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We present the dual to Birkhoff’s variety theorem in terms of predicates over the carrier
of a cofree coalgebra (i.e., in terms of “coequations”). We then discuss the dual to
Birkhoff’s completeness theorem, showing how closure under deductive rules dualizes to
yield two modal operators acting on coequations. We discuss the properties of these
operators and show that they commute, and we prove as main result the invariance
theorem, which is the formal dual of Birkhoff’s completeness theorem.

1. Introduction

The topic of dualizing Birkhoff’s variety theorem (Birkhoff, 1935) was first raised in
(Jacobs, 1995), and an early dual appears in (Rutten, 2000) (for coalgebras over Set).
Since then, a number of authors have extended these results, providing the notions of
coequations and implications between them, weakening the assumptions on the base cate-
gory and endofunctor and dualizing Birkhoff’s deductive completeness theorem (Birkhoff,
1935). We will briefly survey these results here.

In what follows, we consider a category £ and an endofunctor I':£—& . We denote the
category of I'-coalgebras £y and the category of I'-algebras £7. We abuse notation and use
U to denote both forgetful functors &p—£ and £T—=E&. We omit U when convenient,
writing A for U(A, a) and just p for Up. We use H:E—~&r to denote the right adjoint
to U:&p—¢, if it exists, and F:£—ET to denote the left adjoint to U:£X—&, if it
exists. Given C € £, we call HC the cofree coalgebra over C, just as FX is called the
free algebra over X.

In (Gumm and Schréder, 1998; Gumm, 1998; Gumm, 1999; Gumm, 2000), the authors
define a coequation as an element ¢ € UHC of a cofree coalgebra, just as an equation
is a pair of elements (t1, t2) € UFX x UFX of a free algebra. Coequation satisfaction
can then be stated in terms of omission: A coalgebra (A, c) satisfies ¢ just in case for
every G-homomorphism p: (4, o) —HC, cis not in the image of p. In contrast, in (Kurz,
1999; Kurz, 2000) and also (Awodey and Hughes, 2000; Hughes, 2001), the authors take

T This research is part of the Logic of Types and Computation project at Carnegie Mellon University
under the direction of Dana Scott.
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the point of view that a coequation is not an element of UHC, but a predicate (i.e.,
subobject) over UHC. Here, coequation satisfaction is given as a projectivity condition:
(4, o) satisfies a coequation ¢ C UHC just in case every G-morphism (4, a)—HC
factors through ¢. The two definitions are essentially equivalent in the standard setting
& = Set, since a coalgebra satisfies a coequation ¢ € UHC in the former sense just in
case it satisfles UHC \ {¢} C UHC in the latter sense.

(There are other notions of coequations, including coequations as natural transfor-
mations of the form U=>KU for some endofunctor K:£—& in (Cirstea, 2000). This
summary is not intended to be an exhaustive survey of the literature of coequations,
but to focus on certain notions of coequations that lead to the formal dual of Birkhoff’s
variety theorem, which is not the case with Cirstea’s coequations.)

It is also in (Gumm and Schréder, 1998) that we first find the invariance theorem over
Set, which arises as the formal dual of Birkhoff’s completeness theorem. It is this theorem
which forms the focus of the current paper. We view Birkhoff’s theorem as establishing
an equality between two closure operators on sets of equations. More precisely, fix a
signature % and a set X of variables and consider a set of Z-equations S over X. If Ded (S)
denotes the deductive closure of S under Birkhoff’s equational calculus and Th Mod(S)
the equational theory of the models of S, then the completeness theorem asserts

Ded(S) = ThMod(S).

In ibid, we find the basic pieces of the invariance theorem. Namely, we see a proof that
the endomorphism invariant subcoalgebras of cofree coalgebras UHC are in bijective
correspondence with the covarieties definable by coequations over C. Furthermore, we
see that the endomorphism invariant subcoalgebras are generating coequations in the
sense that they are the formal dual of maximal sets of equations satisfied by a collection
of algebras, i.e., equational theories.

We revisit these results and make explicit two interior operators which were implicit
in the presentation in (Gumm and Schroder, 1998), so that the presentation of the in-
variance theorem mimics the familiar development of the completeness theorem as an
equation between closure operators. Specifically, we show that the dual of closure of sets
of equations under reflexivity, symmetry, transitivity and term formation is the 1 opera-
tor first investigated in (Jacobs, 1999). Closure under substitution of terms for variables
dualizes to yield the & operator, introduced here. The @ operator is an S4-operator,
while O is S4 if the forgetful functor U:£g—>& preserves binary meets. Furthermore, O
preserves pullbacks along homomorphisms, while @ does not.

This presentation makes explicit use of the coequations-as-predicates viewpoint. We
consider a coequation ¢ over C as a predicate over UHC (via the regular subobject
fibration). Thus, coequations come equipped with the usual logical constructions via
the connectives A, —, etc. (depending, of course, on the structure of £), just in virtue
of the fact that coequations are predicates. We can view the work here as augmenting
these usual constructions by adding two S4 operators, O and &, for coequations and
showing that the coequations “open” with respect to these operators are in bijective
correspondence to covarieties definable by coequations over C.

In (Gumm and Schréder, 1998), we also find the first discussion of “complete” or
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“behavioral” covarieties (called “sinks” in (Rosu, 2000)). These covarieties are definable
by coequations over one “color” or, equivalently, are the covarieties closed under total
bisimulations. The work on coalgebraic specifications in (Rothe et al., 2001), for instance,
involves giving models for classes in an object oriented language as behavioral covari-
eties in an appropriate category of coalgebras. Hence, we can understand this approach
in terms of coequations over a single color. These coequations are dual to variable-free
equations for a class of universal algebras, and so one has the idea that there is much
more expressive power to exploit in the theory of coequations. Indeed, from (Kurz, 1998),
we see that such coequations correspond to modal formulas with variables and thus allow
the richer expressiveness such formulas have over variable-free formulas (see, for instance,
(Blackburn et al., 2001)). We provide examples of coequations here which illustrate some
of the expressive power available when one moves from behavioral covarieties to covari-
eties in general.

We also note that when ¢ is a coequation over 1, i.e., a coequation defining a behavioral
covariety, then Ay = . So, for behavioral covarieties, one of the two S4 operators is
trivial. Note that in the dual situation, this amounts to the observation that if § is a
collection of variable-free equations, then closure of S under substitution of terms for
variables yields S again!

We begin with some technical preliminaries in Section 2. In Section 3, we summarize
the dual of Birkhoff’s variety theorem, introducing the relevant terminology and results.
In Section 4, we generalize the covariety theorem to accommodate quasi-covarieties and
conditional coequations. Section 5 is a categorical presentation of Birkhoff’s deductive
completeness theorem and its dual, the invariance theorem. We discuss the well-known
greatest subcoalgebra operator, O, in Section 6 and show that it is an S4 modal operator
that commutes with pullbacks along homomorphisms. In Section 7, we introduce a second
S4 operator, &, taking a coequation to its largest invariant sub-coequation. This allows
an easy proof of the invariance theorem in terms of the operators [0 and & in Section 8.

This work forms part of the second author’s doctoral dissertation, written under the
supervision of Dana S. Scott and the first author. Scott suggested research into the dual
of Birkhoff’s theorems, and that research and the presentation found here benefited from
many conversations with him. We also benefited from conversations with Jif{ Addmek,
who pointed us to the Banaschewski and Herrlich article, Peter Gumm, Bart Jacobs,
Alexander Kurz, Tobias Schroder and the advice of anonymous reviewers, who have
pointed us to the work of Andréka and Németi.

2. Preliminaries

We begin by reviewing some categorical terminology. This material can be found in most
standard categorical references, unless otherwise indicated, including (Borceux, 1994;
Barr and Wells, 1985; Barr and Wells, 1990; Mac Lane, 1971).
An arrow i: A—-B is a regular mono just in case it is the equalizer for some pair of maps
——%e. (Dually, a regular epi is a coequalizer for some pair of arrows.) The partial
order of isomorphism classes of regular monos with codomain B is denoted Sub(B), and
we call the elements of Sub(B) the (regular) subobjects of B. We denote the subobject
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idp:B—B by T.If £ has pullbacks along regular monos, then Sub(B) has binary meets,

given by the pullback shown below.
CA 9 >3 D

c B

We say that £ is reqularly well-powered if, for every B € £, Sub(B) is a set.

Throughout, we denote regular monos by > and epis by —=. We say that £ has
epi-regular mono factorizations just in case every map f:A—B in & factors into an epi
followed by a regular mono, as in the diagram below.

A-1-p

e

C

Such factorizations are unique up to isomorphism. We denote the subobject C of B
(properly, the equivalence class of C>>B) by Im(f). Some authors use f(C) for Im(f).

If £ has epi-regular mono factorizations and coproducts, then each Sub(B) has arbitrary
joins. Given {j;:C;>>B };c1 € Sub(B), then \/ C; is the image of the map

P

11e.-%p.

Remark 2.1. Throughout, our assumption that £ has epi-regular mono factorizations
could be replaced by assuming any factorization system (H, S) where £ is S-well-powered
in the evident sense. See (Borceux, 1994) for a presentation of factorization systems and
also (Addmek and Koubek, 1977) for a discussion of factorization systems in the dual
category, £C. We stick with epi-regular mono factorizations here since there is a natural
relationship between regular epis and sets of equations in the algebraic setting and we
are interested in dualizing the algebraic Birkhoff theorems.

Suppose £ has epi-regular mono factorizations and let f: A—- B be given. The arrow f
induces a functor Sub(A)-— Sub(B), which we denote J; (some authors abuse notation
and denote the induced morphism f). Namely, given a subobject i:C>>A of A, we define
37(C) = Im(f 01), as in the diagram below.

¢ —3¢(C)
A=y ~B
Note that 3¢(T) = Im(f).
If £ also has pullbacks, then each f: A—B also induces a functor
F*:Sub(B)—— Sub(4)
(sometimes denoted f~') given by taking a subobject j:D>>B to the pullback shown
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below.
f*D——D
]
A——B
In this case, we have an adjunction 37 - f*.

A coalgebra for an endofunctor I': E—& is a pair (4, ), where A € £ and a: A—TA.
A T-homomorphism f:(A, e)—(B, B) is a map fAB such that T'f oo = B o f. The
category of I'-coalgebras is denoted £r. The evident forgetful functor £r—-& is denoted
U.

A comonad on £ is a triple G = (G, ¢, §), where G:£—€ ande:G=>1 and §:G=-GG
are natural transformations such that the diagrams below commute.

G’3<—JL—GZ G <=2 =25 2
G&ﬂ ﬂ& \ﬂ&/
G2<—5:G . G

The category &g of coalgebras for the comonad G consists of coalgebras (4, a:A—=GA)
for the functor G such that the diagrams below commute. It is a full subcategory of &g,
the category of coalgebras for the functor G.

A< ca A< GA
GA<—Q*—A A

The forgetful functor U:£g—E& (note the overloaded use for U!) has a right adjoint
H:£—£&g (again abusing notation) given by

H(C) = (GC, 6¢).

We say that a functor K :D—£ is comonadic just in case there is a comonad G on &
and an equivalence of categories D—=&g such that the diagram below commutes.

D —— &g

| A

bt

Given any endofunctor I': £—&, the forgetful functor U :&r—€ is comonadic iff U has
a right adjoint (see (Jacobs, 1995)). Such functors I are called covarietors in (Addmek
and Porst, 2001). (Note: it is not the case for an arbitrary functor K :D—& that K is
comonadic iff K has a right adjoint.)
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Let S be a collection' of arrows. We say that an object A4 is S-projective just in case, for
every f:B—C in S, and every g: A—C, there is a (not necessarily uniquet) h:A—B
such that g = f o h. We denote the full subcategory of S-projective objects by S-Proj.

The dual of S-projectivity is S-injectivity. In particular, we say that an object A is
regular mono-injective (hereafter, just regular injective) just in case, for every regular -
subobject B>>C and every f:B—A, there is a (not necessarily unique) map g:C—4
such that the diagram below commutes.

C e A

v

B

We say that a category £ has enough regular injectives if, for every object E € £, there
is a regular injective A such that F is a regular subobject of A.

3. The dual of Birkhoff’s variety theorem

We begin with a brief summary of the dual of Birkhoff’s variety theorem. This section
summarizes the work found in (Awodey and Hughes, 2000), which can be viewed as a
generalization of (Rutten, 2000) and (Gumm and Schréder, 1998). A similar account of
the covariety theorem can be found in (Kurz, 2000), and a similar categorical approach to
the variety theorem for categories of algebras can be found in (Banaschewski and Herrlich,
1976) and various articles of Andréka and Németi (see bibliography). The reader familiar
with previous treatments of the covariety and quasi-covariety theorems may skip ahead
to Section 5. .
The following definitions come from (Awodey and Hughes, 2000; Hughes, 2001).

Definition 3.1. We say that a category & is quasi-co-Birkhoff if it is regularly well-
powered, cocomplete and has epi-regular mono factorizations. If, in addition, £ has
enough regular injectives, then & is co-Birkhoff.

A full subcategory of a quasi-co-Birkhoff category is a quasi-covariety iff it is closed
under coproducts and codomains of epis. A quasi-covariety of a co-Birkhoff category is
a covariety iff it is also closed under regular subobjects.

The following theorem can be found in (Awodey and Hughes, 2000) or (Hughes, 2001).
See also (Kurz, 1999; Kurz, 2000) and see (Banaschewski and Herrlich, 1976) for a pre-
sentation of the dual theorem.

T When we use the word collection, we allow that it is a proper class. We often abuse set notation and
adopt it for classes in what follows.

¥ In fact, for the collections S, namely collections of (regular) monos, in which we are interested,
uniqueness is trivial. Our previous presentations of this material used this fact, and developed the
theory that follows in terms of orthogonality, as in (Borceux, 1994, Volume 2). Here, we prefer to
ensure that, our presentation more closely follows that of (Banaschewski and Herrlich, 1976), (Németi
and Sain, 1981), etc.
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Theorem 3.2. If £ is a co-Birkhoff category, then V is a covariety iff V = S-Proj for
some collection S of regular monos with regular injective codomains.

One can show that, if G = (G, ¢, 6) is a comonad on a quasi-co-Birkhoff category &
and G preserves regular monos, then &g inherits the epi-regular mono factorizations from
£. We use this fact to prove the following.

Theorem 3.3. Let G = (G, ¢, 6) be a comonad on a (quasi-)co-Birkhoff category £ and
suppose that G preserves regular monos. Then & is (quasi-)co-Birkhoff.

In fact, Theorem 3.3 applies more generally than stated. If £ is a quasi-co-Birkhoff
category and I is any endofunctor that preserves regular monos, then the category &p of
coalgebras for the endofunctor I is quasi-co-Birkhoff. In other words, Theorem 3.3 applies
to categories of coalgebras for an endofunctor as well as to categories of coalgebras for a
monad.

Example 3.4. Let G = (G, ¢, §) be a comonad on £ and suppose that £ is co-Birkhoff
and G preserves regular monos, so that the category £z of coalgebras for the endofunctor
G is co-Birkhoff. The category &g of coalgebras for the comonad G forms a covariety in
the category g of coalgebras for the functor G. Indeed, since both forgetful functors
&e—E€ and £g—& create coproducts, &g is closed under coproducts. One uses the fact
that (under our assumptions) these functors also preserve and reflect epis and regular
monos to show that £ is also closed under codomains of epis and regular subobjects.
We omit the details.

Throughout what follows, we state our theorems in terms of coalgebras for a comonad,
although we often indicate when the theorem applies to coalgebras for an endofunctor
as well. Recall that, whenever an endofunctor I':£—=£ is a covarietor (i.e., £ has cofree
coalgebras), then &t is isomorphic to a category of coalgebras for a comonad. Although
in ibid, the authors show that the assumption that I' is a covarietor is not crucial for the
covariety theorem, we stick to the more familiar and convenient territory of coalgebras
for a comonad here. We also point out those theorems which also hold for categories of
coalgebras for arbitrary endofunctors.

Theorem 3.3 ensures that we may apply Theorem 3.2 to categories &g of coalgebras
for a comonad G = (G, ¢, §), provided that G preservers regular monos. In order to
interpret the result, we introduce the notion of coequation.

Definition 3.5. Let C € £ be regular injective, so that the cofree coalgebra HC =
(GC, dc) is also regular injective. A coequation over C is a regular subobject ¢ < GC (=
UHC). We say that a coalgebra (A, o) satisfies ¢ (written (4, o) = ¢) just in case, for
every homomorphism

p: {4, o)—=HC
(equivalently, every “coloring” A—=C), there is a unique map

PrA—sp
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making the diagram below commute.

A—>GC
By 1
©

If V is a class of coalgebras, we write V |= ¢ just in case each (4, o) € V satisfies .

In other words, (A, o) |= ¢ if, for every homomorphism p: (A4, a)—HC, we have
Im(p) < ¢, or, equivalently, T < p*¢ (assuming £ has pullbacks).
We similarly define, for each p: (A, a)—HC,

(4, @) | ¢(p) iff Im(p) < ¢,

50 (A, o) |= ¢ just in case (4, @) = ¢(p) for every homomorphism p: (A4, a)—HC.

A coequation ¢ over C can be viewed as a predicate over GC. Thus, if Sub(GC) is
a Heyting algebra, we can construct coequations ¢ A v, ¢ — 1, etc., and so we see
that coequations over C' come with a natural structure. Continuing this interpretation,
if ¢, 1 € Sub(GC), we often write ¢ - 9 to mean ¢ < 1. It is easy to see that, if ¢ - 9

and (4, a) = @, then (4, @) = 1.

Remark 3.6. This definition of coequation comes from a straightforward dualization of
the abstraction of equational definability first explored in (Banaschewski and Herrlich,
1976). In this perspective, a set of ‘equations generalizes to a (regular) epi with regu-
lar projective domain. Equational satisfaction corresponds to injectivity with respect to
such epis. Dualizing this abstract approach leads directly to Theorem 3.2. Specializing
Banaschewski and Herrlich’s work to categories of algebras, sets of equations over X
correspond to regular epis UFX—>@Q with domain the carrier of the free algebra FX.
Dualizing yields regular monos into cofree coalgebras.

Suppose £ has pullbacks. If we view coequations ¢ over C as predicates of a variable
z of type GC, one may interpret pullback of coequations along homomorphisms

p:{4, a)—>GC

as substitution of p(y) (where y is a variable of type A) for , i.e., p*¢ = @[p(y)/z]. Thus,
(4, a) = ¢ just in case, for every homomorphism p, we have T F ¢[p(y)/z].

Remark 3.7. In the case of equations, one can easily distinguish between single equa-
tions and sets of equations. Gumm makes a similar distinction between single coequations
and sets of coequations in (Gumm, 2000), by interpreting coequation satisfaction as an
exclusionary condition. Explicitly, in Gumm’s terms, a coequation is an element ¢ of a
cofree coalgebra UHC, and we say (4, a) |= ¢ just in case (4, o) E UHC \ {c} (in our
terms). We prefer to keep the definition of satisfaction above, in keeping with our view of
coequations as predicates. Hence, we do not distinguish between single coequations and
sets of coequations.

This notion of coequation allows a more familiar statement of the dual of Birkhoff’s
variety theorem.



Modal Operators and the Formal Dual of Birkhoff’s Completeness Theorem 9

Theorem 3.8. Suppose £ is co-Birkhoff and G preserves regular monos. Then a full
subcategory V of &; is a covariety iff there is a collection S of coequations such that for
all (4, o),

(A, a)eVifiVp e S (4, a) E .

See (Rutten, 2000) or (Gumm and Schréder, 1998), for instance, where Theorem 3.8
is proved for coalgebras over Set. A proof of this theorem in a more general setting can
be found in (Hughes, 2001) or (Kurz, 2000).

Note that there’s still some work to be done to prove this theorem. It is not an im-
mediate corollary to Theorems 3.2 and 3.3. The immediate corollary is that there is a
collection T of subcoalgebras of regular injective coalgebras such that V = T'- Proj. In
Theorem 3.8, on the other hand, we have a collection S of subobjects of cofree coalgebras
over regular injective C, that is,

S ={p; <UHC;}ier

for some indexed set I. We omit the proof of this theorem here, as it has been adequately
covered elsewhere. See, for instance, (Kurz, 2000) or (Hughes, 2001) for details. The
key step in showing that cofree coalgebras over regular injective C suffice is applying
the assumption that £ has enough regular injectives. This implies that every coalgebra
(A, o) is a subcoalgebra of a cofree coalgebra over regular injective C. One finishes by
showing that there is a coequation ¢ over C such that (4, o) € Viff (4, a) = .

Remark 3.9. A Set-functor I":Set—-Set is called bounded by a cardinal & if, for every
I’ coalgebra (A, a) and every a € A, there is a subcoalgebra (D, §) < (4, o) such that
a € D and card(D) < x (where card(D) is the cardinality of D). We say that a comonad
G = (G, ¢, 8) is bounded by « if the functor G is bounded by . One can show that, if
G is bounded by k, then for each covariety V of &g, there is a single coequation ¢ over
k (i.e., a subset ¢ C UH«) such that

(A, @) e Viff (4, o) =

This further refinement corresponds to showing that a variety of algebras for a signature
is definable by a set of equations over a countable set X of variables. Here, the assumption
that G is bounded takes the place of the assumption that each function symbol has finite
arity.

See (Rutten, 2000) or (Gumm and Schréder, 1998) for a proof of this refinement of
Theorem 3.8. See (Hughes, 2001) for a generalization of bounded functors to categories
other than Set and the corresponding theorem. See also (Addmek and Porst, 2001) for
a discussion of bounded functors, including a proof that for functors I': Set—=Set, I is
bounded iff I is accessible.

Remark 3.10. In the examples that follow, we prefer to describe the coalgebras as
coalgebras for an endofunctor, rather than coalgebras for a comonad. This preference is
simply due to familiarity. We are more familiar and comfortable working with coalgebras
for an endofunctor, but we prefer to prove our theorems in terms of coalgebras for a
comonad for greater generality. Because these examples involve categories & in which
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iCe iCb—’&cgz—

Fig. 1. Det is not closed under total bisimulations.

the forgetful functor has a right adjoint, there is a comonad G such that & = &g (Jacobs,
1995) and hence the previous results apply.

Example 3.11. Fix a set of “inputs”, Z and let [': Set —Set be defined by
'S = (PinS)7,

where P, is the covariant finite powerset functor. A I'-coalgebra (S, o) can be regarded
as a non-deterministic automaton over Z, where the structure map gives the transition
function. Explicitly, for each state s € S and each input ¢ € Z, we write

§—>3§

just in case s’ € o(s)(%).

The deterministic automata are those automata (S, o) such that, for each s € S
and each i € Z, there is at most one s’ such that s—>s'. Let Det denote the class of
deterministic automata, so Det C Sety. It is easy to see that Det is a covariety in Setr.

In fact, one can show that there is a coequation ¢ over 2 colors that defines Det.
Namely, let H:Set—=Setr be the right adjoint to U:Setr—Set and define ¢ C UH?2
by

p={z € UH2| Vi€ IVy,z € da(z)(7).c2(y) = e2(2)},

where 6o :UH2—T'U H2 is the structure map for H2 and e:U H=>1 is the counit of the
adjunction U - H. Then, it is easy to show that

(4, o) E ¢ iff (4, o) € Det.

Indeed, one can show that a coequation over 1 color cannot define Det. As shown in
(Gumm and Schréder, 1998), a coequation ¥ over 1 is “behavioral”, in the sense that,
if (4, @) and (B, B) are related by a total bisimulation, then (4, &) = ¢ just in case
(B, B) = 1. That is, the covariety V defined by 7 is closed under total bisimulations
(ie., if (4, @) and (B, B) are as above, then (4, o) € V just in case (B, B) € V).

The covariety Det is not closed under total bisimulations. Let I = {i} and consider
the automata A = {a} and B = {b,c} represented by the graphs in Figure 1. These
two automata are related by a total bisimulation, but A is deterministic, while B is not.
Hence, Det cannot be defined by a coequation over 1.

Example 3.12. Fix a set Z and let I': Set—Set be the functor
rx =2xX.

Any T'-coalgebra (A4, a) can be viewed as a collection of streams over Z, then, in which
the same stream may be multiply represented as elements of A.
The cofree coalgebra AN is the final N x Z x — coalgebra —i.e., HN = (Nx Z)“. Given
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an element o € HN, we can define
Col(o) = {m00(i) | i <w}

(equivalently, Col(c) = {enot*(c) | i < w}, where t is the tail destructor). In other words,
Col(o) is the set of all colors that occur in the stream . Define a coequation ¢ over N
by

¢ ={0c € UHN | card(Col(c)) < Ro},

80 0 € ¢ just in case only finitely many colors occur in o.
One can check that, for any I'-coalgebra (A, a), we have (4, a) |= ¢ just in case, for
all a € A, there is n > 0, m > 0 such that

t*(a) = t"*™(a),

(where a = (h, t)). In other words, (4, o) E ¢ iff each stream in A has only a finite
number of “states”.

Remark 3.13. If one is interested not in equality of states, but in the observable be-
havior of streams, then one might require instead that, for every a € A, there is n > 0,
m > 0 such that for all 7 > 0,

hot"t(a) = hot™™ti(q).
This condition can be specified by a coequation over 1 color, namely by the coequation
{oc €e UH1 | 3n, m.t" (o) = t"T™(0)}.

Remark 3.14. One can easily generate other interesting coequations similar to Exam-
ple 3.12. First, it’s easy to see that the same idea can be used with polynomial functors
in general. Second, one can require that each state begins repeating within » applications
of the destructors by replacing Rg with n in the definition of .

4. Conditional coequations

In Definition 3.5, we introduced a coequation ¢ over C as a regular subobject
wr—>UHC

in £. In this section, we generalize the notion of coequation to include regular subobjects
p>—>(4, a)

where (A4, o) is an arbitrary coalgebra.

Definition 4.1. A conditional coequation over (4, @) is any regular subobject ¢ <
A = U(A, o). We say that (B, 8) |Ea ¢ (or just (B, B) | ¢) if and only if, for every
homomorphism

p:(B, By—(4, o),

Im(p) < o.
We sometimes drop the word “conditional” and refer to ¢ < A as a coequation over

(4, a).
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Remark 4.2. Let C be a regiﬂar injective object in £. Note that a coequation over C
in the sense of Definition 3.5 is the same as a conditional coequation over HC. There
should be no confusion, as the objects of £ are distinct from the objects of &g.

We adopt the name “conditional coequation” because the semantics introduced in
Definition 4.1 arise from the dual of conditional equations in the algebraic case. Given
two coequations, ¢ and 1, over C, we say that (B, 8) = ¢ = 9 just in case, for every

p:(B, B)—=HC,

if (B, B) = ¢(p), then (B, 8) = ¥(p). (In (Kurz, 1999) and (Kurz, 2000), ¢ = 9 is
denoted ¢/7.)

Now, for any pair of coequations ¢ and 9 over C, there is a coalgebra (4, o) and a
conditional coequation ¥ over (A, o) such that, for all (B, 8),

(B, B) == iff (B, B) ra 9. 1)

Namely, we take (4, a) to be the largest subcoalgebra of HC contained in ¢, i.e., (4, a) =
[¢]lrc in the terminology of Section 6. We take ¥ = A A 9 and show that (1) holds. On
the other hand, given a conditional coequation ¥ over (A4, «), we can view both ¥ and A
as coequations over regular injective C, where A < C — that is, as subobjects of UHC.
It is easy to check that

(B, B) Ea #iff (B, B) = A= 9.

Remark 4.3. Given coequations ¢ and 3 over C, one can consider the coequation
¢ — 1 over C, where — is the exponential in Sub(UHC) (assuming it exists). One can
show that, if (4, o) = ¢ — 1, then (4, ) | ¢ = 1, but the converse does not hold in
general.

Example 4.4. Let I'— = — x — and let A = {q,b}. Let
(€a, I, r):UHA—>AXxUHAXUHA

be the counit and structure map of HA. Define coequations ¢ and 1 over A by

p={oc€UHA | o =I(0)},

Yp={0c €UHA |o=r(0)}.
Let a(a) = (b, b) and a(b) = (b, a). Then (4, o) = ¢ = 9, but (4, @) & o — 1.

Conditional coequations provide a means of interpreting the quasi-covariety theorem,

below. As before, we first state an abstract version of the quasi-variety theorem and
then interpret the theorem in categories of coalgebras. The proof of Theorem 4.5 and its

corollaries can be found in (Awodey and Hughes, 2000). The theorem also was proven
independently by Alexander Kurz in (Kurz, 2000).

Theorem 4.5. Let £ be a quasi-co-Birkhoff category and V a full subcategory of £.
The following are equivalent.

1 YV is a quasi-covariety.
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2 The inclusion UY :V—=£ has a right adjoint HVY such that each component of the
counit eV :UV HY =>1¢ is a regular mono, i.e., V is a regular mono-coreflective sub-
category of £.

3 V = §-Proj for some collection S of regular monos.

Corollary 4.6. Let £ be a quasi-co-Birkhoff category and V a quasi-covariety of £ and

let HY be right adjoint to UY :V—&, as in Theorem 4.5, (2). Then

1 The unit nV:1v=>HYUV is an isomorphism.

2 Foreach C € £, C € Viff Cis {e%}-Proj, where €V is the counit of the adjunction
UvY 4 HY.

3 The corresponding comonad, GV = (UVHY, ¢, UVyyv), is idempotent.

4 The comonad GV preserves regular monos.

- The following corollary restates the results of Theorem 4.5 for categories of coalgebras
in terms of conditional coequations.

Corollary 4.7. Let £ be quasi-co-Birkhoff and let I':£—& be a functor that preserves
regular monos. A full subcategory V of &p is a quasi-covariety just in case there is a
collection S of conditional coequations such that

(B,B) eV ifivpe S (B, B) e
The same claim holds if we replace the endofunctor I" with a comonad G.

The following corollary is a generalization of Theorem 12 from (Jacobs, 1995), where
the author proves it for a restricted class of coequations over Set, namely those coequa-
tions that arise as equalizers of a pair of terms related to the functor G.

Corollary 4.8. Let £ be co-Birkhoff and G preserve regular monos, and let 'V be a
covariety of £g. Then the forgetful functor

V——&

is comonadic. Moreover, the associated comonad preserves regular monos and so V is
again co-Birkhoff.

Proof. The forgetful functor V—£& is the composite

v Yt
To show that this composite is comonadic, it suffices to show (by the dual of Beck’s
theorem (Borceux, 1994, Volume 2, Theorem 4.4.4)) that the following hold:

1 UoUVY has a right adjoint;
2 UoUY reflects isomorphisms;
3 UoUY creates equalizers of pairs

!
! Jo—ad Y
g

such that U o UV f, U o UV g have a split equalizer in &.
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Condition (1) follows from Theorem 4.5. Condition (2) is easily verified and (3) follows
from the same condition for U and the fact that UV creates equalizers. |

5. Deductive completeness and invariance

We focus now on Birkhoff’s completeness theorem. Whereas the variety theorem gives
an equivalence between closure conditions on classes of algebras and equationally defined
classes, the completeness theorem states an equivalence between deductively closed sets
of equations and theories for classes of algebras. We first recall the completeness theorem
in the classical setting.

Let 3 be a signature and T the associated monad (so that Alg(Z) = Set”), and let

F:Set——>8etT

be the left adjoint of the forgetful functor U:SetT —Set. We say that a set of equations
E over X (i-e., a subset of UFX x UF X, by identifying ¢; = to with the pair (£1, t2)) is
closed if it satisfies the following:

(i) Foreachz € X, v =z € E;

(ii) For each ¢; =ta € E, tx =1t; € F;

(i) If ¢y =t2 € F and to = t3 € E, then ¢, = {3 € E;

(iv) For each function symbol f(®) € %, and each n-tuple of equations,

Slztl,...,sn:tn,

in E, the equation ™ (sy,...,s,) = f(t1,...,t,) € E.
(v) E is closed under substitution of terms for variables. That is, for each t; =tz € E,
teUFX,z€ X,

tl[t/x] = tz[t/ﬂ?] e E.
The term t;[t/z] is defined as follows: Let o%: X —UFX be the map

t ifx=y
og(y) = {
y else

Let &% : FX —FX be the adjoint transpose of o%. Then t;[t/z] = 7% (¢1).

Theorem 5.1 (Birkhoff’s completeness theorem). A set of equations F is the
equational theory for some class 'V of Y-algebras just in case E is closed. Equivalently,
for any set F of equations, the deductive closure of F is the complete theory for the
models of F, i.e.,

Ded(E) = ThMod(E).

We say that a (binary) relation E over UFX is stable just in case, for every homo-
morphism
[P X——FX,

the image of F under f is contained in F, i.e.,

GE<E.
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If E is stable, then for every € X, t € UFX, the image of F under &%, is contained
in E and so E is closed under substitutions. Conversely, suppose E is closed under
substitutions. Let f:FX—FX be given, and t; = t2 € E, with z;,...,z, the free
variables of t; and t3. Then

t1[f (@1) /][ (z2)/m2] . - - [F(@n) /2] = t2[f(@1)/21][f (m2) /2] - . . [f(zn)/7n] € B,

and so E is stable. Since (i) - (iv) hold iff F is a congruence, we see that a set E of
equations over X is closed just in case

(i") E is a congruence;
(ii'y E is stable.

We can use the well-known isomorphism between congruences and quotients of F'X
(in SetT) to translate these conditions on sets of equations to a pair of conditions on
quotients of UF X . Accordingly, one finds that a quotient g: UF X —>@Q is the coequalizer
of a closed set E of equations just in case

(i) there is a structure map v:TQ—Q such that ¢ is a T-homomorphism;
(i) for every endomorphism f:FX —FX, there is a (necessarily unique)

g:(Q: V>_>(Q7 V)
such that go f=gogq.

We dualize (ii”} to yield the notion of endomorphism-inuvariant coequations in the coal-
gebraic setting. This definition is first found in (Gumm and Schréder, 1998). The term
endomorphism-invariant defined here should not be confused with the definition of an in-
variant predicate as one that admits a structure map (i.e., is the carrier of a subcoalgebra,
also called a mongruence in (Jacobs, 1995)), as used in (Jacobs, 1999; Masulovi¢, 2001,
Poll and Zwanenburg, 2001) and elsewhere. Nonetheless, in what follows, we use “invari-
ant” as a shorthand term for “endomorphism-invariant” and hope that no confusion will
result.

Definition 5.2. Let (4, a) be a G-coalgebra. We say that a regular subobject ¢ of A
is endomorphism-invariant (hereafter, invariant) just in case, for every homomorphism

p: {4, a)—(4, o},
the image of ¢ under p is contained in ¢, i.e.,

Fp S o

Remark 5.3. Notice that an invariant coequation arises as the formal dual of a sta-
ble set of equations. We do not offer here a set of deductive rules with which one can
reason about coalgebras — that is, we do not offer a deductive analogue to Birkhoff’s
completeness theorem. See, however, (Corradini, 1997; Corradini, 1998) for an equa-
tional calculus which is complete with respect to certain classes of covarieties and also
(Goldblatt, 2001b; Goldblatt, 2001a) for another equational logic intended to provide an
analogue to Birkhoff’s completeness theorem, rather than a formal dual. Furthermore,
we have the first steps for a complete deductive calculus for coequations (and also one for
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conditional coequations), using the results proven here. We hope to present these results
in a subsequent paper.

Remark 5.4. If (4, o) is a subcoalgebra of the final coalgebra, then any conditional
coequation ¢ over (A, o) is endomorphism-invariant, because the identity is the only
endomorphism.

Given a coequational variety

V={(B,8) | (B, B) =¥},

we are interested in the minimal (intuitively, strongest) coequation ¢ such that V = ¢.
Such minimal coequations can be viewed as generating the collection of coequations that
'V satisfies, in the sense that, for any coequation ¥, if V |= 9, then ¢ - 9. In this sense,
the minimal coequation represents the coequational theory of V — it represents the co-
equational commitment that V entails. This intuition motivates the following definition.

Definition 5.5. Let ¢ be a (conditional) coequation over (A4, o) and V a collection of
coalgebras. We say that ¢ is the generating (conditional) coequation for V just in case

1 ViEg
2 For any conditional coequation ¥ over (4, &), if V |= 1) then ¢+ 4.

Now we are in a position to state our main result.

Theorem 5.6 (Invariance theorem). A coequation ¢ over C is the generating co-
equation for some collection V of coalgebras just in case ¢ is an invariant subcoalgebra
of HC.

We postpone the proof until we’ve defined the modal operators 00 and @. The invari-
ance theorem first arises in (Gumm and Schroder, 1998), where it is proved for coalgebras
over Set. The theorem is stated in different terms in their work, since it is not motivated
by the coequation-as-predicate view that we take here.

6. The subcoalgebra operator

In the next two sections, we construct the modal operators that are used in the proof of
the invariance theorem, and prove some basic results regarding these operators. Through-
out what follows, we assume that £ is co-Birkhoff and has pullbacks and that G preserves
regular monos and pullbacks of regular monos, so that £g is co-Birkhoff and U creates
pullbacks of regular monos (and, in particular, finite intersections). We further assume
that, for each A € £, Sub(A) is a Heyting algebra. This last assumption is used only so
that one can introduce the usual axioms for S4 modal operators. It is not necessary for
the invariance theorem.

In this section, we introduce the modal operator 0. Given a subobject ¢ of 4 =
U(A, o), Oy is the carrier of the greatest subcoalgebra of A contained in ¢. The con-
struction is well-known, although the view that O is a modal operator is perhaps less
familiar. The [1 operator is discussed in (Jacobs, 1999), where it plays a central role. It
is from that work that we take the view of [1 as a “henceforth” operator.
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Since the coalgebraic forgetful functor U:Eg—=& preserves regular monos, there is an
induced forgetful functor,

Us:Sub((4, a))—— Sub(4),

from the partial order of regular subobjects of (4, @) to the partial order of regular
subobjects of A. As is well known, U,, has a right adjoint, which we denote [—],, (dropping
the subscripts whenever convenient). The right adjoint maps a subobject B < A to the
largest subcoalgebra contained in B. More precisely,

[B] = \/{(C, 1) < (4, 0) | C < B},

Here, we use the fact that U, creates joins. Alternatively, one may define [B] as the
pullback shown below, where U 4 H.

[B]_J>—> HB
(Av O:) —=HA
This adjoint pair yields a modal operator
Oa :Sub(A) —— Sub(4),

as usual, by taking the composite [0, = Uy, 0 [~],. Again, we drop the subscript when
convenient.
The following two theorems were first presented in (Jacobs, 1999).

Theorem 6.1. O is an S4 necessity operator; i.e., it satisfies the following:

1 If ot 9, then OpF Oy
2 Oplke
3 OpkD0Oyp .
4 O(p—y)FOp—0Op
Proof. Condition (1) is just functoriality, and conditions (2) and (3) are just the counit
and comultiplication for the comonad 1.
The last item follows from the fact that U, preserves meets, and hence so does 0. The

argument for (4) from this is standard, but we include it here.
By (1), we have

O((e = ¥) Ap) - OY,
and, hence,

O(p — ¥) ADp - Ov.
Therefore, O(p — ) F O — O. 1

Theorem 6.2. [ is stable under pullback along homomorphisms. That is, for any

f:(4, o)——(B, B),
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Of*P>———> Gf*P

AN

oPp——————GP

Apb——|—>GA

NLN\

Bpb——————>GB

Fig. 2. O commutes with pullback along homomorphisms.

we have
Og o f*= f*olg.

Proof. The bottom face in Figure 2 commutes, since f is a homomorphism. The front
and rear faces are pullbacks by definition of 0, and the right face is a pullback since G
preserves pullbacks along regular monos by assumption. Hence, the left face is a pullback.

O

Theorem 6.2 can be understood as a statement about substitution of terms for vari-
ables. Namely, we view conditional coequations ¢ over (4, ) as predicates of a single
variable z of type A. Then, Theorem 6.2 says that, for any homomorphism

f:(B’ ﬂ>—"'_>(-Aa a)v
and any variable y of type B, we have
(Op)[f(y)/z] = O(elf () /=]).

Thus, O is stable under substitutions of terms built from homomorphisms for variables.
(It is not stable under substitution of arbitrary terms for variables, however.)

7. The invariance operator

We apply the same approach to invariant coequations as in Section 6. That is, we first
define an adjoint pair (a Galois correspondence) between the coequations over (4, )
and the invariant coequations. Then, we use this pair to define a modal operator @ on
coequations over (A, o). Again, we assume that Sub(UHC) is a Heyting algebra, so that
we may use the familiar axioms for S4 necessity operators.

Accordingly, let Inv({A, a)) denote the full subcategory of Sub(A) consisting of the
invariant coequations over (A4, o), and let

Iy :Inv({A, a))—— Sub(A)
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be the inclusion functor.
Theorem 7.1. I, has a right adjoint.
Proof. Let ¢ < A and define

snw = {"/’ <A l Vp:<Aa a)—%(A, a) (ap‘/) < 80)}
We define a functor Ju:Sub{A)— Sub(A) by

Ja(p) = \/SB%

omitting the subscripts when convenient.
We first show that Je is invariant. Let

(A, o)——(4, o)

be given. In order to show that 3,J¢ < Jey, it suffices to show that 3, Jp € P, ie,
for every homomorphism p: (4, o) —(A4, a), we have 3,(3,Jp) < ¢. A quick calculation
shows
Fp3rJp = 3por \/% = \/{Epoﬂ/’ | Y €Bp} <o

Next, we show that I 4 J. Let 1) be invariant. If ¢ < ¢, then, for every endomorphism

b,
3121/) S ’lzb S ()07

so 9 € P, and hence ¥ < Je. On the other hand, if ¢ < Jo, then

p<Jp <o
O

Now let A, = I,J,. In terms of the elements a € 4 = U(A4, o), we see that a € Bap
if and only if for every homomorphism p: (4, a)-— (A4, &), we have p(a) € ¢. Indeed, one
may also show that a € My if and only if for every homomorphism p: (4, a)—(A4, o),
we have p(a) € Aep.

Theorem 7.2. [ is an S4 necessity operator.

Proof. Again, since I is a comonad, it suffices to show that @ preserves meets, or,
more specifically, that

B A @y - ae Ayp).

Let p-(4, a)—(A, &) be given (where ¢ and ¢ are conditional coequations over

(4, @)). Then
Bp@eABY)<FHBe <o

and, similarly, 3,(@p ABY) < ¥. Hence, 3,(Bp AY) < @ Atp. Since p was an arbitrary
homomorphism, B¢ A A = A(p A ). d

Remark 7.8. If (4, o) is a subcoalgebra of the final coalgebra, then every conditional
coequation over (A, o) is invariant (see Remark 5.4). Hence, in this case, A, is just the
identity functor Sub(A)—- Sub(A).
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Remark 7.4. Unlike O, the operator 1 does not commute with pullbacks along homo-
morphisms. Indeed, let I': Set—Set be the identity functor. We will consider a coequa-
tion ¢ over 2 colors, that is, a subset of UH2 = 2%, the set of streams over 2. Specifically,
let

¢ =1{0, 1},
where 0 and 1 are the constant streams. Note that ¢ is invariant.
Let p: H3—H?2 be the homomorphism induced by the coloring p:3—2, where

p0)=0, p1)=0, p2)=1
(i.e., p= H(p)). Then p*y is the set
{o€3¥|Vna(n) <2}U{2}.
It is easy to check that
@p*e = {0, 1, 2} # p*(@p) = p"p.
In terms of substitutions, then, it is not the case that, for every homomorphism
f:(B, B)—=(4, o),
(@) [f(y)/=] = A(elf (y)/z])-

We return to the examples of Section 3 to give some idea of how ;@ works. In those
examples, the coequations over C' were described in terms of the coloring e¢. Typically,
2 takes a coequation defined in terms of colorings to a similar coequation defined in
terms of equality of states, as these examples illustrate.

Example 7.5. Let ['S = (P;,S)?, as in Example 3.11. Recall that the class of deter-
ministic automata Det forms a covariety of Sety, where the defining coequation ¢ over
2 is given by
p={rcUH2|Vi€IVy,zc€o(z)(i). e2(y) = e2(2)}.
It is easy to show that
Be={zcUH2|Vi€IVy,z € o(z)(i).y = 2z},
or, more simply,
Be={zc UH2|Viel. card(o(z)(i)) < 2}.

Indeed, let 9 < UH2 and suppose that for all endomorphisms p: H2—H?2, we have
dp9 < . Suppose, for sake of contradiction, that there is an z € 1, i € I such that
card(o(z)(i)) > 2. Let y and z be distinct elements of o(z)(¢) and define c:UH2—2
taking y to 0 and every other element of UH2 to 1. Let € be the adjoint transpose of
c and we see that e2(¢(y)) # €2(¢(z)). This implies that &(z) & ¢, contradicting our
assumption that for every endomorphism p, 3,9 < ¢.

Example 7.6. Recall the functor ['X = Z x X and the coequation ¢ over N defined by
¢ ={o € UHN | card(Col(o)) < No},
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from Example 3.12. For each o € UHN, let
St(o) = {t"(0) | n € w},
where (en, h, t) :UHN>>N x Z x UHN is the counit and structure map for AN. Then
Ap ={o € UHN | card(St(d)) < Ro}.

8. Generating coequations

We return to the proof of the invariance theorem. To begin, we show that, for any ¢
over (A, a), By and Oy have the same expressive power as @ — i.e., define the same
quasi-covariety.

Theorem 8.1. Let (A, a) be given. For every ¢ € Sub(4), (B, B) € &g, the following
are equivalent.

1 (BB ke
2 (B, B) =@y
3 (B, B oy

Proof. We begin with (1) < (2). Since B¢ + ¢, trivially (2) = (1). Suppose, then,
that (B, B) |= ¢. Let p: (B, B)—>(A, a) be given. To show that Im(p) < HAp, we will
show that, for every r:(4, o)—(4, o), 3, Im(p) < ¢. But, 3, Im(p) = Im(rop) < ¢,
since (B, B) | .

For the equivalence (3) <> (1), again we note that one direction, namely (3) = (1), is

trivial. Let (B, B) |= ¢ and let p: (B, 8)—(A, ) be given. Then U, Im(p) = Im(Up) < ¢
and so, by the adjunction U, - [—]4, Im(p) < [¢]a. Thus,

Im(Up) = Us Im(p) < Uplip]e = Datp.
O

Lemma 8.2. Let ¢ be a coequation over regular injective C. Then the coalgebra @]
satisfies the coequation ¢.

Proof. Let p:[@p]—HC be given. Because HC is regular injective, p extends to a
homomorphism HC —>HC, as shown below.

UHC ........... . UHC’

| ]

D(p ............. >Z(p

Hence, because 0 & ¢ - R and Ay is invariant, there is a unique map 0 p—Ayp
making the square and thus the lower triangle commute, as desired. 1

We say that a coequation ¢ over C is an (endomorphism- Jinvariant subcoalgebra just
in case ¢ = O @ ¢. Clearly, if ¢ = Oy = @A, then ¢ is an invariant subcoalgebra. As we
will see, the converse is true as well.
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Theorem 8.3 (Invariance theorem). A coequation @ over C is the generating co-
equation for some collection V of coalgebras just in case  is an invariant subcoalgebra
of HC.

Proof. If ¢ is a generating coequation for some V, then w008 ¢ by Theorem 8.1.
Conversely, suppose ¢ = 0 1 ¢ and define

V={(B, 8| (B, B) F ¢}

Then, clearly, V' }= . We will show that, if V = 1, then ¢ F 9. But, from Lemma, 8.2, we
know that [A¢] = [¢] is in V. Consequently, the inclusion Oe=~UHC factors through
%, and hence (using the fact that Oy = ¢), we see that ¢ I 7). O

Remark 8.4. The same claim and proof holds for conditional coequations over (4, o)
where (A, o) is regular injective or (4, ) is an invariant subcoalgebra of HA. That is,
a conditional coequation ¢ over such (4, a) is a generating coequation for some class V'
just in case p =01 1A .

Remark 8.5. If £ has arbitrary intersections of regular subobjects, we may re-state
Theorem 8.3 as follows. Given a set S of coequations over C, define

Mod(S) = {(4, o) | (4, o) |= S}.
Also, given a collection V of coalgebras, define

Gen(V) = A\{y SUHC |V =y},
Then,
0@ /\ § = GenMod(S).

Compare this to the statement of the completeness theorem in the introduction, namely,
Ded(S) = Th Mod(S).

Remark 8.6. Let ¢ be a coequation over C and V,, the covariety it defines. By Corol-
lary 4.8, we know that the inclusion functor % :V,—E&¢ has a right adjoint H%. Let
¥ be the counit of the adjunction. The coalgebra HYHC is cofree for V over C in the
following sense:

1 HYHCeV;

2 For any (A, o) € V, and any coloring p:A—C, there is a unique homomorphism

p:(A, a)—HYHC such that ec o UeGoop=np.

One can show that UUYHYHC = O @ . In other words, 0 & @ is the carrier of the
cofree for V over C coalgebra.

Remark 8.7. Suppose that the monad G:£—=& is bounded by C, in the sense of
(Gumm and Schréder, 1998), so that, by Remark 3.9, for each covariety V of &g, there
is a coequation ¢ < UHC such that V = {(B, 8) | (B, 8) = ¢}. Let P(Eg) denote the
(large) partial order of subclasses of ;. Then, there is a Galois connection

Gen
P(Ec) ==*Subg (UHC).



Modal Operators and the Formal Dual of Birkhoff’s Completeness Theorem 23

This adjunction yields an isomorphism between the fixed points of the compositions,
namely,

CoVar(&g) =2 InvSub(UHC),

where CoVar(&g) is the partial order of covarieties of &g, and InvSub(U HC) the partial
order of invariant subcoalgebras.

Example 8.8. Consider again the functor I': Set—Set where I'S = (P5nS)T and the
coequation ¢ defined by

p={rx € UH2|VYi€IVy,z € o(z)(i).e2(y) = e2(2)}.
We showed in Example 7.5 that
e ={z € UH2 | Vi € T card(o(z)(3)) < 2}.

We write s—s’ if there is an i such that s—>s’' and we write —= for the transitive
closure of —-. One can further show that

0B ¢={z € UH2|Yw e UH2(if t—w then Vi € Z. card(o(w)(:)) < 2)}.

By Theorem 8.3, (1 & ¢ is the generating coequation for Det, the class of deterministic
automata.

Theorem 8.9. For any coalgebra (4, a),
Doiza S Za Da .

Proof. By definition of @, it suffices to show that, for every coequation ¢ < A and ho-
momorphism p: (4, o)~=>(A, o), 3,0 Ap < O¢. Let i:[Ap|>=HC denote the inclusion
homomorphism. We calculate

3, 08¢ =Im(poi) <Oy,
since [Ay] k= ¢ by Lemma 8.2 and hence [A¢] | O¢ by Theorem 8.1. |
Corollary 8.10. The composite 12 is an S4 operator.

Proof. Tt suffices to check that 1@ is idempotent, since the other conditions are triv-
ially satisfied. Idempotence follows from the following calculation.

Or=002r<030A
a

Hence, if ¢ is an invariant subcoalgebra, then Ay = B O @@ > O XA By = ¢ and
similarly Oy = . That is, p = O A @ iff ¢ = Op = Ap.

We can prove that O commutes with @ given further assumptions. Namely, if the
modal operator O has a left adjoint <, then 0@ = M@O. If the comonad G preserves
non-empty intersections, then there is indeed such an adjoint <1+ [1. In this case, the
subcoalgebra forgetful functor U, has a left adjoint,

Fy:Sub(A)——Sub({4, o)),
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taking a subobject ¢ to the least subcoalgebra (B, 8) such that ¢ < B. The closure
operator <, is the composite U, F,.

See (Gumm, 2001) for a discussion of functors which preserve non-empty intersections.
Gumm also shows that the filter functor F:Set—Set taking a set X to the collection
of filters on- X does not have this property. See also (Jacobs, 1999) for a discussion of
the closure operator <,, where it is denoted o (and O is denoted a) There, the author
motivates the operators as temporal operators with 2 acting as a “henceforth” operator

and aa “sometime earlier” operator.

Theorem 8.11. If O, has a left adjoint, <, then Ba[y = OuAy.

Proof. To show that MO < 0@, it is sufficient (by the adjunction <- O0) to show that
<O L@

Let ¢ < A =U(A, «). We will show that, for every homomorphism p: (4, ay—(A, o),
Jp <@ 0O ¢ < ¢ and conclude (by definition of @) that < 1 O ¢ < Aw. Again, by the
adjunctions, it suffices to show that

B O <0Op*p=p"0¢,
or, equivalently, 3, @ Oy < Q. This is immediate from the definition of &. O

Example 8.12. Let I'X = Z x X and consider again the coequation ¢ over N from
Example 3.12, where

= {0 € UHN | card(Col(c)) < Ro}.

Note that I' preserves non-empty intersections, so there is indeed an adjoint <1< 1 and
hence Theorem 8.11 applies. It is easy to check that Oy = ¢, and so B ¢ = A {which
was described in Example 7.6) is the generating coequation for the covariety V.

Example 8.13. Consider the real interval X = (0, 1], topologized with open sets of the
form (z,1] for € X. Let F:Set—>Set be the filter functor and let £: X —FX be the
neighborhood filter map, as in (Gumm, 2001). Recall from ibid that a map X—X is an
JF-homomorphism just in case it is continuous and open. We will construct a coequation
pover (X, ) suchthat DA o # A O .

First, we note that the coequation {1} is invariant, i.e., any continuous and open map
X —X fixes 1. This is not difficult to show. Second, {1} is the only non-trivial invariant
subset of X . Indeed, if # < 1 is an element of ¢ and y ¢ ¢, then it is easy to see that the
map f(z) = £z is a continuous, open map such that Jrp £ .

Let ¢ = (2,1] so that Oy = ¢ and hence @ 00 ¢ = {1}. However, 0 A ¢ = 0{1} = 0,
since {1} is not open. Indeed, the only generating conditional coequations over (X, &)
are the trivial coequations, X and 0.

9. Future research

We have tried to develop the idea of “coequation-as-predicate” here. This approach nat-
urally gives a means of constructing new coequations out of old, by using the standard
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logical operators A, -, 3, etc., as well as the modal operators [J and . We have shown
that, for any coequation ¢, the covariety ¢ defines is just the same covariety that CIg
and Ay defines. It is also obvious that the covariety ¢ A 9 defines is the intersection of
the covarieties defined by ¢ and 1. One would like to investigate the relation between the
other logical operators (especially the quantifiers) and the partial order of covarieties.

The basic approach to Birkhoff’s variety theorem found here first occurs in (Ba-
naschewski and Herrlich, 1976) and was extended in a number of papers by Andréka and
Németi, including (Andréka and Németi, 1978; Andréka and Németi, 1979a; Andréka
and Németi, 1979b; Andréka and Németi, 1981; Németi and Sain, 1981; Németi, 1982;
Andréka and Németi, 1983). In these papers, the authors give a sophisticated account
of satisfaction-as-injectivity, allowing a characterization of classes of algebras defined by
Horn equations, quasi-equations, etc. It would be worthwhile to take this work and ex-
plicitly dualize it, to see what the dual of the various equational classes are. We have
recently spent some time exploring the dual of (Németi and Sain, 1981) in detail and will
discuss these results in a forthcoming paper.

Theorem 8.3 is the formal dual of Birkhoff’s deductive completeness theorem. It does
not give a direct means of reasoning about coequations, however. That is, it is not trivial
to give a complete deductive calculus for coequations, given the work we’ve done here. We
hope to give such a calculus for coequations, together with a complete calculus for con-
ditional coequations, in a future paper (as mentioned in Remark 5.3). The completeness
proof for the coequational calculus explicitly uses the invariance theorem.

Robert Goldblatt has recently suggested an alternative approach to a coalgebraic ana-
logue (not formal dual) of Birkhoff’s variety theorem in (Goldblatt, 2001b; Goldblatt,
2001a). Here, he works with formulas built from equations involving states of a coalgebra
and shows that two states are bisimilar just in case they satisfy the same set of so-called
rigid and observable formulas. It appears that these formulas correspond to certain co-
equations over 1 color, but a more systematic comparison of his work to the co-Birkhoff
theorem would be useful.

Along similar lines, it would be useful to generalize the notion of behavioral covarieties
in order to distinguish those covarieties definable by coequations over, say, n colors from
those covarieties that require coequations over m > n colors. We are unaware of any
results in this direction thus far.
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