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Abstract

In this paper, we present an efficient genetic
algorithm that searches for causal relationships in linear
systems. A Directed Acyclic Graph (DAG) coupled with an
appropriate parameterization yields a linear Structural
Equation Model (SEM). Graphs are explored based on an
evolving genetic population, with mutations, crossover, and
fit determined by a score based on the Bayesian Information
Criterion (BIC), but that varies the standard penalty
associated with the quantity of edges. The parameters of
search include: scoring method, mating behavior (e.g.
mutation rate and quantity of offspring), method of
population selection, and a small set of heuristics encoded by
Boolean variables. The settings of these parameters describe
multiple possible search strategies and can have a large effect
on performance. Multiple genetic searches with varying
parameterizations are performed on a set of simulated data.
The set of equivalent graphs with the best standard BIC
score, amongst all the searches, is returned as the search
output. On average, the genetic algorithm outperforms the
PC algorithm (Spirtes, Glymour, Scheines, 2001) on errors of
edge omission, commission, and orientation. This study
describes a few methods of guiding search, maintaining
diversity, and dealing with bias in the population. Many of
the findings should apply to discrete Bayesian Network
model selection and graph search more generally.

0. Introduction

Structural Equation Models are powerful tools used
throughout statistics, economics, and the social sciences.
SEMs facilitate efficient inferences from observations. They
allow us to answer questions regarding predictions,
interventions, and counterfactuals. The problem of searching
for the SEM that best represents the observed data is difficult
due to the quantity of directed acyclic graphs that exist for
any number of variables. In this paper, we introduce three
contributions to the current causal genetic algorithm
literature, one of which is specific to SEMs; the other two
apply to directed acyclic graph search. The SEM specific
contribution is a genetic operator that considers trimming
edges of low weight from the SEM. The second is a method
of trimming the population that is similar to a crowding
operator but that selects organisms for termination based on
both how different they are from a defined set and their
fitness. The third and most influential contribution is to keep
multiple completely independent populations, each biased
differently. The different biases have different levels of
success on graphs of different complexities and won’t
necessarily fall victim to the same local maximum traps. The
bias is primarily achieved by affecting the fitness function
while remembering the graph that would have scored the best

on the asymptotically correct Bayesian Information Criterion
approximation. The secondary influence of the bias is
achieved by setting the parameters randomly.

The structure of the paper is: First, we present a
short background on SEMs, causal search, genetic search,
and the goals one strives for in genetic algorithm
development. Second, we describe the genomic
representation that we use to represent DAGs and explain
how the functions applied to organisms work. Third, we
detail: how the main loop of the algorithm works, and how
the population is created, regulated, and maintained. Fourth,
we describe two heuristics used by the genetic algorithm.
One is the SEM specific operator mentioned above. The
other is a simple hill climb that explores the immediate local
fitness space when the algorithm thinks it is finished. Fifth,
we address the issue of - bias and discuss search
parameterization. Sixth, the effect of combining multiple
randomly parameterized searches is discussed. Seventh, the
genetic algorithm is compare to the PC algorithm on
simulated data. Finally, we speculate on improving the
performance of the algorithm in the future.

1. Background
Model Description (SEMs)

A structural equation model (SEM) is represented
by a directed acyclic graph (DAG) in which the vertices are
variables. The DAG expresses which variables are direct
causes of a given response contained within the graph. A
linear equation expresses each variable as a function of its
direct causes and a “noise” term. Linear SEMs with
variables expressed as a deviation from their mean use the
simple function Y; = bTX; + ¢;, where Y; represents response
variable Y’s value at individual i, X; represents a vector of
Y’s parents values at individual i, b represents a vector of the
linear contributions to Y of each of Y’s parents. . And g;
represents the residual or error term. For a detailed
explanation of DAGs, SEMs, and linear SEMs see (Pearl
2000, Bollen, 1989)).

Causal Search

The search space involvéd in DAG exploration is
astronomical. For a given number of variables n, there are
n(n—1) possible adjacencies that can exist in a graph. Each
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of these adjacencies can be present in a given graph or not
making the number of possible adjacency structures
n(n-1)

=22

as long as no cycles are generated in the graph. The size of

. Each of these adjacencies can then be directed



the hypothesis space can be computed using a recurrence
n(n-1)
relation (Harary, p.19) that sits between 2 2 and
n{n-1)
3 2 . Over a set of 10 variables, 4.1751E18 unique

DAGs can be constructed. In order to deal with this sizeable
hypothesis space, two basic methods have been proposed:
Constraint based search and Scoring based search.
Constraint based search (Spirtes, Glymour, Scheines, 2001)
uses  independence  relationships and  conditional
independence relationships inferred from observed data to
determine the adjacencies and then through constraint
propagation orient as much of the graph as possible. The
main advantage constraint based search algorithms offer is
their relative speed, their ability to handle latent variables,
and the availability of asymptotic consistency proofs. Their
two main draw backs are 1) that when transforming the data
into a set of independence relations, an incorrectly assigned
independence relation has the potential to propagate through
additional independence relation calculations, and 2) in cases
in which no DAG entails all and only the independence
relations judged to hold in the data, the algorithm has no way
to search for the DAG that sits “closest” to the impendence
structure judged to hold. Scoring based search has nearly the
complementary set of advantages and disadvantages.
Because proximity among DAGS, at least with respect to
small perturbations in adjacencies and/or orientation,
translates terribly into scoring proximity over DAGs, local
maxima abound and a search for the model or models with
the best “score” is hard. As a result, scoring based searches
are typically very slow.

Genetic Search

Genetic Algorithms, a subset of scoring algorithms,
search for multiple solutions simultaneously. Over time
these solutions are blended with each other and are
maintained in a population based primarily on their fitness.
The hope is that characteristics of the real model will
improve fitness and be selected for over time. All genetic
algorithms follow some sequence of decisions that can be
transformed into the following format, to mimic natural
selection.

1)  Generate initial population

2) Select a subset of the organisms from the present

population

3) Produce offspring from crossing different

organisms

4) Mutate the current population

5) Returnto2

Diversity & Evolution

For a search to perform well, it must be able to
adapt to the fitness landscape. A hill-climbing algorithm can
easily solve a landscape in which the fitness function
increases or decreases smoothly with adjacent graphs in the
search, there are no local maxima (the surface is concave),
and the fitness function favors the true model.
Unfortunately, the fitness landscape of scoring functions of
causal models is not concave. All we can realistically hope

for is that the fitness landscape is concave around the real
solution. If this is the case, all we need to do is find a
solution that is reasonably close to the real model and let hill
climbing finish the job for us once inside the concave region.
Since the models explored by the algorithm are
probabilistically determined by the current set of solutioss,
strong similarity amongst the organisms. can produce
organisms that do not differ significantly from the rest of the
population. If the current population is situated in a concave
region that does not contain the real solution, the search can
become trapped in a local maximum. To avoid this
precarious scenario, many methods of maintaining diversity
in the population have recently been attempted. Crowding,
explored by Cavicchio (1970), De Jong (1975), and Mahfoud
(1992), is one such method where organisms involved in
mating have the potential of being removed from the
population. Crowding varies based on the specifics of what
constitutes a reason for trimming a parent from the
population. Multiple sub-populations, explored by Grosso
(1985), represent several independent islands, upon each
island, the GA runs as normal while migration between the
islands is allowed but restricted. These theories derive from
the fact that search success is-dependent on two criteria that
intuitively oppose each other. Diversity instructs us to favor
selection of organisms given how different they are, while-
the fitness function will direct us towards selecting the best
models, which have likely been biasing the population for
many generations.

2. Representation & Operators
Genome

Each DAG is represented by a genome or sequence
of traits, one for each possible edge between any two
variables found in the graph. The alleles are represented by
the values of the individual traits, each trait represents an
edge’s orientation or absence from the model. For each
variable in the model, a singular value decomposition
regression calculates a regression intercept and a linear
coefficient for each of the variable’s direct causes.
Therefore, each genome/graph uniquely generates a SEM
given the observed data.

Mutation

One or more random alleles in the genome are
changed to a different random value: that is, an edge is
reoriented, removed, or added to the current model. The
number of alleles changed in a mutation is determined by the
mutation rate. The mutation rate and best mutation rate are
parameters of each search. The best mutation rate is a
measure of how much to mutate copies of the best model
(See Mating Cycle). The value to which an allele is changed
is probabilistically determined by a mutation distribution or
remove to reorient ratio. The standard distribution used if
not declared otherwise is to remove an edge 2/3 of the time
and orient with even probability the rest of the time. One
must note that the mutation operator is not closed. If the
mutated graph contains a cycle, it will be passed through the
random cycle breaking operator.



Crossover

Given two organisms, a random mask of the same
length as the genome is generated. Each organism maintains
the alleles covered by the mask; the alleles not covered are
swapped with the other organism. As with the mutation
operator, crossover is not closed and will often need to pass
its results through the random- cycle breaking operator,
described in the next subsection

Random Cycle Breaking

Given a cyclic graph, this procedure isolates cycles
and randomly removes edges, contained in those cycles, until
the graph is a DAG.

~ Scoring

The scoring function is a modification of the
Bayesian Information Criterion (BIC), an approximation of
the posterior probability of the SEM given the observed data.
The basic BIC score can be broken into two parts: A
measure of how similar the covariance matrix of the data is
to the covariance matrix implied by the model at the ML
parameter estimate, and a penalty based on how complex the
model, which in the case here is equivalent to how many
edges exist in the graph. Our modification to improve
diversity is to treat the penalty contribution as a parameter of
the search. The benefit of this modification is that searches
can be biased toward edge commission or edge omission.
The penalty ratio of a search is the main determinant of
which graphs will be considered. Anytime an organism’s
rank in the population is discussed, rank is based on the
weighted BIC approximation.

3. The Algorithm
Seeding

The initial population is seeded by an execution of
the PC algorithm (Spirtes et al, 2001, p.84), a basic constraint
based search. The PC search returns an equivalence class of
DAGs, or pattern. The algorithm produces multiple graphs
by randomly orienting all unoriented and bi-directed edges in
the equivalence class graph. If any cycles are created by the
random orientation, the graphs are passed through the
random cycle breaking filter.

Mating Cycle

The Mating Cycle represents the main loop of the
algorithm. In each mating cycle a litter of graphs is
generated. The contents of the litter are produced by a
probabilistic function of the present population given the
parameters. In each mating cycle, the structural equation
model genetic algorithm (SEMGA) will produce the litter
from as many as three sources. The primary source is
through crossover and mutation. Each mating cycle, the
algorithm selects two random individuals from the
population and mates them. Selection is based on ranking,
the probability of an organism, g, being selected for mating

in a given cycle is \/ranlc(g)+1—\/ran/<(g) . The two

{size(pop)

selected individuals produce six solutions that are added to
the current population. The six solutions are comprised of
mutations of each of the original parents, the parents once
they’ve been crossed with each other, and a mutation of a
copy of each of the post crossover graphs. The secondary
constituents of the litter are multiple mutations of the best
solution. The function of mutating the best solution is to
give the algorithm a chance to learn more about the solutions
near the best graph seen. The higher the number of mutated
copies of the best model added, the more the algorithm
behaves like a simple hill climbing algorithm. The quantity
of mutated copies produced each cycle is a parameter of
search. Finally, the heuristics will add additional organisms
to the litter when certain events happen such as when a new
best graph is found or the best has stayed the best for x
number of mating cycles. Once the litter is constructed, it is
added to the population. As each of these new organisms is
added, they expel the lowest scoring organism found in the
population, assuming the population is at its maximum size.

Population

The Population dictates which elements are
considered for selection at each mating cycle. Population
size fluctuates on a 50 mating cycle loop. At the beginning of
the loop, the population is given a maximum increase of 80
organisms. At the half loop, the population is trimmed in a
way dictated by the trimming scheme. The basic cycle is
similar to that of a natural world with seasons. In spring,
living is easy while winter selects a subset of the population
to die.

Trimming Scheme

Organisms differing by more then 300 points from
the best model are removed from the population. The
population is then decreased even further, by removing
repetitious graphs from the given population. Organisms are
trimmed based on how different they are from the set of best
scoring organisms. Each step in the loop the graph with the
least amount of difference from the set of best organisms and
the lowest score is removed from the population. The set of
best graphs grows each cycle, the best scoring graph not
removed from the population and not already in the set is
added. The score of how much an organism differs from the
set of best graphs is the product of how much the organism
differs from each individual in the set. The difference of two
individuals is simply a count of how many edges the two
graphs make different assignments for. This population
scheme is meant to intentionally clean-up potentially
stagnant environments. Many solutions very near each other
disallow competing alleles from entering the population.
Situations of stagnation are one of the main concerns
associated with some of the considered heuristics. Methods
aimed at maintaining diversity have recently been popular in
genetic search over Bayesian Networks and Decision Trees.
Trimming of this genre can be compared to natural behavior
of animals such as avoiding incest and competing violently
with other organisms of the same species.



Termination

Search generally terminates after running for 1000
mating cycles without finding a new best model. The
termination criterion can be affected by some of the
heuristics. Regardless of whether graph scores are still
increasing, search stops if the number of mating cycles
reaches 25,000.

Result Frontier

The results of each search are the set of all graphs
that scored better than all others for any possible positive
range of the penalty factor. This frontier of organisms
should range from the simplest to most complicated
reasonable explanations of the data. Each of these graphs is
then reduced to the Markov equivalence class to which it
belongs. Records of the entire frontier are retained allowing
the search to know how each explored graph would rank
using any penalty ratio.

4. Extra-Evolutionary Characteristics (Heuristics)
Fat Trimming

Fat Trimming is a heuristic that adds additional
organisms to the population every time a new best model is
found. The set of models added are a subset of all the graphs
one can construct by removing a single edge from the best
model. A graph is in the subset if and only if a 90%
confidence interval of the removed edge’s coefficient
contains 0. The trimming is meant to descend upon the
simplest model that sufficiently represents the data. The
main fault to the fat trimming algorithm is that it can pollute
the population with many graphs that are very similar to the
new best.

Aggressive Hill Climbing

Aggressive Hill Climbing is a last ditch chance to
make sure that no superior graphs can be found locally.
Aggressive Hill Climbing inserts every possible single edge
mutation of the best scoring graph. The heuristic generates
num variables * (number of variables —1) graphs, heavily
polluting the population. For this reason Aggressive Hill
Climbing is executed once a search would normally
terminate. If a better graph is found search continues
normally.

5. Parameter Choice, Resulting Bias
Parameter Choice

Parameter choice is a complicated problem.
Although the parameters exert a definite influence upon the
search, this influence is often hard to isolate due to the
probabilistic nature of the search. For this reason, optimal
values for the search parameters are impossible to calculate
with any measure of confidence. Although we can’t know
the best way to set the parameters, we can identify certain

values of the parameters as fruitless. According to previous
analysis’, the acceptable ranges for the parameters are given
here:

Mutation Ratese [ 1,4]

Lead Copiese [ 1,3]

Penalty Ratioe | 0.8,2.6]

Any combination of the heuristics

Bias

Each parameterization biases the graphs explored
by the search. Unfortunately, the magnitude and direction of
the bias is often hard or impossible to determine for specific
parameters. Mutation rates bias search if the mutation
distribution doesn’t equal the real model’s edge density. The
penalty ratio used in the modified BIC score is the only
variable whose bias upon the sample can be assumed. The
larger the penalty ratio, the simpler the set of models
considered for scoring and vice-versa. Besides the penalty
ratio, the current population is the largest bias of the search.
The only way for an allele not found in any organism in the
population to enter the population is through mutation. If the
score of the graph can’t be improved within a certain number
of mutations, search falls into a local maximum. The
propensity for an algorithm to fall into a local maximum is
dictated by the mutation rates, the number of copies made of
the best each mating cycle, and the heuristics.

6.The Master Search

The term search has been used to describe a single
execution of the SEMGA. The actual algorithm, called the
master search, executes multiple searches with random
acceptable parameterizations. From each of the searches, the
model that scores the best using the standard BIC penalty
ratio is chosen as the model selected by the search. If we had
an idea of how complicated the real model was, we could
tailor a search that would be more likely then a random
search to find the real model. We cannot know the real
model’s  complexity but we can try multiple
parameterizations, each resulting in its own search bias.
Hopefully, one of the parameterizations will produce the
proper bias. In the minimum, this search structure maintains
multiple independent populations of evolving graphs. If one
search stagnates at a local maximum, the other searches may
avoid it.

7. Results
Scoring Graph Fitness

The equivalence class returned by the master
search is compared to the equivalence class to which the real
model belongs. Equivalence classes are used because all
graphs in an equivalence class should score the same minus a
little numeric instability from the computer. Any potential

! The ranges represent the threshold at which we observe a
noticeable degradation in search performance over 3-35
variable models.



edge between two graphs can differ in four ways: (let x
denote the graph being compared to the original)
» Edge commission: edge not in equivalence class of
real model but found in x
*  Edge omission: edge found in equivalence class of
real but not in x
e  Orientation commission: edge found in both but x
orients the edge differently
¢  Orientation omission: edge found in both but x
doesn’t choose a direction while the real model has
enough information to orient the edge
The results are returned as a % of possible errors. The
quantity of possible edge commissions is equal to the number
of potential edges in the graph minus the number of edges in
the real model. The number of possible edge omissions is
equal to the number of edges in the real model. The number
of possible orientation commission and omission errors is
equal to the number of edges that the real model and best
model have in common.

Simulation

The following graph represents the results of
search on 248 simulated data files. Each of the data files
consists of 100 individual values of 10 variables produced
from the same randomly generated SEM. The searches have
been divided into 5 groups based on average indegree in
order to achieve reliable results upon averaging. The
breakdown of the groups is:

53 models with indegree ranging from 0.2-0.6
45 models with indegree ranging from 0.7-0.8
58 models with indegree ranging from 0.9-1.1
39 models with indegree ranging from 1.2-1.4
53 models with indegree ranging from 1.5-2.2
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This next set of graphs represent the results of
search ran on 138 simulated data files. Each of the data files
consists of 100 individual values of 20 variables produced
from the same randomly generated SEM. The searches have
been divided into 4 groups based on average indegree in
order to achieve reliable results upon averaging. The
breakdown of the groups is:

31 models with indegree ranging from 0.35-0.65
34 models with indegree ranging from 0.7-0.8
39 models with indegree ranging from 0.85-1.05
34 models with indegree ranging from 1.1-2.0
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The results provide strong evidence of the SEMGA
almost dominating the PC algorithm on data generated by
linear structural equation models with no latent variables.
The SEMGA produces fewer errors on average with the
exception edge commission, which is quite small for both the
PC and Genetic Algorithms.

BIC considerations

The score of the true graph model’s relation to the
frontier is important. The range in which the true model
dominates all models explored defines a region where a local
maximum was found and search stopped. Local maximum
graphs are solutions upon which search might have done
better, had it been allowed more time or diversity control.
The range of penalty ratio values where the real model is
dominated by some other model defines a range where the
solution will not asymptotically converge to the correct
solution.

9. Future Work

The plans for the SEMGA’s future are threefold:
First, the search should extended to cyclic graphs and graphs
that contain latent variables. Second, new genomic
representations are being considered. There is a chance that
a representation of a causal ordering mapped over an
adjacency structure may encode the data better, allowing for
more intelligent crossover and mutation. This representation
has been used frequently in Bayesian Network structure
learning (deCampos). Third, the algorithm should evolve
over time. For example the density of the mutation operator
could reflect the solutions we’ve already seen. The frontier
of best solutions contains reasonable estimates of the hardest
to break dependence relations and most complicated
generalizations the algorithm might need to explore. These
features may offer insights into a better mutation function
density or may be able to reduce the size of the search space
by assuming certain traits as truths and others as
impossibilities.
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