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Abstract

In recent work, tableau-based model generation calculi have been used
as computational models of the reasoning processes involved in utterance
interpretation. In this linguistic application of an inference technique that
was originally developed for automated theorem proving, natural language
understanding is treated as a process of generating Herbrand models for
the logical form of an utterance in a discourse. This approach captures
anbiguity by generating multiple models for input logical forms.

In this paper we apply the model generation approach to a particular
case of ambiguity: the interpretation of negated sentences. Using model
generation, we will demonstrate how the various possible readings of sim-
ple negated sentences are generated, and by what criteria an interpreter
chooses among these possibilities. Our investigation of negated sentences
will lead us to propose constraints on the model generation system which,
we will suggest, represent broadly applicable principles of interpretation.

1 Introduction

The interpretation of natural language utterances minimally involves two dis-
tinct, if interrelated, processes. One of these processes is semantic composition,
which is driven by purely linguistic knowledge. The other is a process of rea-
soning from the output of the semantic composition to a conclusion as to the
speaker/writer’s communicative intent.! Perhaps the clearest cases in which
there is a gap between compositional meaning and communicative intent are
those involving indirection, as in the case of, say, relevance implicatures. How-
ever, even the most apparently straightforward uses of language involve utter-
ances whose interpretation is underdetermined by semantic content, even when
issues of context dependency, and lexical and structural ambiguity, have been
resolved. Utterances containing nominal anaphors are a very familiar example

IThere is a great deal of debate, particularly in the more recent literature, as to where
semantic composition ends and inferential processes begin. For simplicity, we adopt here a
very conservative position, assuming that the output of semantic composition is a complete
proposition. However, other views are compatible with the framework which we develop.



of this underdetermination. To interpret such utterances, a hearer must reason
(perhaps implicitly) about which possible antecedent is most likely to be the
intended one.

In recent work, tableau-based model generation calculi have been used as
computational models of the reasoning processes involved in utterance interpre-
tation (see [BK0O, GKO00, Kon00, KK01]). Model Generation is an inference
procedure developed in the field of automated reasoning to solve the problem
of finding a Herbrand model satisfying a given set of formulas of predicate
logic. In the linguistic application, natural language understanding is treated
as a process of generating models for the logical forms of utterances in a dis-
course. The system is applied to particular advantage in those cases where
multiple interpretations are compatible with the semantically determined logi-
cal form of an utterance, as in the case of utterances containing anaphors with
multiple possible antecedents. But there are many other cases in which the
semantic content (logical form) of an utterance is compatible with multiple pos-
sible interpretations, or models. The goal of this paper is to apply the model
generation approach to a central case: the interpretation of negated sentences.
Using model generation, we will demonstrate how the various possible readings
of simple negated sentences are generated, and by what criteria an interpreter
chooses among these possibilities.

The paper builds on [KKO01], which refines the general model generation
idea by introducing resource constraints and salience marking into the model
generation process. These constraints improve the plausibility of the system as a
cognitive model of sentence processing. Our investigation of negated sentences
will lead us to propose further constraints which, we will suggest, represent
broadly applicable principles of interpretation.

1.1 Semantic Underdetermination in Negated Sentences

Consider the various models which are compatible with the truth conditions of
the simple negated sentence:

(1) John didn’t run.

One compatible model is one in which John does nothing and nobody runs.
A model in which running events take place may also be compatible with the
truth conditions of the sentence, as long as John is not the agent of any of
these events. Similarly, we can construct a compatible model in which John
does something, as long as he does not run. Each of these models represents
a possible interpretation of the sentence. Thus, the first task we face is to
ensure that our model generation calculus has the potential to generate all of
these models from the input logical form. The second task is to predict which
interpretation the sentence will receive in particular situations of utterance.
There are two factors which clearly constrain the choice of interpretation:
discourse context, and focal stress. Discourse context constrains the choice
because information already given, or information given in following utterances,



is often simply incompatible with one or more of the potential interpretations.
For example, suppose an interpreter is faced with one of the following sequences:

(2) John didn’t run. Bill did.
(3) Bill ran. John didn’t run.

In both cases, the interpreter clearly cannot select as a model for the negated
sentence one in which no running events take place, as this is inconsistent with
the information that Bill ran. This type of constraint is dealt with rather
straightforwardly in the model generation framework, as we will show below in
Section 3.2.

The effects of focal stress provide an interesting test for our account. As is
well known, negation and focus interact, with negation tending to “associate”
with focused constituents. If our sentence (1) is uttered with heavy stress on
the subject John, the preferred reading for the sentence is that John did not
run, but someone else did. If stress falls on the verb, the preferred reading is
that John did something other than run. Intonation and discourse context, of
course, interact. In the sequence (2), our target sentence is most likely to be
uttered with stress on John, while in (4), below, stress would probably fall on
the verb.

(4) John didn’t run. He gambolled.

While we do not attempt here any general account of focus, we will offer an
analysis of the interaction of focus with sentential negation.

Discourse context and focal stress are two observable factors which constrain
the choice of interpretation of a negated sentence. But there appear to be addi-
tional factors which constrain this choice. In certain cases, a negated sentence
has a default, or preferred, reading, even when presented in the absence of con-
text and with no focal stress — admittedly, a rather artifical case. One such set
of cases are sentences containing an optional argument, such as:

(5) John didn’t vote for Nader.

The default interpretation of this sentence is that John voted, but not for Nader,
although the sentence also allows for an interpretation in which John did not
vote at all. The question is why one of the available interpretations should be
preferred. In the model generation framework, this question can be framed as
a question about the quality of models: Given two models for a given input
formula, what criteria determine whether one model is better than the other?
Consideration of this question, in light of intuitions about default readings of
negated sentences, will lead us to formulate some general principles of interpre-
tation (Section 4).

1.2 Event semantics

In our treatment, we adopt an event-based semantics ([Dav67, Par90]). We con-
clude our introductory section with a brief review of the assumptions involved.



The fundamental idea of an event-based semantics is that verbs are predi-
cates of events or states. A verb contributes to the logical form of a sentence
containing it a predicate with a free variable over events as its argument. Ver-
bal modifiers introduce further restrictions on the event variable, while NPs in
argument position identify the participants of the event. In the absence of other
sources of event quantification (such as adverbs of quantification or generic oper-
ators), the free event variable is existentially bound. Thus, the simple sentence
John ran is assigned the logical form below. (Here and throughout, we ignore
the contribution of tense.)

Je.r(e) A ag(e,j)

It will be useful to have a term for the predicate-argument elements in these
logical forms. Following [Par90], let us call these subatomic formulae or just
subatoms.

The two-place predicate ag denotes the agent relation between an individ-
ual and an event. In the formula above, it identifies John as the agent of a
running event. All thematic roles are represented by such two-place predicates.
Additional roles include: theme; goal; benefactive; instrument; experiencer.?

Our event-semantic representations will deviate from standard ones in one
way. For the sake of consistency, we prefer that all subatomic formulae contain
2-place predicates. Hence, instead of treating verbs as one-place predicates over
events, we assume that verbs introduce a two-place event-type predicate, ty,
which takes as arguments a variable over events and an event-type. We thus
represent the logical form of John ran as follows.

Je.ty(e,r) A ag(e, )

With these preliminaries in place, we turn to a fuller explanation of the
model generation system.

2 Model Generation with First-Order Tableaux

In this section we will briefly review the state of the art in tableau-based model
generation calculi and the calculus RAMG, which we will employ in our analysis.

First-order tableaux were originally used as data structures in refutation-
based procedures for automated theorem proving. There a theorem is proved
by decomposing its negation into a tree of possible instantiations (the tableau).
Each branch in this tree corresponds to a possible model of the formula at the
root, so if all branches are closed (inconsistent), the root formula is unsatisfiable,
and the theorem is valid. Conversely, model generation procedures [MBSS,
LP93, FL96, Bau98, Pel99] build a tableau for the root formula and analyze the
open branches as possible models, showing that it is indeed satisfiable.

2The question of whether it is either possible or useful to provide an exhaustive and defini-
tive characterization of possible thematic roles is undecided. We adopt only the weak assump-
tion that events have participants, that different participants have different types of roles, and
that this can be represented as it is here. We do not place much theoretical weight on the
particular thematic role assignment of NPs.



The two inference procedures mainly differ in strategy and share both the
underlying data structure (the tableau) and the propositional rules in Figure 1.
These inference rules act on tableaux have to be read read as follows: if the
formulae over the line appear in a tableau branch, then the branch can be
extended by the formulae or branches below the line. The rules in Figure 1
consist of two rules for each primary connective®, and a branch closing rule
that adds the special symbol L (for unsatisfiability) to a branch. We will call a
branch closed, iff it contains 1, and open otherwise.

A —-A
AANB -(A AB)
a W T Ay Ay,
B -A | -B L 1L

Figure 1: Propositional Tableau Rules

Model generation uses the quantifier rules in Figure 2 below, which are
well-suited to the first-order logic without function symbols that we consider in
this paper. The RM(V) rule tests the scope on all members of the Herbrand
universe H of the current branch; it must be applied exhaustively to obtain a
saturated branch. The RM(3) rule reuses constants that occur in the current
branch and alternatively introduces a new constant c®**. Note that in contrast
to other automated reasoning procedures, these rules do not use Skolemization
and unification, so that no function symbols are re-introduced and models can
remain finite. In addition, model generation normally assumes a kind of unique
name assumption called Herbrand equality: two individual constants are equal
iff they are identical. Consequently, a branch can be closed (extended by 1) if
it contains a literal ¢ = d.

VX.A H={al,...,a"}

RM(Y)
[a/X]A
a”/X]A
~(VX.A) H={d,...,a"} R
~(a/X)A) | ... | ~(la"/X]A) | ~((e*/x]A)

Figure 2: Quantifier rules for model generation (RM)

3We have only shown those for (positive and negative) negations and conjunctions. The
other connectives are defined in terms A and — as usual, and the obvious inference rules can
be obtained as derived rules using these definitions; we will use them in our examples without
mention.



Definition 2.1 (Model Generation with RM) The model generation cal-
culus RM consists of the propositional tableau rules (see Figure 1) and the
model generation rules for the quantifiers (see Figure 2).

We will call (a branch in) a tableau saturated, iff no rule application to one
of its nodes yields new formulae.

Note that the tableau expansion rules in RM are essentially deterministic:
It is a fair strategy to apply the propositional rules and the rule 7(3) only to the
leaves of a tableau, and the rule 7(L), whenever possible. But when extending
the Herbrand universe of a branch by ¢™¥, all RM (V) must be re-instantiated
with respect to ¢™¢*. It is a crucial observation that with this strategy, we only
have to maintain one tableau, and do not need to consider multiple tableaux
for completeness.

The RM model generation calculus was originally developed for a certain
form of non-monotonic reasoning called minimal entailment [Lor94]. RM is
a refutation complete first-order tableau calculus where each open saturated
branch corresponds a so-called Herbrand model, i.e. a first-order model where
the universe of discourse is the set of first-order terms without variables (in this
case individual constants). In Herbrand models the valuation function can be
represented by a set of literals (atomic propositions possibly with a negation).
In this sense, open saturated tableau branches are Herbrand models of the input
formula.

[Lor94] proves that RM is complete for finite satisfiability, i.e. RM is a de-
cision procedure for theories that either are unsatisfiable or have a finite model.
Additionally, RM is complete for finite minimal models that also are domain-
minimal: if a theory is finitely satisfiable, then one of the models generated by
RM will be minimal with the smallest possible universe.

2.1 Resource-Adaptive Model Generation

[KKO1] refines the general model-generation idea by introducing resource con-
straints and saliences into the model generation process improving both its
computational behavior and its cognitive plausibility. Resource bounds on the
inference process serve as an upper bound for the permitted computational com-
plexity (introducing incompleteness but avoiding combinatorial explosion) and
also alleviate the omniscience problem induced by unbounded computation. As-
sociating saliences with objects allows ordering and restriction of the universe
of individuals and eliminates another source of computational complexity.

We will use the RAMG calculus (Resource-Adaptive Model Generation)
from [KKO01] as a computational model in this paper. The details of salience
assignment will not, however, play any central role in our discussion, so, for
simplicity, we omit this from our review of the calculus. In a more detailed,
quantitative version of the analyses we offer, salience considerations must be
taken into account in the calculus, since they are relevant to the calculation of
processing cost and model quality. We will allude to these interactions where
they play a role as we go along.



Definition 2.2 (RAMG: Resource-Adaptive Model Generation) The cal-
culus RAMG consists of the propositional rules in Figure 1 augmented with the
rules in Figure 3.

The RAMG existential quantification rule introduces a new witness constant,
instead of making a case distinction as does the RM(3) rule from RM. This
does not affect theoretical completeness, since w™¥ € W and thus we can apply
R(id) followed by R(=) (repeatedly in the right branch) to the result to obtain
the branches of RM(3). The difference is that R(J) allows a finer-grained
modeling of the reasoning processes.

VX.A aE’HR(v) ~(VX.A) wmev ¢”HR(3)
[a/X]A —([w™*/X]A)
: a€W, beH e
b/alA R(=) — R(refl)
a,beH Rid) a=5b a,bGUR( |
a=bla#b 4 e

Figure 3: RAMG rules

The RAMG calculus differs from RM in that it does not have a built-in
unique name assumption: RM does not have to treat equality, since the un-
derlying Herbrand semantics regards different constants as necessarily different.
In RAMG, we partition the Herbrand base % = I/ U W into subsets ¥/ for
constants with a unique name assumption, and W without (the new witness
constants w"** from R(3) end up here). In addition, RAMG adds explicit
rules for treatment of equality in a tableau. Note that the R(=) rule (Figure 3)
is directional; it only allows substitution for a constant without the unique name
assumption. Finally, R(una) mechanizes the unique name assumption by allow-
ing a branch to close if two different constants with unique names are claimed
to be equal. As a consequence of the introduction of equality into the calculus,
the notion of an Herbrand model has to be generalized to that of a canonical
model, i.e. a model where the universe is a set of equivalence classes of closed
first-order terms. As these models can also be represented by the set of literals
on a branch, this change of semantics does not affect our use of model generation
as an inference procedure (See [Fit90] for details).



2.2 A Tableau Machine for Model Generation

Note that in contrast to the RM calculus, RAMG is no longer deterministic,
i.e. tableau expansion can no longer be governed by a simple strategy that
only employs one tableau. In particular the rule R(id) can be applied at any
point and is indeterministic in the choice of constants to equate. In order to
avoid losing completeness, we need to look at all the generated tableaux in
parallel. To accommodate this we employ the notion of a tableau machine,
that encapsulates a set of tableaux that represent the current state of the model
generation, including relevant subgoals, and an account of the resources available
for the computation. This encapsulation also makes it simpler to describe the
non-local control mechanisms that we will introduce as analysis principles in
the next sections.

We will use the tableau machine as a cognitive model for discourse under-
standing. We treat this as an online process that receives as input the logical
forms of the sentences of the discourse one by one, and maintains a tableau that
represents the current set of alternative models for the discourse. Since we are
interested in the internal state of the machine (the current tableau), we do not
specify the output of the tableau machine. We also assume that the tableau
machine has a mechanism for choosing a preferred model from a set of open
branches and that it maintains a set of deferred branches that can be re-visited,
if extension of the the preferred model fails.

Upon input, the tableau machine will append the given logical form as a
leaf to the preferred branch. (We will mark input logical forms in our tableaux
by enclosing them in a box.) The machine then saturates the current tableau
branch until some termination criterion is met — typically until the costs of all
possible rule applications outweigh the expected gain in model quality — thereby
partially exploring the set of possible models for the sequence of input sentences.
If the subtableau generated by this saturation process contains open branches,
then the machine chooses one of them as the preferred model, marks some of the
other open branches as deferred, and waits for further input. If the saturation
yields a closed sub-tableau, then the machine backtracks, i.e. selects a new
preferred branch from the deferred ones, appends the input logical form to it,
saturates, and tries to choose a preferred branch. Backtracking is repeated until
successful, or until some termination criterion is met, in which case discourse
processing fails altogether.

The tableau machine we use allows us to make use of derived rules of infer-
ence, i.e. rules that are not theoretically necessary in the calculus, since their
effect can also be achieved by the other rules. In particular, we will use the
derived rules shown in Figure 4 in our analysis. The first rule introduces a case
distinction over an arbitrary formula by appealing to the law of the excluded
middle (“tertium non datur”). This is called a “cut” rule in [Fit90]. Since
this rule can be invoked anywhere in the computation, it has to be controlled
explicitly by the tableau machine. The rule R(=) encapsulates a very com-
mon reasoning pattern often called chaining, which combines existential and
universal reasoning. In the tableau machine, such rules can be given resource



constraints different from the original rules they replace. Thus certain inferences
can be penalized or rewarded, leading to a cognitively more adequate model of
the derivation. In the particular case, an application of the rule R(=>) con-
sumes far fewer resources than the equivalent primitive applications of R(T),
R(Y), and T(V).

VXLAl = VX" A? = 3YB
Al(a)

R(tnd)

A"(ali,'. .,am) cgH R(=)
[/ X%, c/Y]|B A | -A

Figure 4: The chaining rule

3 Using Model Generation to Derive Possible
Readings

We now have in place the systems that we will use for developing our account,
and can begin the analysis itself. In this section, we develop the basic strategy
for interpreting negated sentences in the model generation framework. In order
avoid compounding issues, we will here show only how the RAMG calculus can
be used to generate the range of possible readings for negated sentences. We
will leave the discussion of how to control the search for models and how to
determine preferred readings for section 4. We will begin by building a tableau
for our original simple sentence “John didn’t run” in isolation. Then we consider
in turn the effects of context (in 3.2) and focus (3.3). We will then deal with
some issues arising from more complex sentences in section 3.4

3.1 Model Generation in a Simple Case

We assign to our input sentence John didn’t run (see 1) the logical form

(6) - —dety(e,r) Aagle,))

This logical form represents the simplest possible assumption about the seman-
tics of negation: it is treated as a sentential operator with wide scope. Now,
if we push the negation inside the quantifier, we see that what we are actually
dealing with is a universal statement:

(7) Ve-_‘ty(e: r) \ _‘ag(eaj)

We assume that universals are unhelpful input for the model generation sys-
tem. Since universally quantified variables can be instantiated with any salient



object, applications of 7(V) are costly. (For further discussion of this issue, see
section 4.1). In order to proceed, we make use of the fact that this universal
statement is propositionally equivalent to:

(8) Ve.ty(e,r) = —ag(e,])

Now, recall that in a first-order formula of the form Vz.p(z) = B or 3z.p(z)AB,
we can consider the predicate p to be the sortal restriction on the bound variable
z. In our example (8), the restriction p corresponds to being a running event,
which we can represent by slightly extending the formalism into a Montagovian
setting as p = Ae.ty(e,r). We now proceed by using the R(tnd) rule to make
a case distinction on whether the restriction of the quantification is non-empty.
This case distinction gives rise to the following RAMG tableau:

| Vemty(e, ) v ~ag(e, ) |
Je.ty(e,r) | =3Je.ty(e,r)
(9) ty(](‘, r)) Ve.~ty(e,r)
—ag(f,]
i [b]

On the left branch we have applied the rule 7(3) introducing a new event f,
which can then be used to chain with the original input formula (recall that it is
equivalent to (8)) using the chaining rule in Figure 4. In the right branch we have
only re-formulated the negative existential formula as a universal quantification.

Of course, our choice of the restrictor p = Ae.ty(e, r) was completely arbitrary
in the somewhat marked situation assumed, where we have no context or focal
stress. So we should also consider the other possible choice for a restrictor:
p = Xe.ag(e,]). This leads to the RAMG tableau in (10):

[Ve.ty(e,r) v ag(e,)) |
Je. ,' —Je. J.
1) A

-ty(f, 1)

Thus we have a total of four open branches in the two tableaux (9) and (10),
giving us four models, which represent the following states of affairs:

(11)  a. There is a running event f, but John is not the agent. (“Someone
else ran.”)

b. There is no running event at all. (“Nobody ran.”)

There is an event f of which John is the agent, but which is not a
running event. (“John did something else.”)

d. There is no event of which John is the agent. (“John did nothing.”)

The first two models come from tableau (9) and the second two from (10).
Note that the inference that someone else ran in the glossing of (11a) is derived

10



from the assumption that every running event has an agent, and that John did
something else in (11c) from the fact that every event has a type. (We discuss
this issue more thoroughly in section 4.3.)

By examining this sentence in isolation, we have demonstrated the basic
problem for interpreting negated sentences, and the strategy which we will use to
resolve it. The basic problem is that negations are only minimally informative.
But the goal of the interpreter is to maximize informativity, to use the content
of the utterance to extend her model. What an interpreter must do, then, is to
decide which elements of the input can be treated as given, and thus (in effect)
as falling outside the scope of the negation. This is what we represent by the
technical move of invoking a case distinction.

3.2 The simple sentence in context

Note that when we instantiated the existential in the left branch of (9), we
introduced a new event, thus implicitly assuming that there were no salient
running events in the branch above. Suppose, however, that there were such a
salient event, as there would be if the previous utterance were the sentence Bob
ran. This would give us the following tableau.

’ Je.ty(e,r) A ag(e,m
ty(g,r) A ag(g, b)
tygg, [r)))
ag(y,
1) [Vemty(e,r) v —agle.)|
—ty(g,r) V —ag(g, j)
ﬂtyig, r) ‘ —ag(g,])

Note that here the presence of the salient running event g allows for the
cheap application of 7(V), and so eliminates the need for a case distinction.
The result is a tableau with only one open branch, corresponding to a model in
which there is a single running event of which Bob but not John is the agent.
Alternatively, we could do the case distinction anyway, which would give us the
following tableau:

Ele.ty(e, r) A ag(e,b) I
ty(g,r) A ag(g,b)

ty(g,r)
ag(g,b)
(13) Iie.—wty(e, r) V —ag(e,]) ‘
Je.ty(e,r) —Je.ty(e,r)

ty(g,1) | ty(frew,r) | Ve.sty(e,r)
—ag(9,J) | ~ag(fnew,]) ﬂtyig,r)

11



This development makes a finer distinction on the running events than the
tableau above. Going from left to right, the two open branches correspond to
the following two models:

(14)  a. The running event which has Bob as agent does not also have John
as agent. (“John did not run with Bob.” )

b. There were two running events (9 and frew), and John was not the
agent of fnew. (“Somebody other than John ran, but not with Bob”)

We will return to the interpretation of this sentence, and the choice between
these two strategies, in section 4.2, where we discuss mechanisms for controlling
the model generation system.

3.3 The simple sentence with focal stress

As already noted, the sentence John didn’t run would not only normally occur
in some discourse context, as illustrated in the previous section, but would also
usually bear some phonological marking of focus. The presence of focal stress
has a quite straightforward effect: it constrains the possible interpretations of
the negated sentence.’ Thus, the sentence:

(15)  JOHN didn’t run.

is naturally interpreted as saying that someone ran, but not John. (Here and
throughout, we use capitals to indicate focal stress.) In contrast, the sentence:

(16)  John didn’t RUN.

is naturally interpreted as saying that John did something other than run. Recall
that in our initial discussion of this example, we generated models representing
each of these readings, each model produced by a different case distinction.
The fact that the presence of focal stress forces a choice between these two
possible readings suggests a straightforward way of modeling its effect: focus
controls the choice of material for the case distinction. Specifically, where a
negated sentence contains focal stress, all nonfocused material is taken to be in
the restriction of the quantifier. Whatever is focused may not be incorporated
into the restriction. Thus, where focus falls on the subject NP, we can generate

4Note that this interpretation presupposes a framework where events can have multiple
agents (or contain plural objects). Since we are concerned here with the computation of
meaning and not with the structure of events, but on the computation of meaning, we will
take the liberty of making such assumptions as needed.

50n some views, it is assumed that all sentences have semantic focus, even in the absence
of focal stress. We do not wish to enter into this debate, as it is tangential to our purposes.
Our proposal predicts that if in fact all sentences are marked for focus, then focal constraints
are always in effect. In the absence of focal stress (and indeed, sometimes even when it is
present, as the position of focal stress does not usually fix the extent of focus marking) we
predict multiple ambiguity which, in our framework, will turn out to be equivalent to the
absence of focus.

12



only tableau (9) above, where the case distinction is performed on the existence
of a running event. This gives rise to a model in which someone other than
John ran. Where focus falls on the verb, we can generate only tableau (10),
where the case distinction is performed on the existence of an event with John
as agent. This gives rise to a model in which John did something other than
run. (Each of these case distinctions also gives rise to a second model, which
- represents a dispreferred reading of the sentence. We return in section 4 to the
choice between these models.)

Finally, consider the interpretation of the same sentence with focal stress on
negation:

(17)  John DIDN’T run.

Following the strategy just outlined, the interpretation of this sentence produces
the following tableau:

’Ve —ty(e,r) V —ag(e _j)l
Je.ty(e,r) Aagle,)) | ~Fe-ty(e,r) Aagle,))

(18) ty(f,r)
ag(f,j)
_'tY(f’ I’) _'ag(f:.j)
il 1

In this case, focus forces the content of both subject and predicate into the
case distinction, resulting in a computation which is vacuous, in that it gives
back the very information with which we started. This, however, is consistent
with the intuitive reading of the sentence: focus on negation results in a sentence
which tells us that John was not the agent of any running event, but seems
to commit the speaker neither to the existence of a running event with some
other agent, nor to the existence of some other contextually relevant event with
John as agent. The relatively uninformativity of such an utterance perhaps
explains why this type of utterance normally occurs only as a denial of a previous
assertion.

This proposed treatment of focus is inspired by Elena Herberger’s proposal
in [Her00], and may indeed be seen as a computational implementation of it. In
that work, too, focus is treated within an event semantics. The central idea is
that the interpretation of focused sentences can be derived by incorporating the
non-focused material in a sentence into the restrictor of the event quantifier. In
the case of negated sentences, this has the effect of allowing non-focused material
to escape from the scope of negation, an effect which we achieve through the
device of the case distinction.

Herburger argues further that her proposal illuminates the intuition that
non-focused material in a sentence is “backgrounded” or “presupposed.” For
her, this fact about non-focused material reduces to the more general phe-
nomenon of backgrounding of material in the restriction of a quantifier. In our
view, the model generation framework provides an intuitive way of understand-
ing this fact, at least as far as universal quantification is concerned. As we will

13



discuss further below (section 4.1), universal quantifications are informationally
weak. Faced with such a weak input, the interpreter looks for ways of strength-
ening the informational content. One way to do this is to treat some of the
information represented in the quantificational input as given, as background
information relative to which the quantificational statement is to be evaluated.
This is what is represented by the (positive branch of) the case distinction. The
model constructed in this branch represents the inferences which can be drawn
on the basis of the quantificational input, given the material in the restrictor
as an additional assumed premise. Thus, the initial statement in the affirma-
tive branch of the case distinction—which corresponds to the material which
Herburger would add to the restrictor of the implicit quantifier—intuitively
represents material which the interpreter uses as background in interpreting the
utterance.

As one final remark, note that Herburger actually requires a second mech-
anism to derive the various readings of negated sentences, namely, scopal am-
biguity of negation. In her account, negation sometimes has wide scope, but
sometimes attaches to one or another subatom. Our treatment appears to have
the advantage of achieving similar results without positing such an ambiguity.
However, Herburger covers a variety of cases with more complex quantifica-
tional structure than we discuss here, so we do not claim in the least to have
presented a complete comparison of the two approaches. Indeed, we do not
claim here to have developed a novel theory of focus, but rather to have shown
that our model-generation approach is sufficiently flexible and general to incor-
porate existing ideas about focus in a very natural way. The approach has the
further advantage of enabling us to compute the predictions of the analysis and
to test them against linguistic data.

3.4 John didn’t vote for Nader

In the above analysis for John did not run, the model generation process was
driven by a case distinction on the emptiness of the restriction on the universal
event quantifier. However, in the discussion we glossed over the question of
what actually constitutes the restriction, simply assuming that it must be one
or the other of the two subatoms of the input formula. However, in addition to
the equivalences noted above, the formula in (7) is also equivalent to

Ve.T = (—ty(e,r) V magle,j)) or Ve.(ty(e,r) Aagle,j)) = T

So we could also have taken the restriction p to be either Ae.T or Az.ty(e,r) A
ag(e,]j). Each of these choices would have given us different case distinctions.
Generalizing this point, wherever we have a sentence whose logical form has
the structure Ve.mp;(e) V ...V —p,(z), any subset of the disjuncts p;(e) can in
principle be treated as the restriction.

We address this problem by assuming that the strongest restriction which
produces reasonable models is always preferred. Hence, we work from the
strongest restriction (incorporating all subatoms) to weaker ones. Note that
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a case distinction with the very strongest restriction does not make sense com-
putationally, as we would end up with the following (redundant) tableau (in
fact we have already seen an instance of this in tableau (18)):

de.A | =3Je. A
1

Consequently, we can always start with the strongest-but-one restriction (ex-
cept, as noted above, where the strongest restriction is forced on us by focal
stress on negation). This is exactly what we did in the last section, where we
only had two sub-atoms. We did not need to look at the weakest restriction
(corresponding to the empty subset of sub-atoms), since this would only have
given rise to another model that did not have any events (which is unlikely in
any situation).

To get a feeling for the procedure, let us now turn to our modification ex-
ample, repeated below:

(19)  John didn’t vote for Nader.
The logical form of this sentence has three sub-atoms:
(20) Ve.~ty(e,v) V —ag(e,j) V —ben(e, n)

"The principle of working from the strongest reasonable restriction still leaves
us with three possibilities for the case distinction, each of which would give rise
to a different set of possible readings. All of the readings which would arise are
possible readings, and all are readings which could be enforced by introducing
focal stress. In the absence of focal stress, other factors may conspire to fix a
preferred case distinction. In our example, it is clear that the optional argument
is the best candidate to be dropped. This is presumably a consequence of the
syntactic structure itself. It is reasonable for an interpreter to infer that if
the speaker has gone to the effort of including in her utterance a syntactically
optional element, then the content of that element should not be backgrounded,
as a first choice of interpretation.®

The tableau which results from this choice of restriction for sentence (19)
is given below. Note that in constructing this tableau, we repeat the process
of performing case distinctions in the process of expanding the right branch,
because here too the initial formula is a universal quantification.

lVe.—'ty(e,v) V —ag(e,j) V —ben(e, n)—|
Je-ty(e,v) Aagle,j) | Ve.mty(e,v) V mage, )

(21) ty(f,v) Je.ty(e,v) | —Je.ty(e,v)
ag(f,j) ty(g,v)
~ben(f,n) —ag(g, J)

8Ultimately, we would like to say more about the factors affecting the choice of the case
distinction, including such syntactic considerations.
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In branch a we have chained with the input formula to populate the branch after
introducing the witness event f, in branch b with the case restriction formula.
Thus we end up with three models:

(22) a. “John voted but not for Nader.”
b. “Someone voted, but not John.”
c. “Nobody voted.”

It should be observed here that the middle model, b. does not, as it stands,
represent an actual reading of the sentence. We return to this issue in 4.3.

So far, we have considered the interpretation of this sentence in the absence
of any focal stress. Consider now the effect of focal stress on John. We assume,
as before, that all nonfocused material is incorporated into the restriction, while
what is focused is left out. This requires us to perform the case distinction on
the formula:

(23) Je.ty(e,v) A ben(e, n)

And this gives us the following tableau:

lVe.ﬂty(e,v) V —ag(e,j) V —ben(e, n) 1
Je.ty(e,v) A ben(e,n) | Ye.-ty(e,v) V —ben(e,n)

(24) ty(f,v) Je.ty(e,v) | —Je.ty(e,v)
ben(f,n) ty(g,v)
—ag(f,J) —ben(g, n)

The leftmost branch gives us a model in which someone voted for Nader, but
not John. This corresponds to the most salient reading of the sentence, given
the assumed focal stress. What we must now do is provide an explanation in
terms of the model generation system as to why this model should be preferred
as an interpretation over the others in the tableau. The same question arises,
mutatis mutandis, for all of the other tableaux which we have generated. It is
to this question that we turn in the next section.

4 Controlling RAMG and Selecting Models

In the previous section we demonstrated the basic mechanism for generating
the range of possible readings of negated sentences, and also showed two ways
in which this range can be restricted: by contextual information, and by focus.
In this section, we address further the issue of controlling the model generation
process and of determining a preference ordering among the tableau branches.
This preference ordering will give us predictions as to preferred readings. The
work of controlling generation and of ordering models will be done by two gen-
eral principles: the Full Representation Principle and the Safe Commitment
Principle. The principles are, of course, formulated in model generation terms.
However, we conceive of them as general principles of interpretation, whose im-
plementation in this framework increases its viability as a cognitive model of
discourse understanding.
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4.1 Universals and the Full Representation Principle

A crucial assumption in our treatment of all of the examples is that their logical
forms are those of universal quantifications over events, and that such quantifi-
cations induce case distinctions, that is, applications of R(tnd). We want here
to justify that assumption.

Generally in RAMG, universal quantification poses a control problem. In a
situation where there are no individuals that are much more salient than the
rest, it is unclear whether it is better to continue tableau expansion or to stop
with the current state, given that the computational resources are bounded.
Instantiating universal quantifiers with non-salient individuals is expensive, and
therefore dispreferred. Moreover, if there are many salient individuals, then the
sum of the (lesser costs) of instantiation may be prohibitive.” This is especially
problematic for quantification over events, as there are typically many of these
around. Hence, it would be highly dispreferred to proceed in this situation by
applying 7 (V).

But what prevents us from simply stopping the model generation with the
universal statement itself? The intuitive idea is that there is something highly
unsatisfactory about stopping the model generation without extracting some
information from the content which is explicitly represented in the input sen-
tence. In informal terms, we can put it like this: A hearer will recognize that
the speaker has gone to the effort of saying something about John, about his
possible role as agent in an event of a particular kind, and so on. Consequently,
she expects to extract from what has been said some information about John,
some information about the agent of this kind of event, and so on. Extracting
information, in model generation terms, is a matter of extending the model. We
express the idea in the following principle:

Principle 4.1 (Full Representation)
Interpretations which mazimize the contribution of information explicitly real-
ized in the input are preferred.

We intentionally formulate this principle in very broad terms, since we claim
that its application goes beyond the use we make of it here. However, we can
interpret it more precisely in the context of our model-generation approach.

Our initial assumption is that what counts as explicitly realized information
in the input is at least that information represented by non-logical constants. At
this point, we treat all such information as equivalent, allowing for the possibility
that further investigation will show that Full Representation is more sensitive
to the inclusion of some types of information than others. The more difficult
question is what counts as a non-trivial contribution to the extension of the
model. It is crucial to our understanding of this principle that the quality of
model extensions is graded: some extensions are better than others. The best

7As noted in section 2, the model generation framework presented here can be enhanced
with explicit marking of salience. To make these claims about processing costs more precise
we would need to incorporate this marking, see [KKO01] for details.
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kind of contribution information can make is to result in extension of the model
with a new literal. This is the most informative kind of extension possible®.
Extension with a disjunction of literals is less good (because less informative),
but this is still better than extension with a universally quantified formula.

Our Full Representation Principle is intentionally reminiscent of Chomsky’s
Principle of Full Interpretation [Cho86, Cho95], which disallows superfluous
symbols in representations at any level, from PF (phonetic form) to LF (logical
form). Applied to the syntactic level of LF, it requires that every LF element
have a non-vacuous role in the final interpretation of the syntactic representa-
tion. Chomsky’s discussion of the principle makes clear that one of its intended
consequences is to rule out the possibility of interpretations which ignore syntac-
tically represented elements — at least, those elements represented at LF. Thus,
Full Interpretation is to rule out vacuous quantification, and also to ensure that
in a sentence such as John left town at noon, at noon is predicated of some
element [Cho86]. Our principle of Full Representation is a natura) extension of
Full Interpretation. Full Interpretation, in one sense, serves to guarantee that
no information is lost in the move from (syntactic) LF to the semantic repre-
sentation. Full Representation, in turn, guarantees that information cannot be
lost in the move from the semantic representation to model construction.

Our principle of Full Representation is, however, different from Full Interpre-
tation in that it is a soft constraint. We can generate models which violate the
principle, but such models will always be dispreferred relative to models which
satisfy it. The principle thus provides us with both a motivation for continuing
model generation when faced with a universal quantification, and also with a
criterion for choosing among the resulting models.

Returning now to the interpretation of the sentence John didn’t run, it is
clear why Full Representation disprefers stopping without expanding the (com-
plex) input formula. If we did so, the tableau would not be extended with any
new literals, and as a consequence, the current canonical model of the branch
(which consists of the set of literals on this branch) would not be changed.

In this situation, the only rule available for continuing the tableau expansion
is R(tnd); we have already argued against random application of the T (V) rule.
The question which then arises is which formula should be used in applying this
rule. In principle, any formula whatsoever could be used. However, in order
to guarantee at least minimal satisfaction of Full Representation, we need to
trigger inferences pertaining to running events, to the agent role, and to John.
This is achieved by using information from the input sentence itself to construct
the cut formula, as we have done in the examples so far. It now also becomes
clear why the preferred cut formula is the strongest one which produces non-
trivial results: our aim is to maximize the use we make of explicitly represented

8We have not explored whether the polarity of literals should play a role in determining
adherence to the Full Representation principle. It seems plausible that only those literals
that coincide in polarity with the subterm they derive from (i.e. the number of dominating
negations, antecedents of implications, ... modulo 2) should count. But such reasoning would
also apply to other modalities like belief, knowledge, etc. At the moment, it is not clear how
to define a suitable notion of polarity here.
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information.

We have thus provided a justification both for the assumption that the uni-
versal quantification induces a case distinction, and for our choice of formula for
use in applying this rule. Let us now demonstrate the use of Full Representation
as a criterion for ranking models. Here again is the tableau which we generate
for the sentence John didn’t run. For simplicity, we consider here only one of
the possible case distinctions. (Recall that there are two possibilities which are
compatible with our assumptions, a point to which we return.)

l‘v’e.—‘ty(e, r) Vv —age,j) |
Je.ag(e,j) | ~Je.ag(e,])

(25) ag(f,j) |Ve.mag(e,j)
_‘t}/(f, I‘)
[2]

Although we have chosen one particular case distinction, the tableau still
gives us two open branches. But the left branch satisfies Full Representation
more fully than does the right branch. We might attempt to improve the quality
of the right hand model, but doing so would require continuing tableau expan-
sion, a process that would quickly become more resource-expensive than the left
branch. Consequently, we predict that the interpretation represented by the left
branch — in which John did something other than run - is preferred over the
interpretation represented by the right branch — in which John is the agent of
no (relevant) events. But whether this would be the preferred reading for the
sentence in a given situation would depend on additional factors, to which we
turn in the next section.

First, however, let us consider briefly how Full Representation applies to the
interpretation of our more complex sentence:

(26)  John didn’t vote for Nader.

the tableau for which is given in (21) on page 15. In this tableau, the leftmost
model is the best satisfier of Full Representation, as each predicate constant in
the input appears in a new literal (either positive or negative) in the model.
Thus, we predict, correctly, that this model represents the default reading of
the sentence.

The same prediction might also be made on the basis of standard Gricean
assumptions.® A speaker who utters (26) intending to convey, say, that John
did not vote, would be in violation of at least two maxims: Manner (for lack
of brevity and for choosing an ambiguous formulation when an unambiguous
one is available) and Quantity 1 (for making a weaker assertion than he is
in a position to make). In the absence of special discourse considerations, a
cooperative speaker should not use (26) to express a proposition which could be
expressed less ambiguously and with a simpler form. This requirement, however,

9Thanks to Barbara Kaup (p.c.) for raising this point.
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falls out as a speaker corollary of Full Representation.'® For a speaker must be
aware that an addressee will prefer whatever interpretation makes maximal use
of the information explicitly represented in the input. Hence, a cooperative
speaker should avoid explicitly representing information which in fact has no
role to play in the intended interpretation. Our predictions thus converge with
the Gricean view not only in selection of interpretation but also with respect to
the underlying intuitions which drive the analysis.

4.2 The Safe Commitment Principle

Recall once more that in the absence of focal stress or contextual information,
the interpretation of the sentence John didn’t run can proceed in two different
ways, depending on which subatom of its logical form is used in constructing the
case distinction. One possibility considered above was that in interpreting this
sentence, one should simply do both case distinctions in parallel. This would
give rise to the following two tableaux, giving four models to be compared.

‘Ve.—uty(e, r) VvV -ag(e,j) I [Ve.—rty(e, r) Vv —ag(e,j) |
Je.ag(e,]) | ~Je.agle,j)  Fe.tyle,r) [ ~Te.ty(e,r)
27) ag(f,i) |Vemagle))  ty(gn) |Ve-ty(er)
~ty(f, ) [b] —ag(g, j)
[a]

In this tableau, branches e and ¢ win out over b and d as far as satisfaction of
Full Representation is concerned: the former two branches have been extended
by the addition of new literals, while the latter two have not. However, there
seems no way to choose between a and c¢. The two models differ, but they
satisfy Full Representation to exactly the same degree. What happens in this
situation?

Intuitively, it seems to us that if this sentence really is taken completely
“out of the blue,” and is uttered with no focal stress, then it does not allow for
expansion of the model beyond the quantificational input. We understand the
utterer of this sentence to have committed to the absence of any running events
with John as agent, and no more; at least, not until some further information
is provided in the continuation of the discourse. What seems to be at work
here is a principle which works in opposition to Full Representation, a principle
which prevents the interpreter from making random selections among equally
satisfactory interpretations. We call this principle Safe Commitment, and define
it as follows:

Principle 4.2 (Safe Commitment Principle)
The processing of an input sentence should eventually commit to a safe inter-
pretation.

10Compare with [Lev00], who formulates a speaker corollary for each of his interpretative
heuristics.
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This principle has two components. Tt requires commitment to some partic-
ular interpretation; but it further requires that commitment to be safe. In our
system, to commit to an interpretation is to choose one model as the preferred
interpretation. Committing to an interpretation always involves the pruning -
or at least postponing the exploration of — dispreferred branches. A commitment
is safe if there are clear reasons (of model quality) to prefer the chosen model
over other options. This rules out arbitrary selection of a candidate interpreta-
tion. There is still no guarantee, of course, that the chosen interpretation will
be that intended by the speaker; the speaker might, for example, have expected
the addressee to make use of some additional background information in the
interpretation. So even a safe choice may have to be rejected in terms of later
evidence, requiring the interpreter to backtrack. What the principle guarantees
is that the interpreter will commit to an interpretation, but will only commit
to a highly specified interpretation if this is warranted.

The effect of this principle for our approach will be this: If after certain
amount of processing no clear preference among models emerges, we discard the
results of the computation on the input sentence and return to a state of the
tableau machine where there is a clear choice between branches. In (27), the
only way to achieve this is to return to the initial tableau that only contains the
input representation.

Ve.sty(e,r) V —ag(e, J)

Clearly, this is a state which has one tableau branch, and avoids unnecessary
model specialization and is therefore “safe”. Note that by discarding the results
of the computation we have not precluded any more specific interpretations,
since the input sentence is in effect an underspecified representation of the four
possible models. If in the ensuing discourse, information becomes available that
favors one of the models, the same computation can be carried out again to
re-specialize the models (discarding the other branches in the process).

Another example where the safe commitment principle helps avoid unmo-
tivated over-specialization is in tableau (13) on page 11 above. Models a and
b, although distinct, are not distinguished with respect to Full Representation.
Hence, an interpreter cannot be justified in choosing one over the other; and so
the case distinction is a waste of processing effort. Indeed, the sentence does
not seem to support a distinction between these two readings in the absence of
further discourse information.

Clearly, the Safe Commitment Principle works in contrast to most machine-
oriented strategies and implementations of model generation calculi, as it it
prevents the method from being complete in a model-theoretic sense. As we
want to use model generation as cognitive model for discourse understanding,
this is an advantage of the analysis rather than a problem.!!

11 One issue which should certainly be resolved empirically is what units of discourse Full
Representation applies to. Here, we have assumed that Safe Commitment must be satisfied
for each input sentence independently. But it is quite plausible that the principle need only
be satisfied for larger (or at least different) discourse segments.
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4.3 Full Representation and Model Population

In the last section we saw how the two control principles work together to drive
the exploration of a tableau that represents the possible interpretations of the
input. In the examples so far, we have not made use of our knowledge about the
world, and so have not yet utilized one of the strongest features of the model
generation approach. In this section, we will look at how a particular type of
world knowledge is used in interpretation: knowledge about the structure of
events, which lets us populate models to partially fulfill the Full Representation
Principle.

To keep the discussion simple, we will re-use our simple example John didn’t
run (1). We saw in section 3.1 that this input sentence gives us the tableau 9,
which we repeat here:

[Vety(e,) V ~ag(e, )|
Jde.ty(e,r) | ~Je.ty(e,r)
ty(](c}cr).) Ve.—||t£yTe,r)
—agls,)

2]

In the earlier discussion, we glossed the left branch as “Someone else ran,”
even though strictly speaking no agent of the event f is present in the branch.
In effect, the inference that there is an agent of f was not made by the model
generation procedure, and so the gloss was in fact fallacious. What we need
to do is to provide the model generation procedure with the same information
which we, as interpreters, use to draw the inference in question. We can do this
by invoking a meaning postulate concerning running events. The postulate we
need is this: Ve.ty(e,r) = 3z.ag(e,z), i.e. every running event has an agent
(required role). Given this postulate, the chaining rule in Figure 4 allows us to
infer the existence of an (unspecified) agent from the existence of the running
event. The complete tableau has the following form (which supports the gloss
“someone else (c) ran”).12

Ve.ty(e, r) = 3z.ag(e, z)
IVe.—-nty(e, r) Vv —ag{e, j) |

Je.ty(e,r) | ~Jety(e,r)
ty(f,r) | Ve.~ty(e,r)
—ag(f,])

Jz.ag(f, x)
ag(f,c)

The meaning postulates we invoke here are, in essence, the thematic or
theta grids postulated in Government Binding theory as part of the lexical rep-
resentation of verbs and other predicates which have an argument structure
(see [Hae94]). Theta grids contain, at least, the information as to which the-
matic roles are assigned by the predicate: the very information contained in our

12We follow established practice and add world knowledge at the root of the tableau.
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meaning postulates. Thus, the meaning postulates that we require are indepen-
dently motivated.

We can now make good on a promise made with respect to tableau (21)
on page 15. We saw in section 4.1 above that, given Full Representation, this
tableau makes correct predictions about the preferred reading of the sentence
John didn’t vote for Nader in the absence of focal stress or prior discourse.
But we noted in our original discussion of this tableau that one of the models
generated did not correspond to any possible interpretation of the sentence.
This is undesirable. We would like to know that if the preferred reading is
overridden by later information, the system will provide an intuitively correct
alternative.

But the problem is resolved by the possibility of model population. Let us
assume a postulate according to which every voting event has an agent and a
beneficiary.!® Below we give an expanded version of the original tableau, incor-
porating this postulate. The resulting open models all correspond to possible
interpretations. (We have closed the central branch under the assumption, not
represented, that John is not a candidate for beneficiary.) However, the left-
most model continues to best satisfy Full Representation with the least use of
resources.

‘Xe.ty(e, v) = 3z.agle,z) A 3(.y)ben(e,yﬂ
Ve.-ty(e,v) V ~ag(e, j) V —ben(e, n)

ae'ty(e>v) A ag(eaj) ve'_'ty(e>v) v _'ag(eaj)
ty(f,v) Je.ty(e,v) —Je.ty(e,v)

ag(f,J) ty(g,v)
(28) —ben(f,n) —ag(g,j)

dz.ben{g, z)
ben(g, ¢)

c=n c#EN
ben(g,n) | c=j [c#j
ben(g, 5)
*

5 Extensions

Before concluding, we would like to speculate briefly about some possible ex-
tensions of this proposal. These are the treatment of focus, and the treatment
of certain cases of presupposition projection.

As noted at the outset, our treatment of focus here is very limited, and we
would not suggest that there is any obvious and simple extension of it which
would cover all focus phenomena. Nonetheless, it is tempting to think that we

13The presence of an NP filling the beneficiary role is syntactically optional; but nonetheless
one simply cannot have a (semantic) voting event which does not involve a vote for someone.
Casting an empty ballot doesn’t count as voting.
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have here the barest bones of a more extensive treatment of focus within the
model generation framework. Focus is, fundamentally, a mechanism provided
by natural language for distinguishing foreground and background material, for
marking which information conveyed by an utterance is to be treated as new
and newsworthy and which is to be treated as given (in some sense of this
very difficult term). In our treatment of negated sentences, the case distinction
mechanism provides us with a means of distinguishing between foreground and
background. In essence, material which enters into a case distinction is treated
as background. We are thus able to model the effects of focus in these cases
straightforwardly, as enforcing a particular choice of material for the case dis-
tinction. This suggests that it may be possible to model the effects of focus
more generally using the case distinction mechanism.

The proposal offered here also has interesting implications for the treatment
of certain cases of projection of presuppositions over entailment-canceling op-
erators. In the case of presupposition projection, one entailment (or more) of
an affirmative declarative sentence “survives” embedding under an entailment-
canceling operator, such as negation. This surviving entailment — the presup-
position — is generally felt to be backgrounded, or treated as taken for granted.
Two standard examples are given below:

(29)  Jane didn’t stop laughing.

Presupposes: Jane was laughing immediately prior to the reference time.
(30)  Jane wasn’t late.

Presupposes: Jane had an appointment

As readers may have noted, the interpretation of the simple sentences considered
here involves something analogous: the preferred reading of John didn’t vote for
Nader is one in which several entailments of the embedded clause John voted for
Nader “survive” as background, “projecting” over the negation. Moreover, just
as the Nader sentence has other possible interpretations, so too do presupposi-
tional sentences like (29) and (30) above. Both allow, in addition to the default
presuppositional reading, a presupposition-canceling reading, often induced by
a continuation which denies the presupposition, as in:

(31)  Jane didn’t stop laughing. She wasn’t laughing to begin with.
(32)  Jane wasn’t late for that meeting. She wasn’t supposed to be there at all.

Standardly, presuppositions are treated by identifying a specific trigger (either a
lexical item or, in some cases, a construction), and associating with that trigger
a presuppositional content distinct from its ordinary truth conditional content.
The survival of the presupposition is then attributed to the special properties
of this kind of content. The similarities between the cases considered here and
the more familiar presupposition projection cases suggest, however, that the
mechanism proposed here could be used to treat certain cases of supposed pre-
supposition projection without postulating any special presuppositional content.
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On this account, information has the status of a presupposition when it is
used in constructing the proposition on which a case distinction is performed.
Thus, to extend the account to examples like (31) and (32), we would have
to make a plausible case that the presuppositional content is available to the
model generation system for this purpose. There are two ways in which this
could be done. One way would be to assume that the logical structure of the
sentences in question is more complex than revealed by surface form, and that
the presuppositional content is actually represented in the logic form of the
sentence. For example, one might posit something like the following as the
logical form of Jane stopped laughing.

3dty(d, 1) A ag(d, j) A Je.ty(e, end(d))

This representation, based very loosely on a proposal in [Pifi97], decomposes
the predicate stop laughing into two separately specified events: a laughing
event, and an (instantaneous) event of ending. Given such a representation, the
interpretation strategy we have argued for above allows for the generation of
the following tableau:

| Vd.~ty(d, 1) V —ag(d, ) V ~Fe.ty(e, end(d)) |
Ad.ty(d,1) Aag(d,)) | Vd.-ty(d,1) V —ag(d,])
(33) ty(f,1) Jd.ty(d,!) | ~Id.ty(d, 1)
ag(/f,)) ty(g, 1)
—de.ty(e,end(f)) | —(ag(g,)))

‘The leftmost model in this tableau, which satisfies the Full Representation
principle best given the assumed input, represents the expected presuppositional
reading of the sentence.

The representation suggested here for sentence (29) is offered only for il-
lustration, and may turn out not to be an adequate analysis of this type of
sentence. However, it is quite plausible that change of state predicates such
as stop V-ing do have complex internal structure along these lines, as [Pifi97]
argues.'* To avoid committing to a complex logical form for the input sentence,
one could achieve precisely the same effects by introducing a meaning postulate
that introduces an end event or subatoms that constrain the timing of events.
Whichever strategy one prefers, a treatment along these lines seems promising
for the very many cases where a lexical entailment (i.e. an entailment due to
lexical content) shows projection behavior.

We would also like to look further at the projection behavior of entailments
induced by various syntactic structures. In this paper, we have looked in detail
at the interpretation of a sentence containing a syntactically optional modifier:
the PP for Naderin the sentence John didn’t vote for Nader. The default reading
for the sentence can be characterized in presupposition projection terms: on

14We should emphasize that although we borrow here from Pifién, the representation given
both simplifies and modifies his proposal.
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this reading the proposition that John voted (for someone), which is of course
entailed by the affirmative version of the sentence, “projects” over negation,
just like a presupposition. Similar projection behavior occurs with negations
of sentences with secondary predicates, like (34), and even, in some cases, with
adjectival modification, as in (35):

(34)  Jane didn’t come home drunk.
Default interpretation: Jane came home, but not drunk.

(85) I didn’t read a boring book all summer.
Default interpretation: I read books, but no boring ones.

However, the default readings for negated sentences with no optional con-
stituents are not “presuppositional.” We saw this with the simple sentence
John ran, which shows projection behavior only given focal stress on one of its
elements. The same holds with sentences with transitive verbs. The default
interpretation of:

(36)  Jane didn’t wash the windows.

is simply that there is no window-washing event with Jane as agent.

These observations reinforce the suggestion made above that syntactic in-
formation plays a role in determining the proposition to be used in the case dis-
tinction, and perhaps even in determining whether the case distinction should
be performed. Full Representation, too, may be sensitive to syntactic struc-
ture: information introduced by a syntactically optional constituent may be
weighted more heavily with respect to satisfaction of the principle than infor-
mation whose inclusion is syntactically required. We intend in future work to
extend our treatment of negation to additional structures. Such an extension
will, we hope, provide us with a better understanding of the workings of the case
distinction mechanism and also of the two pragmatic principles which constrain
the model generation system: Full Representation, and Safe Commitment.

6 Conclusion

In this paper we have applied the recently developed technique of resource-
adaptive model generation to the interpretation of monoclausal negated sen-
tences. We have adopted the position that these sentences are semantically
unambiguous, but that their actual interpretation in a given instance is under-
determined by their semantics. The project undertaken here was thus to model
the pragmatic inferencing which guides the selection of a specific interpretation.

The fundamental idea is that, through the mechanism of the case distinction
(the R(tnd) rule), the system generates multiple models, each of which is com-
patible with the content of the negated sentence. The preferred interpretation
is then predicted to be given by that model which best satisfies certain quality
measures. Here, we have argued that a crucial criterion for model selection
is degree of satisfaction of the Full Representation principle (4.1), which leads
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to a preference for models that maximize the effects of information explicitly
represented in the input sentence. But the application of Full Representation
is moderated by the workings of the Safe Commitment principle (4.2), which
-precludes unmotivated overspecification, and may result in adoption of a less
specified, but safe, interpretation.

It seems to us that the application of these principles should go well be-
yond their use here. We propose these as fundamental principles of interpreta-
tion, which are applied systematically in cases where an interpreter must choose
among competing possible interpretations of a given input. But of course the
principles as formulated here leave open a number of questions, which we hope
to address in future work. Some of these open issues were raised in the previous
section. In summary, we need to explore further at least the following questions:

o What counts as explicitly represented information? Do some types of in-
formation “count” more for satisfaction of Full Representation than oth-
ers?

e What is the contribution of syntactic information to the workings of Full
Representation?

e How can degree of satisfaction of Full Representation be more precisely
quantified?

e What are the units of discourse to which Safe Commitment applies?

Future work should also try to uncover additional principles guiding interpre-
tation. And finally, we would hope that the claims made here can be tested
experimentally, to evaluate the degree to which the model generation system,
constrained by the proposed principles, provides a, working model of the actual
process of language interpretation by human speakers.
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