively. Under the null hypothesis that this category has the same relative frequency in the &
populations, the following two test statistics both have asymptotically a x2_; distribution:

k A2
x? =y G mb)

cin;p
Py IV Y
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Theorem 4 Consider a multinomial sample of size m drawn from a population of k+1 categories of elements
with relative frequencies py,--+,pr, and 1 — Ele p; respectively. Suppose each element of the multinomial
sample is subject to i.i.d. amplifying processes such that the mean and variance of the amplification factor
are u and o2 respectively. A sample of size Ny, is then drawn with replacement from the intermediate sample.
Suppose Ly = (Zm1,-++, Zmr)T is the relative frequencies of the first k categories in the final sample. As

M, Ny —> 00, we have:

m

Z,~N (p, —}—cmzp>
n

2
where p = (p1,-++,01)7, €m = 1+ %n (1 + %), and %, is a matriz with 0y = pi(1 — p;) and

Op,ij = —pip; for i # j.
Proof:

The general idea is similar to the proof of Theorem 3. Below is a sketch of the proof.

Let X = (X1, Xmk)T and Yo, = (Yon1, -+, Yini)T be the relative frequencies of the first k cate-
gories in the original sample and the intermediate sample respectively. Let B ¥m. By the central limit
theorem for the multinomial data, and Theorem 2 of the asymptotic distribution of the ratio in amplification,

as m, Ny, — 00:

\/E(X'm"P) d N(072p)

Conditional on X,, = x:

vVm(Y,—x) = N (O,Z—zzm)

where % is a matrix with 05 5 = 2;(1 — @;), and 04 ;5 = —z;x; for i # 5.
Conditional on Y,, = y:

Vim (Zm —y) = N(0,%,)
where ¥, is a matrix with o, ;; = y;(1 — y;), and Oy,ij = —y;y; for ¢ # 5.

Then we can show that:

e Conditional on X,, = x and V;, = vm(Y,, — x) = v, we have Y,, — x, hence:

Vi (B =) = i o = Y) 4[> N (v, )

o Let G,z = P(Zp, < 2|Y,, =y). From the probability mass function of the multinomial distribution,
it is easy to check that G, . is continuous and decreasing in Y, for 0 < y; < 1. Extend G, toa
function G, , defined on R* such that when y; — oo for some 1 <4 < k, Gi,.. — 0 decreasingly and
continuously, while when y; - oo for all 1 <i < k, G;n,z — 1 increasingly and continuously. Because
G = P(Zym < 2[Y,, = y) as. with respect to the measure induced by Y,,, by the lemmas of

conditional convergence,
o2
Vi (Zym —x) = N (0, <1 +7ml_4§> Ez)
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number of labels Iy, -+ -, I, is less than or equal to z, and C,,_ 41, ; the set of possible final samples
where the total number of labels I3, -+, ;41 is less than or equal to z. Now P(Z,, < z| X, = i)
, and P(Z,, <
Z|Xm = @y + 1) is the probability of getting a possible final sample s’ such that s’ € C; , ,.
Clearly Cy_ +1,, C Cy,, 2, which implies that P(Z, < 2|Xp = 2 + 1) S P(Z, < 2| Xpn = )

is simply the probability of getting a possible final sample s such that s € C,

myZ

o As a function of z,,, P(Z,, < 2| X, = 2, is defined at finite points. We can interpolate linearly
between these points, and extend smoothly and increasingly below the smallest point, which is 0,
so that the function converges to 1 as z, — —00, and extend smoothly and increasingly above
the largest point, which is m, so that the function converges to 0 as z,, — co. Call this extended
function Hy,. Clearly, H,, = P(Z,, < z{X;n, = ) a.s. with respect to the measure introduced
by Xnm.-

Now we have shown that the conditional distribution function of Z,, given X,, = z,, is a dual distri-

bution function in ,,, hence the conditional distribution function of (Zm — ymp) given U, = u

ym
is a dual distribution function in u. Given that a normal distribution function is a dual distribu-

tion function in its mean, and the fact that U,, == N(0,p(1 — p)), by the lemmas of conditional

independence,
Lz )= N (0, (12 44% +) (1 - 1)
—_— — v T, .7 -
S G = : L TrE ) p-p
2 2
Yy o Nn Np o . 1
Letcp, =l—-—+y—S+y=1-—+4— (1+—>, given that (Npm —ym) — 0 w.p.1, as
. _)’Zo poo mp - m 2 yym "

I = N(Nmp, chmp(l ‘—p))
O

We note that the assumption that the original sample is binomial is not essential to our proof. If it is
hypergeometric with the ratio of the sample to population being §,,, the above result still holds, with the
exception that the normalizing factor now is changed to ¢}, =1 — A ')’0—2 + (1 = 0m)-

It seems reasonable to conjecture that Theorem 3 could be extended to the multivariate SAR samples,
where the original samples are multinomial or multivariate hypergeometric, and the final samples are mul-
tivariate hypergeometric conditional on the intermediate samples. Let X,, and Z,, be the counts of first
k categories of elements in the original sample and the final sample respectively. To show the asymptotic
normality of Z,,, we would only need to show the asymptotic normality of Z,, given X,,. One approach
would be to prove directly the asymptotic normality by the lemmas of conditional convergence. Another
approach would be using the Cramer-Wold’s theorem, i.e., showing the appropriate asymptotic normality of
u’Z for an arbitrary u = (u1,---,uz)T conditional on X,,. We tried both approaches, but were unable to
get the desired result. Here we shall leave the multivariate version of Theorem 3 as a conjecture.

Although it is difficult to extend Theorem 3 to the multivariate SAR sample with multivariate hyperge-
ometric final sample, we could show the asymptotic normality of the multivariate SAR sample if the final

sample is drawn with replacement from the intermediate sample:
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by defining Gy, . (Ym, —7m) = Gm,z(max(0, y), min(0, —r,,)). Clearly Gy, . is still decreasing in
(ym, —Tm). Now extend G, , to a continuous decreasing function G- It is easy to check that
Gy, . has the desired limit behavior. That is, it goes decreasingly to 0 when either y,, — oo or

—7m — 00, and goes increasingly to 1 when both y,, = —co0 and —r,, — —00.

G;;L,z is a dual distribution function in (y,, —r.,) such that G;’n’z = P(Zm < 2|Ym = Ymy —Rm = =)

’ 1
a.s. with respect to the measure induced by (¥, —Rpy). Thus, P (——(Zm —1Xm) < z'Vm, Wm)
Jm

. 1
can also be extended to a function Hy,,. such that H,, , = P W(Zm —vXn) < zIVm, Wm> a.s.

with respect to the measure introduced by (Vin, ~Wp,), and H,, . is a dual distribution function in
(v,~w). It is also easy to check that the distribution function for N (1,0?) is a dual distribution
function in p. Moreover, if p = z — y, this distribution function is a dual distribution function in
(z,—y).

Given that the joint distribution of V;,, and W,, converges to a bivariate normal, 1° b}lr the lemmas of
= (Zm—vX. m)

conditional convergence, the asymptotic normality of the conditional distribution of

X
given =™ = gz follows immediately. 16
m

1
3. Next, we show that, conditional on U,, = W(Xm —mp) = u,

\/—%_E(Zm —ymp) => N (ﬁu, (1 - % + vz;) p(1 ~p))

The argument is similar to the one used in step 1. Basically, conditional on U,, = u, as m — 00,

m\ m)” = -+ —= ~p). T .
m <1 m ) (p + /—m) (1 p+ \/ﬁ> — p(1 — p). Then we notice that
1 1 1 1
\/7m_(Zm ~ymp) = W (Zm —vXm) + —"—m('YXm ~ ymp) = ﬁ(zm — ¥ Xm) +

4. Finally, given the asymptotic conditional normality of Z,, given X,,, and the asymptotic normality of
Xom, to derive the asymptotic distribution of Z,, using our lemmas of conditional convergence, we only

need to show that the conditional distribution of (Zm —ymp) given U, = u is a dual distribution

ym
function in u. This is equivalent to showing that, conditional on Xm = T, the distribution function

of Z, is a dual distribution function in x,,.

e First, we show that the conditional distribution function of Z,, given X,, = z,, is decreasing in
T
Imagine that we mark each of the m elements in the original sample with a unique label, say, I;
for the i** element. Then after the amplification and the resampling steps, a final sample of size
Np, of the labels is obtained. The probability of getting a specific sample is uniquely determined
by the size m of the original sample. Let Cs,,,= be the set of possible final samples where the total

15The mean is 0, and the covariance matrix is:

[ C’;"B 02(10— z) ]

181f M ~ N(0,0%), and conditional on M = p, Z ~ N(p,a?), then Z. ~ N(0, 02 + o2).

16



We observe that conditional on Yy, = 9., and R,, = 7, Zm has a hypergeometric distribution
with parameters (Ym + Tm,Ym, Nm), where ym, + 7, is the population size, y,, the number of
elements in population belonging to the first category, and N, the sample size. Let hy p,n be
the distribution function for a hypergeometric function with parameters (N, M,n). Obviously, we
need to show that, for any (N, M,n), and any z:

A ptn(2) > BN, Mitn

hn mn(z) > AN-1,Mn

— Let Fi = hn,pmn(2), Fo = ANiy1,m+1,n, and fi and fo be the probability mass functions
corresponding to F; and F5 respectively:

= (M) (N-H)
2
= (MO

F(z) =) f(2) = )~ gt
=0

z=0

F(z)=) filz) =
z=0

Solve the inequality fi(z) > fo(z) for 0 < z < min(M,n), ¥ we get: fi(z) > fa(z) if and
n n
. > < .
N+1(M+1) Thus, Fj(z) > Fz(z) when z < N+1(M+1)

Also note that if n < M, then Fi(n) = 1 = F5(n), and if n > M, then

only if z <

(abyaly
RO =1> B =1~
Thus, Fi(z) > F»(z) for z > min(M,n). For NT:_ 1(M +1) < z < min(n, M),

Fi(2) — F2(2) > Fi(z + 1) = Fo(z + 1) > - -- > Fi(min(n, M)) — Fz(min(n, M)) >0

because fi(z) > fa(z) for NL—H(M +1) < z < min(n, M).
— Let F3 = hy_1,mn, and f3 be the corresponding probability mass function. The proof for

Fy(z) > F3(z) is similar to the above one. Basically, we solve the inequality fi(z) > f3(z)

M
for 0 < z < min(M,n), and get: fi(z) > f3(z) if and only if 2 < nT

Thus, Fy(z) > F3(z) for z < ?Nﬂ It is also easy to see that Fj(min(n,M)) =1 =
F3(min(n, M)). Therefore, by a similar argument as above, we can show that F1(z) > F3(z)

for any z.

o The continuity and the proper convergence to 0 and 1 are easy to satisfy. Fix a z such that
0 <z < Np, * define G2 (Ym,—Tm) = P(Zm < 2|Ym = ym,—Rm = —rn). Clearly G .
is defined for only a countable number of nonnegative/nonpositive integer pairs of (ym,—7m)-
First extend G, ., to allow negative integer values for Y;,, and/or positive integer values for — R,

13 £ (z) = 0 for z > min(M,n), and fa(z) = 0 for £ > min(M +1,n).
14There is no need to worry about z < 0, where P(Z;n < 2|Ym = ym,—Rm = —rm) = 0, and z > Np, where P(Zm, <
z|Ym = ym, —Rm = —rm) =L

15



(1 -2z)v — zw)

1 Y. vV N,m
T Zm - Nm +
VN, Ym + R Y + B

. Xom 1 1
Conditional on = Vin = ﬁ(Ym —muz) =v, and W, = —E(Rm —mu(l—z)) =w, ! as
m — 00,

Ny = ym

(Nyy —ym) = 0

3
3

VR /Nam Yl

Yoo+ R mp+/m(v+w) _)7

Ny, _ Np, s 0
Yon+Rn mp+ymv+w) "

YR (mpz + v/mo)[mp(l — z) + /mw]
(Y + Rm)? mp + v/m(v + w)

= z(l—1z)

X
Thus, conditional on == =z, V,,, = v, and W,,, = w,
m

\/~i:m (Zm—1X) = N (%17[(1 — 2)v — ou), (1 - %) 2(1 - x))

X
2. Next we show that conditional on == = g,
m

\/—%(Zm —¥Xp) = N (0, (1 _ % +7—Z—z> z(l— z))

X 1
First we show that given ?m = z, the conditional distribution of —ry—n—z(Zm —vXn) given V,,, = v and

W = w is a dual distribution function in (v, —w). This is equivalent to showing that the conditional
distribution of Z,, given Y,, and —R,, is a dual distribution function in Y, and —-R,,. 12

e First we show that P(Z,, < 2|Ym = ym,—Rm = ~Tm) is decreasing in (Ym, —rm). Because the
minimal change in y,, or rp, is 1, it suffices to show that, for any z,

P(Zy < 2|Yp = Ymy —Rim = —1pp) > PZm <2lYm=ym+1,—Rp = —r)

P(Zm < zlYm = Ym, —Bm = “Tm) > P(Zm < z'Ym = Ym>— B = =1y + 1)

' Note that here z, v, and w are constant, hence independent of m.

12The equivalence relation holds because (Zm —¥Xm), Vi, and W, are linear in Zm, Yo, and Ry, respectively, and

VI
the slopes of the linear transformations are all positive.
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Theorem 3 Consider the following SAR scheme: The original sample is a binomial sample with parameters
(m, p), where m is the sample size, and p the relative frequency of the elements belonging to the first category
in the population. The mean and the variance of the amplification factor for the amplifying process are
and o? respectively. Let M, be the intermediate sample size. The final sample of size Ny, is drawn without
replacement from the intermediate sample, where N,, is a random variable such that, for some 0 <7y < p,
Ny = M, if M < ym and N,, = ym otherwise. 1° Suppose Z,, is the count of elements belonging to the

first category in the final sample. Then as m — oo,

Zm ~ N (Npmp, Nncmp(1l — p))

N, 2
where ¢, = 1 — Nin + == (1 + %) 1s called the normalizing factor of the SAR sample.
my  m 7 '

Proof: Let X,, be the count of elements belonging to the first category in the original sample, and Y, and
R,, be the counts of elements belonging to the first and the second categories in the intermediate sample
respectively. By the central limit theorem, as m — oo:

Un = (X —mp) => N(0,p(1 - p))

Bl

X
Conditional on == =g
m

Vin = ——\/—n_;(Ym —muz) => N (0,0%z)

Wi = %(Rm —mu(l— 1)) = N (0,0%(1 1))

X
Note that Y;, and R, are independent conditional on X,,, hence conditional on o=
m

[(1—2)Yy —zRp)] = (1 — z) (Y, — pmz) — z(Rm — pm(l — z))] = N (0,0%(1 — z)z)

L
Jm
R

Y,
Conditional on == =y and —— =1r:
m m

\/%_m (Zm —Nmy—:{;) = N (0, (1 - m(];': r)) (v i’ﬂ)?)

Now we are going to prove the asymptotic normality of Z,, in four steps.

1
N

X
1. Conditional on ——n—:i =z

1 N, 1 Y, 1 Y, N
Zp—Nmy yo (7, - Ny Ny—m _ _ Nmy
(Zm = 7 Xm) = 7= ( mYm+Rm) N ( Yo+ R m )

! Y VN
~VNa (Z’” N Rm) * Tt By (7 ) W = amit) = 0B = (1= )]

10Tn this SAR scheme, if the intermediate sample size My, is less than or equal to ym, then the whole intermediate sample
is taken as the final sample. Otherwise, a final sample of size ym will be drawn without replacement from the intermediate
sample.
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Proof:
Similar as above. Note that G, — G pointwisely implies that p, == u, where pn and p are the

measures determined by G, and G.
O

Corollary 7 and the following lemma, will be called the lemmas of conditional convergence. Together they

give a sufficient condition for conditional convergence, but they can also be used independently.

Lemma 3 Consider random variables {X,}, X, {Y,} and Y. Let pu, and u be the measures induced by
Xn and X respectively. Suppose the following conditions are satisfied:

1. X, = X, and the distribution function of X is continuous.

2. For any fized 'y and for all n, there is a py, measurable function Gy = P(Y, < y|X, = x) a.8.[ o]
such that G,y — P(Y < y|X = x) uniformly, and P(Y < y|X =x) is continuous in x.

Then Y, — Y.

Proof:
It suffices to show that for all y,

[ PO < 31X =) di () - [ POY < yix =) dutx)

or equivalently,

/ Gy dpn(x) = / P(Y < y{X = x) du(x)

Fixed y, because Gy y converges to P(Y < y|X = x) uniformly, for any € > 0, there is an N(¢) such that
for any n > N(e),

Sup [Gn,y ~ P(Y <y|X =x)| <e
x

Because p, — p and P(Y < y|X = x) is bounded and continuous, we can choose M, such that for all
n 2> M.,

’ [ PO <¥1X =) dnlo) — [ POV < y1% = ) duo)| < o

Therefore, for all n > max(N,, M),
[ G dinto) — [ POX < 91X =) (o

< [ [ Gy din(30 = [ POV < 31X =) dta
¥ ] [ POY < 31X =) dunto) — [ POY < 31X = %) )

< [1Gny = POY < 71X = )| () + ¢ < 2

O

Now we can derive the asymptotic distribution for the relative frequency of a category in the final sample
of an SAR scheme.

12



Proposition 1 A dual distribution function G on R* uniquely determines a probability measure p such that

H({x *Zy Z Y1, Tk Zyk}) :G(Y) fOT’ any 'y = (y17"'7yk)T € ]Rk‘

Note that if F' is the distribution function corresponding to a measure p, then the dual distribution

function G for u in general is not equal to 1 — F. More precisely, we have:
Proposition 2 G =1~ F if and only of F is a continuous distribution function on R.

The following lemma is an extension of the well known theorem of the uniform convergence of the

distribution functions on R.?

Lemma 2 Consider a continuous distribution function F defined on R*. If there is a sequence of distribution

functions {F,} converge weakly to F, then F,, converges to F uniformly.

Proof:

Let the measures corresponding to F' and F,, be p and p, respectively. Define a compact set C, as
C, = {(z1,++,2x)T : 21| < a,---,|zk| < a}. Note that F is uniformly continuous on C,. For any ¢ > 0,
choose an a such that u(C¢) < e. Then we can find a finite number of compact sets By, - -, By, such that
UL, B; = C, and that maxy yes, (|F(x) — F(y)]) < eforall 1 <i <m.

Let X; maz and X;min be the maximum and the minimum points in B;. Because F, — F, we
can find an N(e) such that for all n > N(e), and for all 1 < i < m, |Fo(Ximas) — F(Ximaz)]) < 6
| Fro(%imin) — F(Ximin)]) < € and |pn(Ca) — p(Ca)| < €. It then follows that, for all n > N(e), first,
|Fn(x) — F(x)| < 3e for any x € C,; second, pn(Cg) < 2e.

For any x = (1,---,2)7 € R*, define a set Ly = {y = (y1,""-,¥x) : 1 < 1, -, Y& < zr}. Note that
for any X, pn(Lyx) = Fn(x), and p(Lx) = F(x). Let a = (a,---,a)T. Now let us consider the following two

situations:
e Suppose C, N Ly = §. Obviously, in this case, |Fp(x) — F(x)| = |tn(Lx) — p(Lx)| < 2e.

e Suppose Cy N Ly = Cax # 0. Clearly, Ca x is compact, hence has a maximum point X, maz- It is easy
to see that: Ly, ... C Lx, and (Lx \ L M C, = 0. Now we have:
| Frn(x) = F(x)| = {[ptn(Lx \ an,maz) + Fn(Xa,maz)] — [1(Lx \ an,maz) + F(Xa,maz)]|
< pn(Lx \an,maz) ~- p(Lx \ an,ma:)' + |Fn(xa,maz) — F(X4,maz)|
. < 2¢+ 3¢ = Be

Xa,max )

Therefore, we have shown that for any n > N(e), and any x € R¥, |F,(x) — F(x)| < B¢, hence F,

converges to F' uniformly.
O

The following corollary shows the uniform convergence the dual distribution functions on R*.

Corollary 7 If G is a continuous dual distribution function, and o sequence of dual distribution functions

G, converge to G pointwisely. Then G, converges to G uniformly.

9For example, see Theorem 7.6.2 of Ash and Doleans-Dade (2000).
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Corollary 5 If in Theorem 2 and Corollary 4, instead of requiring n = Np1 < N,; < Mn, we require that
Ln < Ny ; < Mn, where L is some positive real number, the conclusions still hold.

Proof: The proofs in Theorem 2 and Corollary 4 depend only on the assumption that there is a fixed number
M such that:

Mmin(Np 1, -, Ny pt1) > min(Np 1, -+, Ny 1)

Corollary 6 If in Theorem 2, we assume that %, = I, then:

(Yo, Yor)T = N(0,%)

4 Asymptotic Distribution of the Final Sample

Theorems 1 and 2 give the asymptotic distribution of the relative frequencies in the intermediate sample
conditional on the original sample. The asymptotic distributions for the relative frequencies in the original
sample, and the relative frequencies in the final sample conditional on the intermediate sample, are straight-
forward: Both the relative frequencies in a multinomial sample and the relative frequencies in a multivariate
hypergeometric sample converge weakly to multivariate normal. 8 We need to put these pieces together to
get the marginal asymptotic distribution of the relative frequencies in the final sample. The basic idea is to
show, under certain conditions, that conditional convergence implies marginal convergence. More precisely,
consider two sequences of random variables X; and ¥;, as well as two random variables X and Y. We say
Y; converges to Y conditional on X; if 1), X; == X, and 2), there are versions of P(Y; < y|X; = z) and
a Borel set A such that px(A) = 1 and for each fixed z € 4, P(Y; < y|X; = z) = P(Y < y|X = z), where
px is the measure induced by X. The goal is to find a sufficient condition to guarantee ¥; = Y.

To do so, we first introduce a new concept called the dual distribution function (ddf). The dual dis-
tribution functions are defined in a similar way as the distribution functions so that the dual distribution
functions could share some properties, such as the uniform convergence, of the distribution functions.

Definition 1 A nonnegative function G on RF is called a dual distribution function if it satisfies the following

conditions:
o G is continuous from below.
o (3 is decreasing.
o Letx = (z1,--,x1)¥, and i € {1,---,k}. If for some i, z; — o0, then G(x) = 0. If z; — —o0 for all

i, then G(x) = 1

It is easy to check the following properties of a dual distribution function:

8Let X be a k dimensional random vector following a multivariate hypergeometnc distribution with parameters

N;
(N;N1,-++,Ng;n), where N is the population size, and n is the sample size. Let —]\—f =8, — ~ = p; and p = (p1,---,px)7.

Fixing p and 8, as n — 00, (X ~np) => N (0,(1 — B)nZ,), where T, is the covariance matrix of a multinomial distribution
with parameters (1;p1,-+,pg). For a general proof, see Hajek (1960).

10



It then follows:

JNuTS 27,

= N(0,1)
Sn

_1
Now because the covariance matrix for ¥, 2 Z,, is the identity matrix I,

k
s = Var (\/NnuTE,,_LEZn) =N, 3wl
. =1
Therefore,

k
u?s %7, = N (0,Zu§>

=1
which is the same as the distribution of u”Z, where Z ~ N(0,I).
Thus,

£2%Z, = N(0,I)

E;'v:"1 X .
Because =2=-"- 4 1 w.p.1., it then follows that, for any k-dimensional vector u = (u1,--,u)7,
n
N
_1 Xy 1
w3 2Y, = uT@znzzn = uTN(0,1))
Ny

O
In Theorems 1 and 2, we assume that the amplification factors of all elements are identically distributed.
It is possible to generalize the two theorems to allow the amplification factors for elements belonging to
different categories to have different distributions. Let y; and o? be the mean and the variance of the
amplification factor for the it category respectively. Under the new conditio;}, tile i%ative frequency of the
it N g '
ith category converges to g ; = —70-;]—\’1—'11‘—‘1—— Define Y, ; = VN, (Zj:N"’OJr}\?.NN'i_IH s - Qn,i> )
. 2_7’:1 (Nn,im5) ijnl X
then there is a matrix !, such that ¥ ;%(Yn,l, Yo n)T = N(0,I).
Unfortunately, the matrix £/ is much more complicated than X,. Below are the first two elements of
the first column of ¥ :

k
(1= ¢n1)%Pn10? + 45y Zzizl Pn,i0} .
1
E'n = | —(- Qn,l)Qn,an,IU% -(1- Qn,Z)Qn,lpn,ZU% + qn,1qn,2 Zz—js pn,iaz‘z

The following corollaries are generalizations of corollaries 1, 2 and 3 respectively.

1
Corollary 4 In Theorem 2, if E[X}] < 0o and X; > ¢ > 0, then the covariance matriz of Ip, 2Y,7; converges
to Iy, where Yz: = (Yn1, - DAL

Proof: From Corollary 1, E[Y,‘fﬂ-] < oo fori = 1,---,k + 1. Therefore, for any u = (uy,---,ux)’,
E[(uTY,)*] < co. Thus the variance of u”'Y,, converges to the variance of the distribution pif u” Y, = p.
O



Pni(l—pn,1) —Pn,1Pn,2 e —Dn,1Pn.k

~Dn,2Dn,1 Pn2(l = pp2) - _pn,2pn,k
Yp = . . .

~Prn,kPn,1 ~PnkPn2 ' Pn, k(l Pnk)
With the convention that N, = 0, define, fori=1,--- k + 1:

Npa++Np X,
Y. vV Npp J=Nn,0++Nni_1+1 ]

n,i = . ~. = DPn,i
Then:

S2iY, = N(0,1)

where Y, = (Yn1,- -, Yo )T, and Iy is the k x k identity matriz.

Proof:
X, is the covariance matrix for a k-dimensional random vector (Vi,-+-, Vi) where (V1,- -, Vi, 1—21.“:1 Vi)

N, N,
has a multinomial distribution with parameters { 1; =% ... muk+l
N, N,

. Therefore, X,, is positive definite,

_1
and X, 2 exists.

Now define a new set of random vectors Z, = (Zn1y: - Zng):

N, X Nnjt+ Ny N
Zj:l J 1
nit g ™ \j=Nn,o++Ny,iz1+1 i=1

It is easy to check that ¥, is the covariance matrix of (Z. (Znay s Zn k)T Now let u = (ug,--,ux)T be
any k-dlmensmnal vector. Using the similar method used in the proof of Theorem 1, we can decompose
VN TS, 3 Z, into the sum of n independent random variables Uy, - - -, U, with zero mean such that the
Lindeberg’s condition is satisfied. This is possible because the absolute value of each entry of E;% is bounded
from above by 1. The basic idea is:

First, write N, ulZ, %Zn as:

Nn
VNS, = X
j=1

_1

Given that entries of £, 2 are bounded between -1 and 1, it can be shown that olej| < 22;":1 s

Suppose r,n < N, < (rp + 1)n. Cleatly, r, < M. Now we can find a sequence of n + 1 integers 0 = gn 0 <
dn,1 < -+ <{gn,n = Ny such that r, < qniv1 — gni <7y + 1. Define U; as:

In,i qn,i

UZ' = Z Cij - Z Cj

J=qn,i-1+1 J=qn,i—1+1
Then it is easy to check that the Lindeberg’s condition is satisfied. That is, let s2 = Var(37_, Uj), as
n — 00,

iz/ UZdP =0
n J|U;|>sq€



4
(n+rn)k Sn 4(M +1)2 1S, \*
< N T Ll
ssz ( W | X ST SR Vv Frs, <o

(’I’L + Tn)s Z?_—_]_ X; . . . .
Therefore —pn | is uniformly integrable, hence its mean converges to the mean
g

n+Tn i
nTn Z j=1 XJ

o
of the distributions it converges to, i.e., —.

I
O

In the proof of Theorem 1, for convenience, we assume that n < r, < Mn for some M. This assumption

is dropped in the following corollary.

Corollary 2 If in Theorem 1 and Corollary 1, instead of requiring n < r, < Mn, we require that Ln <

rn < Mn, where L is some positive real number, the conclusions still hold.

Proof: First we note that if 7, < n, then:

(n+rn)? ( T X ) _ (ratn)? (2?:,13;1& o )
) =

n+7ryn n+ra
NTy Zj=1 X; Tnll z X; Tn +1

j=1

3 n+rp+1 3 T
T +n)2 A X; r +n)2 - X r .
(rn +n) (E""H ‘ o ) and (rn + 1) ( Lit1 Xs o ) have the same distri-

while — -

At ntra
' TnTk E j=1 Xj Tn+ N rnh E =1 Xj Tn +1
bution.

We also note that if X ~ N(0,1), then —X ~ N(0,1) too.

The following corollary is obvious.

Corollary 3 In Corollary 1, if we further assume that p, = - _:lr — p, where 0 < p < 1, then:

n

¢
E[m (—-——%’:}n pnﬂw

Zj:l X;
2
" X; 1 — p)o?
j=1 J

Now we can give the asymptotic distribution of the relative frequencies of multiple categories in the

intermediate sample, conditional on the original sample.

Theorem 2 Theorem 1 can be generalized in the following way:
Given a sequence of independent nonnegative random variables X1,---, such that E[X;| = p > 0, and
Var(X;) = 0. Forn =1, -+, let Np1,+, Nn g1 be positive integers such that n = Np3 < Np; < Mn,

N, )
t=1,---,k+1, for some fized M. Leth:Ef:an,i, and pn; = ]\? fori=1,---,k+1. Define 3, as:
n




Corollary 1 Given the same condition as in Theorem 1, if E[X}] < oo, then:

2
3 n X 2
p| @t (Z —pn) S
nrn Z] 1 X H

Proof: From Theorem 1,

u(n-}-rn)% Zz— X _ Sn [
o+/nry, E;H'I”X b= X
n+ry, ; ¢

hence,

2
n+ry)? ' X o2
(nt ) z;,ﬂm -] = 53
nTrn E] =1 X H

|Sn)
Vvn+r,

2+€
Therefore it suffices to show that supE [( ) ] < oo for some € > 0. Actually, we shall prove
n

the case for e = 2.

S 4 n n+ry
[ T!Z,-}-l?"-,,,) ] ’I’L+’I" E ((l_pn);X Dn ;_IX)
n+ry 4
= n+r]2 (1- pn)z an(Xj~u))
j=n+1
n n+ra
[n+rn {Z(l ) B[(Xi =]+ > pRB[(X; - w)']
i=1 j=n+1
+2Z > (1-pa)*E [(X: — w2 E [(X; —u)z]}
=1 j=i+1
n+rp—1 ntr,
2 ) piE [(X: = w)?] E[(X; _“)2]}
i=n-1 j=i+l
n  ntra,
+> 0 Y PRl —pa) B [(Xs — w)?] B [(X; - u)z]} !
i=1 j=n+1
= [7f+ir_n]2 {n(l —pu)'E [(X1 - u)4] + ropiE [(Xl - u)“] +n(n — 1)1 - pp)tet

+n +ralln + rn — Upho® + nln + ro)p (1 — pn)2o?}
<E[(X1—m)*] +o*
Given that E[(X;)*] < oo,

4
e () ot <

n+ra
X,
Note that X; > ¢ > 0, hence Z—T::_i—r—— > c. Also, (n +1rp)? < 2(M + 1)nr,. It then follows that:

7All the other terms are 0 because {X1,-- -} are independent.



4Ty

n n
Sn:ZYn,i:ZX'é—pn ZX]
i=1 i=1 J=1

n n
s2 = ZVar(Yn,i) = Var (Z Yn’i> = [n(1 - pp)? + rppilo® = nTZ:' 02 =n(l — py)o?
=1 i=1 "

Gn,i—1tn+M+1

Let Z,; = X; + Z X; + 2p. It is easy to check that |Y, ;| < Zni = |Zn,l- 5 Because of the
J=Qn,i-1+n+1

iid. property of {Xi,---}, the distribution of Z, ; is independent of n. Indeed, the distribution of Z,; is
the same for i = 1,---,n, and the same as that of E;‘Q’z X; + 2p, which is independent of n. Therefore,
for any € > 0, as n — oo, f[Zn,i|>eo\/m Z2% . dP — 0, because Z2 ; is integrable, and p, < 0.5. It then
follows that:

- Y2.dP <Y — / Y2.dP

n,i|>8n€

n
1 / 9 n / 2
< — Z5 AP = ——e—e Z;.dP
B ; 3727’ ]Zn,i|>3n€ "v" n(l - pn)az ]Zn,1|>sn mt

2
< —2/ Z2,dP
0% J|Zp1|>8me

where / Z,zhldP —0asn— o0
|Zn,1]>5ne€
By the Central Limit Theorem,

% = N(0,1)

n

On the other hand, by the Strong Law of the Large Number,

+ n
Z?:lr X;

2
— .p.1
n+1m b w.p

Consequently, ¢

ntrn —bp
o/nr, zj=1 X;

,U'(n""'n)% ( i1 X ) — _S_'k—p‘

hence,

(n+r)? { S, X; ? o2
- nz-;-:'r‘l —— Dn = _ZX%
nn. Zj:ln Xj K

]
If the amplification procedure is nondecreasing and bounded, i.e., the amplification factor is bounded
from below by a positive value, and also bounded from above, then it can be shown that the variance of the
relative frequency of the first category also converges.
SNote that X; > 0, and that Pnldn,i — qn,i-1) < 1.

SRecall that Sn = X7y Xi —pn 707" X




(D7)
Finally, by the identity (:) =¥ (m) (” - m), ® and the fact that 3 i~2/ 2%/ —Z—l:c 4 we

7 Tz —1 n
i=0 i=0
T

have: Xoiv
ot¥o 1 X, X,
E = > [ Xo+ "2 ) A1 = N Kot Yome . _ 20
[P1] Xo, o] ar c+Xo+Yo< °+ch+¥0>A (1= X, +v,  To

Given that o(Py) C o(Xy,Yp), it then follows that:

E[Pi|Py] = E[E [P X0, Yo] |Po] = Py

It is easy to see that {P;} for ¢ = 0,1,--- is a martingale, with respect to {o(Po),0(Py, P1),- -}, hence
for any r > 0, we have:

E[PTIP()] = Po
|

From now on we shall make no specific assumptions about the distribution of the amplification factor. In
most cases, we only assume that the amplification factor has positive mean and finite variance, as required
by the definition of SAR.

To get the asymptotic distribution of the relative frequencies in the intermediate sample, we begin with a
simpler case, where the original sample has two categories. Let the mean and the variance of the amplification
factor be u and o? respectively, and the absolute frequencies of the first and the second categories in the
original sample be n and r, respectively. Then the following theorem gives the asymptotic distribution of
the relative frequency of the first category in the intermediate sample.

Theorem 1 Given a sequence of i.i.d. nonnegative random variables X+, such that EX;j=up>0, and
Var(X;) = o2. Let r,, be a sequence of positive integers such that n < r, < Mn for some fized M. Then:

(n +ra)} ( S, X pn) _ N(0,2f>

ntr, - 2
Tn Ej:l XJ' K

n
n+r,

where p, =

Proof: Because n < r, < Mn, for any n, there is a positive integer m,, such that m,n < r, < [m, + 1]n,
where 1 < m, < M. Moreover, we can find n + 1 integers 0 = gno < g1 < gn2-'- < Gn,n = T, such that
Qn,i+1 — Gn,; is either m, or m, + 1. Create a triangular array of random variables Y;, ; in the following way:

The nt? row of the array has n elements Yo1,--+, Y n, where:
qn,i+n
Yoi=(1—pn)Xi—ps Yo X | == pn) = Palgn; ~ gia)]

J=qn,i—1+n+1

It follows immediately that for each n, ¥,,1,---,Y, , are independent, EY,:] = O, and:

: k
3Note that this identity holds even if £ > m or n < z + m, insofar as we observe the convention that (kl) =0if k) <ks.
2

4This is the mean for a drawing without replacement sample.



of a category in the final sample, based on which we can estimate the relative frequency in the population.
In the last section, we give two tests for whether the same category has constant relative frequency over
different populations, and argue that we could get a much higher than expected type I error rate if using
the traditional tests.

3 Asymptotic Distribution of the Ratio in Amplification

If the intermediate sample in the SAR scheme were obtained by multiplying the original sample by a factor
k, then the relative frequencies of each category in the intermediate sample will be the same as the relative
frequencies in the original sample. However, if the original sample is amplified by a noisy procedure, say,
a branch process, conditional on the original sample, the relative frequencies of each category in the inter-
mediate sample will be nondegenerate random variables. In this section we shall present the asymptotic
distribution of the relative frequencies in the intermediate sample conditional on the original sample. But,
first, we would like to show that for a specific fype of amplification processes, the mean of the relative fre-
quency of any category in the intermediate sample, conditional on the original sample, is exactly the same as
the relative frequency in the original sample. This specific process is often used to model the PCR procedure.

Lemma 1 Let {X:} and {Y;} be two independent branch processes with the following properties:

1. Xty1 = Xi + Uy, where Uy follows a binomial distribution with parameters (X¢, A), for 0 <A < 1.

2. Vi1 = Y, + Vi, where V; follows a binomial distribution with parameters (Y, )).

X
b1 given P, =

_ = E s P,
Xi+1+ Ve Xi+Y:

then the conditional mean of Piyq =

Proof:
Without loss of generality, let £ = 0. The joint distribution of (X1,Y1), given Xy and Yy, is then:

P(Xl =z,Y; = yIXO,YO) = (‘T i((jxo) /\Z—Xo(l _ )\)ZXo——a: (y ‘l:'OYO> Xy—Yo(l _ A)ZYO‘_y

where Xy < z < 2Xj, and Yy <y < 2Y,.

X3
Let u = 2z — Xy, v = y — Y, the conditional mean of P, = X IV, given X and Y is:
1+ 1N
Xo Yo
u+ Xo Xo Xo—u [ Y0\ v Yo
T u — u 1__A o—7v
E[P|Xo, Y] = ;)Z()HHXHY()(U),\ (1- ) DAY
Let ¢ = u + v, with the convention that (Zl) = 0 if ky < ks, the above formula can be written as:
2
Xo+Yo ¢
'U,+X0 XO Yb Xo+Yo—
E[P]|Xe, Y] = A6(1 = 2)XetYo—e
m= 3 3 e (V) (2 e
Xo+Yo c
1 X Y:
= [E——— Y [ ¥ Xo+Yo—c X, 0 0
; c+ Xo+Yo ( ) ;::O(u_*_ O)(u c—u



2 Sampling, Amplifying, and Resampling
The basic steps of the sampling, amplifying, and resampling (SAR) are as the following:

1. Draw the original sample, which has either the multinomial, or the multivariate hypergeometric dis-

tribution.

2. Amplify the original sample. Each element in the original sample is amplified independently such that
the integer valued amplification factors for each element are nonnegative and identically distributed
with positive mean and finite variance. 1 The amplified sample is called the intermediate sample.

3. Generate the final sample from the intermediate sample by drawing randomly with or without replace-
ment. The final sample is also called the SAR sample.

Note that the generation of the final sample by sampling without replacement from the intermediate
sample is a little bit tricky. The problem is that the size of the intermediate sample is a random variable,
hence the size of the final sample in general will also be a random variable. For example, suppose the initial
plan is to draw a sample of size n, but the size of the intermediate sample is n’ < n, then the final sample
size will be n’, instead of n. However, this is less an issue in asymptotic study if n is so selected that it is
less than the size of the intermediate sample with probability one.

One place where we might meet the SAR sampling scheme is in a Serial Analysis of the Gene Expression
(SAGE) experiment (Velculescu, Zhang, Vogelstein, & Kinzler (1995); Velculescu, Zhang, Zhou, Traverso,
St. Croix, Vogelstein, & Kinzler (2000)). In a SAGE experiment, a sample of mRNA transcripts is extracted
from a tissue, transcribed into cDNA clones. Then, from a specific site of each cDNA clone, a short 10 base
long sequence (tag) is cut. This sample of tags is the original sample in the SAR scheme. It could be treated
either as a random sample drawing without replacement from the tissue (a finite population), hence has a
multivariate hypergeometnc distribution. Or, approximately, we can treat it as a multinomial sample, when
the sample size is small compared to the size of the tissue.

A certain number of cycles of PCR then are performed to amplify the original sample. The PCR procedure
could be modeled as a super critical simple type branch process. More precisely, suppose the count of tags at
cycle ¢ is X, then the count of tags at cycle i + 1 is X, i+1 = X;+ Yy, where Y;,; is a bounded nonnegative
(integer valued) random variable that depends on X;. Usually, Y;;, is thought to be a binomial variable
with parameters (X;, p), where p is called the efficiency of the PCR. 2 The sample we get after the PCR is
the intermediate sample.

Finally, the tags are linked together to form longer sequences. Among these longer sequences, those of
certain length that are suitable for sequencing are chosen (without replacement) and get sequenced. The tags
contained in the sequenced sequences are the final sample, and their counts are reported as the experimental
result, called the SAGE library.

In a SAGE experiment, probably also in other experiments where the SAR scheme is used, people are
mostly interested in the estimation of the relative frequencies of each category in the population (from which
the original sample was drawn), and whether the relative frequency of a category is constant in two or more
populations. In the next section, we shall first study the asymptotic behavior of the amplifying step. Then in
section 4, we present the main result of this paper, the asymptotic distribution of the count /relative frequency

!Starting with a single element, let X be the total number of elements obtained after the amplification, then X is the
amplification factor.
2For simplification, the mutation during PCR is ignored in this model. For a more complicated model, see Sun (1999).



Sampling, Amplifying, and Resampling

Tinajiao Chu

Abstract’

We discuss a new sampling method, sampling, amplifying, and resampling (SAR), for generating discrete
data, and derive the asymptotic distribution of the SAR sample. A new statistic for the test of association
is given, and its asymptotic distributions is derived. We compare the new model with the traditional
multinomial model, and show that the new model predicts a significantly larger variance for the SAR sample.
This implies that, when applied to the SAR sample, the tests based on the traditional model will have a
much higher type I error than expected. This new model can be applied to biological experiments involving
Polymerase Chain Reaction (PCR).

KEY WORDS: Sampling, Amplification, PCR, Asymptotic, Association

1 Introduction

In their classic work on multivariate discrete analysis, Bishop, Fienberg, and Holland (1975) discuss several
popular sampling methods that generate multivariate discrete data (contingency tables). Basically, there are
two types of sampling methods: the multinomial type, and the hypergeometric type. The multinomial type
methods again include sampling methods that could generate the following three families of distributions:
the multinomial sampling, which generates data of multinomial distributions; the Poisson sampling, which
generates data of Poisson distributions; and the negative multinomial sampling, which generate data of
negative multinomial distributions. These sampling methods are closely related to each other. For example,
among the three multinomial type methods, the joint distribution of k£ independent Poisson random variables,
conditional on their sum, is a k dimensional multinomial distribution. The multinomial distribution, on the
other hand, could be seen as the limit of the multivariate hypergeometric distribution, and is often a good
approximation for the latter when the population size is large compared to the sample size.

Of course, these are not the only distributions a multivariate discrete sample could have. But because of
the popularity of the above models, people may tend to treat any contingency table as being generated by one
of these methods, which could be problematic when the true distribution is quite different. In this paper, we
introduce a new sampling scheme, i.e., the sampling, amplifying, and resampling scheme (SAR). SAR scheme
could be found in current genetic study, where researchers use PCR (Polymerase Chain Reaction) to amplify
the original sample from a tissue, and then perform some experiment. In the following sections, we shall
illustrate the basic idea of this sampling scheme, find out the asymptotic distribution of the data generated
by this sampling scheme, present test statistics for some frequently used tests, and give the asymptotic
distributions for these statistics.



