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Julius Richard Biichi was born in Porto Allegre, Brazil, on 31 January 1924 to
Swiss parents and as a citizen of Zell, Switzerland.! He grew up in Switzerland
and in 1948 received a doctoral degree in mathematics from the Eidgendssische
Technische Hochschule in Zurich; his thesis supervisor was Paul Bernays. After
graduation he moved almost immediately to the United States and had a number
of academic appointments, among others at the University of Michigan, Ann
Arbor. In 1963 he became Professor of Mathematics and Computer Science at
Purdue University and retained that position until his death in 1984. Biichi did
important work in mathematical logic and, relatedly, theoretical computer
science. Dirk Siefkes states in his 1985 that Biichi is “probably best known for
using finite automata as combinatorial devices to obtain strong results on
decidability and definability in monadic second-order theories and extending the
method to infinite combinatorial tools”.* Biichi’s papers were collected by Mac
Lane and Siefkes in Biichi 1990; his posthumously published book Finite

Automata, their Algebras and Grammars was edited by Siefkes.

Two letters were exchanged between Godel and Biichi in November 1957;
they throw some additional light on (G6del’s views of) Herbrand’s role in the
development of the notion of recursiveness. In his Princeton lectures 1934 Godel
presented a general notion of recursiveness, where the individual functions arise

simply as unique solutions of systems of equations:

If ¢ denotes an unknown function, and v, ... , Wk are known functions, and if the y's and ¢ are

substituted in one another in the most general fashions and certain pairs of resulting expressions

are equated, then, if the resulting set of functional equations has one and only one solution for ¢,

. . .3
0 is a recursive function.

Godel asserted in his lectures that Herbrand had suggested this definition to him
in a private communication. Biichi calls this notion recursive (1). It is to be

contrasted with the concept general recursive that Godel obtained from it by

! More detailed information concerning Biichi’s life and work can be found in S. Biichi 1990, Siefkes e.a. 1984,
and Siefkes 1985. - As to the logical and historical issues raised by Biichi, cf. the (Introductory Note to the)
correspondence between Godel and Herbrand.

2 Siefkes 1985, p. 7.



restricting the form of equations and by specifying elementary replacement rules
to be used in calculating the value of functions. Biichi reports that he did not
find the definition of recursive (1) in any of Herbrand’s papers; he did find,
however, in Herbrand’s 1931c “a definition which comes much closer to your
definition [[of general recursive]] of 1934.” The definition Biichi alludes to
allows the introduction of functions f; of n; arguments into Herbrand’s system of
arithmetic together with hypotheses (i.e., defining equations) such that, as

Herbrand requires there,

(@) The hypotheses contain no apparent variables;
(b) Considered intuitionistically, they [[the hypotheses]] make the actual computation of the f(x,
., X,) possible for every given set of numbers, and it is possible to prove intuitionistically that

we obtain a well-determined result.*

In a footnote to the first occurrence of “intuitionistically” Herbrand explains that
this expression means, “when they [[the hypotheses]] are translated into
ordinary language, considered as a property of integers and not as mere

symbols.”

Biichi asks two questions concerning the notion recursive (1): (a) Was the
definition actually suggested by Herbrand or did Godel refer to 1931c? and (b) Is
it known that this notion is much weaker than general recursive? As to the
substantive mathematical issue underlying question (b) Biichi had obtained
results, in particular, that there are recursive (1) predicates that are not general
recursive, indeed not even arithmetical. Godel refers to Kalmar 1955 for an
affirmative answer to (b).” Concerning the historical question Godel reasserts
that Herbrand communicated the definition of recursive (1) to him in a letter. The
definition in Herbrand’s 1931c, Gédel says, “means nothing else but demonstrably
recursive (1)”, where the demonstrations have to be intuitionistic. The actual

computation is not, according to Godel, to proceed according to formal rules, but

® Godel 1934, these Works, vol. I, p. 368.

* Herbrand 1931c, pp. 290-1.

* The Theorem established by Kalmar (on p. 94) is slightly weaker than Biichi’s and states that there is a
system of equations with a unique solution ¢ such that ¢ is arithmetically definable but not general
recursive.



rather by “any kind of intuitionistic reasoning”. “Therefore,” he continues, “it is
a priori possible that also the non-recursive functions which you mention in your
letter might be recursive in this sense.” For a further discussion of Godel’s
analysis of Herbrand’s notion(s) and van Heijenoort’s refinements, see the
Introductory Note to the correspondence with Herbrand, these Works, and the

literature mentioned there.
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The correspondence between Kurt Godel and Jacques Herbrand consists of two
remarkable letters that are focused on two fundamental issues, namely, the
extent of finitist methods and the effect of Gédel’s incompleteness theorems on
Hilbert’s consistency program. Goédel and Herbrand expressed sharply
contrasting views on the latter issue. The correspondence is also intimately
linked to a wider discussion of these theorems that involved most directly
Johann von Neumanh, Paul Bernays, and members of the Vienna Circle.
Characterizing the extent of finitist methods is for Herbrand very much a matter
of circumscribing the extent of the concept of finitist function.! The historically
and conceptually fascinating question is, what effect did Herbrand’s discussion
of finitist functions have on the definition of general recursive functions as given
in Godel 1934? Godel remarked in note 34 of his 1934 that a central part had been
suggested by Herbrand in private communication. When queried about this
remark by Jean van Heijenoort in a letter of 25 March 1963, Gddel responded on
23 April 1963 that the suggestion had been communicated to him in a letter of
1931, and that Herbrand had made it in exactly the form in which 1934 presented
it. But Godel was unable to find the letter among his papers.?> John Dawson
discovered the letter in the Goédel Nachlass in 1986, and it became clear that

Godel had misremembered a crucial feature of Herbrand’s discussion.’

Herbrand was born in Paris on 12 February 1908. At the age of only
twenty-three, he died in a mountaineering accident at La Bérarde (Isére) on 27
July 1931* He defended his doctoral thesis Recherches sur la théorie de la
démonstration on 11 June 1930, spent the academic year 1930/31 in Germany on a
Rockefeller Scholarship, and intended to go for the next academic year to
Princeton University. In his report to the Rockefeller Foundation he wrote that
his stay in Germany extended from 20 October 1930 to the end of July 1931: until

' I take it that Herbrand used “intuitionist” as synonymous with “finitist”; cf. also Herbrand 1931a. On PP
116-8 of his 1985, van Heijenoort, following Godel’s lead, examines very carefully the possibility of giving
“intuitionist” in Herbrand’s work a broader interpretation than “finitist”. The outcome is inconclusive at
best. In my view, the examination does not provide any evidence for such a broader interpretation; see
section 2.2 of Sieg 1994.

2 The exchange between Godel and van Heijenoort is also published in these Works.

® The background and the content of the Herbrand-Gédel correspondence was first described in Dawson
1993. The crucial feature Godel had misremembered concerns the computability of finitist functions; see the
discussion in the last part of this Note.

* For biographical details, see Chevalley 1934 and Chevalley and Lautmann 1931.
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the middle of May 1931 he had been in Berlin, then for a month in Hamburg, and
for the remainder of the time in Gottingen. In these three cities, he had mainly
worked with von Neumann, Artin and Emmy Noether.” Concerning his stay in
Berlin he continued later on: “In Berlin, I have worked in particular with Mr. von
Neumann on questions in mathematical logic, and my research in that subject
will be presented in a paper to be published soon in the ‘Journal fiir reine und
angewandte Mathematik’.”® The paper he alluded to is his 1931c, Sur la non-
contradiction de I’arithmétique, notably comparing his own results with those of
Godel, as his friend Claude Chevalley put it

Indeed, Herbrand had learned of the incompleteness theorems from von
Neumann shortly after his arrival in Berlin.® In a letter of 3 December 1930 he

wrote to Chevalley:

The mathematicians are a very strange bunch; during the last two weeks, whenever I see von
Neumann, we have been talking about a paper by a certain Goédel, who has produced very

curious functions; and all of this destroys some solidly anchored ideas.’

This sentence opens the letter. Having sketched Godel's arguments and reflected
on the results, Herbrand concluded the logical part of his letter with: “Excuse this
long beginning; but all of this has been pursuing me, and by writing about it I
exorcise it a little.””” When Herbrand wrote to Godel on 7 April 1931 he had
actually read the galleys of Gidel 1931; von Neumann had received them at the
beginning of January 1931, but it seems that Herbrand had obtained access to

5 The remark in the report reads in French: “Dans ces trois villes, j’ai travaillé surtout avec M. von Neumann,
Artin et Fr. Noether.”

¢ A Berlin, j’ai surtout travaillé avec M. von Neumann, sur des questions de Logique Mathématique, et mes
recherches dans cette branche seront exposeés dans un mémoire qui paraitra prochainement dans le ‘Journal
fiir reine und angewandte Mathematik’.

7 Chevalley 1934, p. 25.

8 For von Neumann'’s role in the early discussion of Godel’s theorems, see the Introductory Note to his
correspondence with Godel.

’ Les mathématiciens sont une bien bizarre chose; voici une quinzaine de jours que chaque fois que je vois
[von] Neumann nous causons d'un travail d'un certain Godel, qui a fabriqué de bien curieuses fonctions; et
tout cela détruit quelques notions solidement ancreés.

19 Excuse ce long début; mais tout cela me poursuit, et de 1'écrire m'en exorcise un peu.



them only more “recently” through Bernays, with whom he also had contact

during his stay in Berlin."

On the very day he wrote to Godel, Herbrand sent a note as well to
Bernays, enclosed a copy of his letter to G6del and contrasted his consistency

proof with that of Ackermann (which he ascribed mistakenly to Bernays):

In my arithmetic the axiom of complete induction is restricted, but one may use a variety of other

functions than those that are defined by simple recursion: in this direction, it seems to me, my

theorem goes a little farther than yours.”

The central issue of the letter to G6del is formulated for Bernays as follows: “I
also try to show in this letter how your results can agree with these of Gédle
[sic].”*® All of this information puts into sharper focus the remark in Herbrand’s
1931b, which, according to Goldfarb's introductory note to that item in Herbrand
1971, was submitted to Hadamard at the beginning of 1931.

Recent results (not mine) show that we can hardly go any further: it has been shown that the
problem of consistency of a theory containing all of arithmetic (for example, classical analysis) is
a problem whose solution is impossible. [[Herbrand is here alluding to Godel 1931.]] In fact, I am

at the present time preparing an article in which I will explain the relationships between these

results and mine [[this article is 1931(:]].14

It seems qﬁite clear that Herbrand's attempt to come to a thorough
understanding of the relationship between Godel's theorems and ongoing proof-
theoretic work, including his own, prompted the specific details in his letter to
Godel as well as in his 1931c.

" During the twenties Bernays spent the semester breaks mostly in Berlin with his family. Godel had sent
the galleys to Bernays’ Berlin address in early January, but Bernays received them only in mid-January in
Gottingen; see Bernays’ letter to Godel of 18 January 1931.

' Bernays, in his letter to Godel of 20 April 1931, pointed out that Herbrand had misunderstood him in an
earlier discussion: he, Bernays, had not talked about a result of his, but rather about Ackermann's
consistency proof. The German text in Herbrand’s letter to Bernays reads: “In meiner Arithmetik ist das
Axiom der Vollstandigen Induktion beschrinkt, aber man darf allerlei andere Funktionen benutzen als
diejenige die durch einfache Rekursion definiert sind: in dieser Richtung scheint es mir dass mein Theorem
etwas weiter geht als das Ihrige.”

¥ Cf. previous note, as to the results Herbrand is referring to. The German text is: “Ich suche auch in diesem
Brief zu zeigen wie Ihre Ergebnisse mit diesen von Gddle iibereinstimmen kénnen.”

¥ Herbrand 1931b, p- 279. The remarks in double brackets are due to Goldfarb, the editor of Herbrand 1971.



At issue is the extent of finitist or, for Herbrand synonymously,
intuitionist methods, and thus the reach of Hilbert’s consistency program.
Herbrand’s letter can be understood, as Gédel in his response quite clearly did,
to give a sustained argument against Godel’s assertion in his 1931 that the second

incompleteness theorem does not contradict Hilbert’s “formalist viewpoint”:

For this viewpoint presupposes only the existence of a consistency proof in which nothing but
finitary means of proof is used, and it is conceivable that there exist finitary proofs that cannot be

expressed in the formalism of P (or of M and A).”®

Herbrand introduces a number of systems for arithmetic, all containing the
axioms (I) for predicate logic with identity and the Dedekind-Peano axioms for
zero and successor. The systems are distinguished by the strength of the
induction principle, whether it is available for all formulas or just quantifier-free
ones, and by the class F of finitist functions for which recursion equations are
available. The system with full induction and recursion equations for functions
in F is denoted by I+2+3F; if induction is restricted to quantifier-free formulas,
the resulting system is denoted by I+2'+3F. The defining axioms for elements f;,

f,, f5, ... in F must satisfy, according to Herbrand, the following conditions:

(I) The defining axioms for f,, contain, besides f,, only functions of lesser index.

(2) These axioms contain only constants and free variables.
(3) We must be able to show, by means of intuitionistic proofs, that with these axioms it is
possible to compute the value of the functions univocally for each specified system of values of

their arguments.

As examples for classes F he considers the set E, of addition and multiplication,
as well as the set E, of all primitive recursive functions from Gédel’s 1931. He
asserts that the functions definable by his own “general schema” include many
other functions, in particular, the Ackermann function (which he calls the Hilbert

function). Furthermore, he argues that one can construct by diagonalization a

¥ Godel 1931, p. 197; in these Works, vol. I, p. 195. P is the version of the system of Principia Mathematica in
Godel’s 1931 paper, M is the system of set theory introduced by von Neumann, and A is classical analysis.



finitist function that is not in E, if E is a set of functions satisfying axioms such
that “one can always determine, whether or not certain defining axioms are

among these axioms”.

The fact of the open-endedness of (a finitist presentation of) the concept of
finitist function is crucial for Herbrand’s conjecture that one cannot prove that all
finitist methods are formalizable in Principia Mathematica. But he claims that
every finitist proof, as a matter of fact, can be formalized in a system of the form
1+2’+3F with a suitable class F (that depends on the given proof) and, thus, also
in Principia Mathematica. Conversely, he insists that every proof in the quantifier-
free part of I+2'+3F is finitist. He summarizes his reflections by saying in the

letter (and in almost identical words on p. 297 of 1931c):

It reinforces my conviction that it is impossible to prove that every intuitionistic proof is
formalizable in Russell’s system, but that a counterexample will never be found. There we shall

perhaps be compelled to adopt a kind of logical postulate.

The conjectures and claims are strikingly similar to those von Neumann
communicated to Gédel in his letters of 29 November 1930 and of 12 January
1931. We know of Gédel’s response to von Neumann's dicta not through a letter
from Godel, but rather through the minutes of the meeting of the Schlick Circle
that took place on 15 January 1931. These minutes report what Godel viewed as
questionable, namely, the claim that the totality of all intuitionistically correct
proofs is contained in one formal system. That, he emphasized, is the weak spot

in von Neumann'’s argumentation.’®

In response to Herbrand’s letter, Godel makes more explicit his reasons
for questioning the formalizability of finitist considerations in a single formal
system, say in Principia Mathematica. He agrees with Herbrand on the

indefinability of the concept “finitist proof”. However, even if one accepts

' The minutes are found in the Carnap Archives of the University of Pittsburgh. Part of the German text is
quoted in Sieg 1988, note 11, and more fully in Mancosu 1999, pp. 36-7. For other accounts of early reactions
to Godel’s results, see Dawson 1985 and Mancosu 1999. Interestingly, Bernays 1933 uses “von Neumann’s
conjecture” to infer that the incompleteness theorems impose fundamental limits on proof-theoretic
investigations.



Herbrand’s very schematic presentation of finitist methods and the claim that
every finitist proof can be formalized in a system of the form I+2’+3F, the
question remains “whether the intuitionistic proofs that are required in each case
to justify the unicity of the recursion axioms are all formalizable in Principia

Mathematica.” He continues:

Clearly, I do not claim either that it is certain that some finitist proofs are not formalizable in
Principia Mathematica, even though intuitively I tend toward this assumption. In any case, a
finitist proof not formalizable in Principia Mathematica would have to be quite extraordinarily
complicated, and on this purely practical ground there is very little prospect of finding one; but

that, in my opinion, does not alter anything about the possibility in principle.

It seems that Godel had changed his views significantly by late December 1933
when he gave an invited lecture to the Mathematical Association of America in
Cambridge, Massachusetts. In the handwritten text for this lecture, Godel’s
19330, he sharply distinguishes intuitionist from finitist arguments, the latter
constituting the most restrictive form of constructive mathematics. He also
insists that the known finitist arguments given by “Hilbert and his disciples” can
all be carried out in a certain system A.” In turn, he asserts, proofs in the system
A “can be easily expressed in the system of classical analysis and even in the
system of classical arithmetic, and there are reasons for believing that this will
hold for any proof which one will ever be able to construct”.®* The direct
consequence of this observation and the second incompleteness theorem is that
classical arithmetic cannot be shown to be consistent by finitist means. Gédel had
anticipated that consequence by stating earlier: “But unfortunately the hope of
succeeding along these lines [of trying to establish consistency by means that
satisfy the restrictive demands of system A, WS] has vanished entirely in view of

some recently discovered facts.”

V The restrictive characteristics of the system A are formulated on pp. 23 and 24 of *19330: (i) universal
quantification is restricted to totalities whose elements can be generated by a “finite procedure”; (ii)
negation cannot be applied to universal statements; (iii) notions have to be decidable and functions must be
calculable. As to condition (iii), Godel claims, “such notions and functions can always be defined by
complete induction”; cf. Note 19 below and also Gédel’s own Note 3 of 1934,



Nevertheless, Godel formulates on the next page of his *19330 a theorem
of Herbrand’s as the most far-reaching among interesting partial results in the
pursuit of Hilbert’s consistency program: “If we take a theory which is
constructive in the sense that each existence assertion made in the axioms is
covered by a construction, and if we add to this theory the non-constructive
notion of existence and all the logical rules concerning it, e.g., the law of
excluded middle, we shall never get into any contradiction.” The result,
mentioned in Herbrand'’s letter as Remark 2 (on p. 3), can be understood in just
this way; it foreshadows of course the central result of Herbrand’s 1931c. Godel
conjectures that Herbrand’s method might be generalized, but emphasizes again
(on p. 27) that “for larger systems containing the whole of arithmetic or analysis
the situation is hopeless if you insist upon giving your proof for freedom from

contradiction by means of the system A”.”

There is one prima facie puzzling remark in Herbrand’s letter, when he
claims in point 3: “In general, if we want to apply your methods to an arithmetic
that has the functions of a set F, we need a larger set of functions. (This can be
proved precisely: it is very easy.)” At the end of point 5, Herbrand refers in a
parenthetical remark to this issue; he maintains that it is the function obtained by
diagonalization that forces the consideration of larger classes of functions. Godel
finds point 3 “not completely comprehensible”; after all, he adds, a consistency

proof forces us to go beyond the system being studied, but the proof of the

¥ Gadel *19330, p. 26; in these Works, vol. 111, p. 52. This issue is discussed also in Feferman’s Introductory
Note to *19330, these Works, vol. III, pp. 40-42, and in the correspondence with Bernays, in particular in
Godel’s letter of 24 January 1967.

% This systematic context allows us to calibrate the strength of the system A in *19330 and, thus, Gédel’s
views about the extent of finitist methods at this time. In Godel’s judgment, Herbrand had given a finitist
consistency proof for a theory of arithmetic with quantifier-free induction and a large class F of calculable
functions that included the Ackermann function; Godel was thoroughly familiar with that theory, as he used
it — with full induction — in his 1933e. The system A is consequently stronger than primitive recursive
arithmetic.

From the details of the consistency proof it is clear that the functions in F must be available in the
finitist theory, and that in particular the Ackermann function is finitist. Gédel was at this time not alone in
considering the Ackermann function as a finitist one; Herbrand obviously did, and so did von Neumann as
witnessed by his letter of 29 November 1930 to Gédel. Indeed, Mark Ravaglia makes in his doctoral
dissertation the case that Hilbert and Bernays view (in their 1934) extensions of “rekursive Zahlentheorie”
by Ackermann-type functions as finitist.

In part III of his Lecture at Zilsel’s, *1938a, Godel distinguishes three constructive systems that all
satisfy the most stringent constructivity requirements, and it is here that he introduces another system, also
called A, that clearly is primitive recursive arithmetic. He claims on p. 3 that Hilbert “wanted to carry out
the proof [[of consistency]] with this”. (I do not have a conjecture, why Gédel changed his views.)



statement (*) “If the system is consistent, then the proposition given by me is
unprovable.” can be given in the system. Herbrand, as if anticipating Godel’s
rejoinder, claims in 1931c (on p. 296) that for the proof of just this statement one
needs the function enumerating all elements of F. Consequently, Godel’s

argument cannot be carried out in the system.

But, to carry out Godel’s argument, we have to number all objects occurring in proofs; we are
thus led to construct the [enumeration, WS] function of two variables f,(x); this justifies what we
were saying above, namely, that it is impossible, in an arithmetic containing the hypotheses C’, to

formalize Godel’s argument about this arithmetic.”

Herbrand’s specific assumption — that a finitist metamathematical description of
an arithmetic like his, even when restricted to a definite set of recursion
equations, uses necessarily an enumeration function - is not correct” However,
the implicitly underlying general point is worth emphasizing: the proof of (¥),
and thus the proof of the second incompleteness theorem, is based delicately on
additional assumptions concerning the proof predicate. Those assumptions were
formulated as derivability conditions in the second volume of Hilbert and Bernays’
Grundlagen der Mathematik. In his own further reflections on the generality of his
theorems, Godel seems to focus exclusively on the analysis of “mechanical
procedures” or “effective calculability”, i.e., a general characterization of formal

theories; but as we will see below that is not quite correct either.

This issue leads naturally to a discussion of the role this correspondence
played for the origins of recursion theory. From the very beginning, Godel
attributed to Herbrand the inspiration for the definition of general recursive
function in his 1934 Princeton Lectures. In those lectures Godel strove, as
indicated even by their title On undecidable propositions of formal mathematical
systems, to make his incompleteness results less dependent on particular
formalisms. In the introductory §1 he discussed the notion of “a formal

mathematical system” in some generality and required that

* Herbrand 1931c, p. 296. The hypotheses C’ are “a definite group of schemata of type C”, i.e., a definite
group of recursion equations for the functions in F — that allows a finitist determination of which recursion
equations are involved.
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the rules of inference, and the definitions of meaningful formulas and axioms, be constructive;
that is, for each rule of inference there shall be a finite procedure for determining whether a given

formula B is an immediate consequence (by that rule) of given formulas A1, ... , A,, and there
shall be a finite procedure for determining whether a given formula A is a meaningful formula or

: 22
an axiom.

He used, as in his 1931, primitive recursive functions and relations to present
syntax, viewing the primitive recursive definability of formulas and proofs as a
“precise condition which in practice suffices as a substitute for the unprecise
requirement of §1 that the class of axioms and the relation of immediate
consequence be constructive”.® But a notion that would suffice in principle was
really needed, and Gddel attempted to arrive at a more general notion. He
considered the fact that the value of a primitive recursive function can be
computed by a finite procedure for each set of arguments as an “important

property” and added in footnote 3:

The converse seems to be true if, besides recursions according to the scheme (2) [i.e. primitive
recursion as given above], recursions of other forms (e.g., with respect to two variables

simultaneously) are admitted. This cannot be proved, since the notion of finite computation is

not defined, but it can serve as a heuristic principle.*

What other recursions might be admitted is discussed in the last section of
the Notes under the heading “general recursive functions”. Godel described in it
the proposal for the definition of a general notion of recursive function that (he

thought) had been suggested to him by Herbrand:

If ¢ denotes an unknown function, and v, ... , Yk are known functions, and if the y's and ¢ are

substituted in one another in the most general fashions and certain pairs of resulting expressions

% See Rose 1984 for a contemporary presentation of such theories.

2 Godel 1934, p. 1; in these Works, vol. I, p. 346.

® Godel 1934, p. 19; in these Works, vol. I, p. 361.

% Godel 1934, p- 3; in these Works, vol. I, p. 348. Godel added later: "This statement is now outdated; see the
Postscriptum, pp. 369-371." He refers to the Postscriptum appended to the lectures for Davis 1965. — It
should also be emphasized that Gédel did not intend to formulate (a version of) Church’s Thesis; cf. Davis
1982, p. 8. 1t is of interest to note, however, that already in 19330, p. 24, Godel asserts that functions that “can
be calculated for any particular element” can always be defined by complete induction.
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are equated, then, if the resulting set of functional equations has one and only one solution for ¢,

¢ is a recursive function.

He went on to make two restrictions on this definition. He required, first of all,
that the left-hand sides of the equations be in a standard form with ¢ being the
outermost symbol and, secondly, that “for each set of natural numbers k, ... , k
there shall be exactly one and only one m such that ¢(ky, ..., k) = m is a derived
equation”. The rules that were allowed in giving derivations are simple
substitution and replacement rules. This proposal was taken up for systematic

development in Kleene 1936.

We should distinguish then, as Goédel did, two features: first, the precise
specification of mechanical rules for deriving equations, i.e., for carrying out
computations, and second the formulation of the regularity condition requiring
calculable functions to be total. That point of view was also expressed by Kleene
who wrote in his 1936 with respect to the definition of general recursive function

of natural numbers:

It consists in specifying the form of the equations and the nature of the steps admissible in the
computation of the values, and in requiring that for each given set of arguments the computation

. . 2
yield a unique number as value.

In his letter to van Heijenoort, dated 14 August 1964, Godel asserted that “it was
exactly by specifying the rules of computation that a mathematically workable
and fruitful concept was obtained”. When making this claim Gddel took for
granted that Herbrand's suggestion had been “formulated exactly as on page 26
of my lecture notes, i.e. without reference to computability”.” As was noticed,
Godel had to rely on his recollection which, he said, “is very distinct and was still
very fresh in 1934”. On the evidence of Herbrand’s letter it is clear that Gddel

misremembered. This is not to suggest that Godel was wrong in his broad

® Godel 1934, p. 26; in these Works, vol. I, p. 368. Kalmar 1955 pointed out that the class of functions
satisfying such functional equations is strictly greater than the class of general recursive functions; see also
the exchange of letters between Gédel and Biichi in these Works.

% Kleene 1936, p. 727.
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assessment, but rather to point to the most important step he had taken by
disassociating recursive functions from an epistemologically restricted notion of

proof.

Godel later on dropped the regularity condition altogether and
emphasized “that the precise notion of mechanical procedures is brought out
clearly by Turing machines producing partial rather than general recursive
functions”.*® The very notion of partial recursive function, of course, had been
introduced in Kleene 1938. At this earlier historical juncture, however, the
introduction of an equational calculus with particular computation rules was
important for the mathematical development of recursion theory as well as for
the underlying conceptual analysis. It brought out clearly what Herbrand,
according to Godel in his letter of 14 August 1964 to van Heijenoort, had failed to
see, namely “that the computation (for all computable functions) proceeds by
exactly the same rules”. In addition, the rules needed are of a remarkably
elementary character due to the general symbolic character of the computation
steps. It seems that G6del was right, for stronger reasons than he put forward,
when he cautioned in the same letter that Herbrand had foreshadowed, but not

introduced, the notion of general recursive function.

In a way, the mathematical development of computability theory based on
this general analysis provided an important fact for responding to Herbrand'’s
issue concerning the proof of the second incompleteness theorem that was
mentioned above. Godel formulated in section 6 of 1934 a number of “conditions
that a formal system must satisfy in order that the foregoing arguments apply”,
i.e., the arguments for the incompleteness theorems. The very first condition

states:

Supposing the symbols and formulas to be numbered in a manner similar to that used for the
particular system considered above, then the class of axioms and the relation of immediate

consequence shall be [primitive, WS] recursive.?”

 That is claimed in the letter to van Heijenoort of 23 April 1963.
 Wang 1974, p. 84.
» Godel 1931, p. 19; in these Works, vol. I, p. 361.
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The condition becomes superfluous, Godel writes in his 1964 Postscriptum, if
formal systems are viewed as mechanical procedures for producing formulas,
and if Turing’s analysis of such procedures is accepted. The antecedent of this

conditional provides the basis for a proof “that for any formal system provability

is a predicate of the form (Ex)xBy, where B is primitive recursive”. Together
with the introducibility of all primitive recursive functions in elementary number
theory, the latter fact is crucial for the detailed proof of the second
incompleteness theorem (more specifically, for the verification of the third
derivability condition) by Hilbert and Bernays, which “carries over almost
literally to any system containing, among its axioms and rules of inference, the

axioms and rules of inference of number theory”.*

Wilfried Sieg™
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Introductory Note to the Godel-Post Correspondence

Wilfried Sieg

September 1, 2001



Shortly after his return from Europe on 15 October 1938, Godel attended a
regional meeting of the American Mathematical Society in New York City.!
During the meeting, on October 29, he made the acquaintance of Emil L. Post.
Post wrote a brief, moving note to Godel the very same day and an extended
letter on the following day. Post reflected on their meeting and, relatedly, on his
own work on absolutely undecidable problems that had started in the early
twenties and “anticipated” Godel’s first incompleteness theorem. It had been
highly emotional for Post to meet the man “chiefly responsible for the vanishing
of that dream”, i.e., the dream of astounding the mathematical world by his
“unorthodox ideas” and by establishing the existence of unsolvable problems.
“Needless to say”, he emphasized at the end of his second letter, “I have the
greatest admiration for your work, and after all it is not ideas but the execution

r”

of ideas that constitutes the mark of greatness.” Post wrote a third letter on 12
March 1939 after he had read Godel’s abstract 1939 on the relative consistency of
the continuum hypothesis. Godel had sent Post a “sheaf of reprints” in the fall

of 1938, but responded to Post’s letters only on 20 March 1939.

At the time of his meeting with Godel, Post was a faculty member at the
City College of New York. He had been appointed there in 1935 and remained at
the institution until his death in 1954. His education was also deeply connected
with City College. Born in the Polish town of Augustow on 11 February 1897,
Post emigrated with his parents to New York in May of 1904. He attended
Townsend Harris High School, a free secondary school for gifted students
located on the campus of City College, and received his B.S. from City College in
1917.

! For a fuller discussion of Gédel’s circumstances at the time, see Dawson 1997; the meeting
between Post and Godel is described on pp. 130-2. Dauis 1994 provides information on Post’s life
and work, in particular about the enormous difficulties Post had to face, from his severe mental
illness to the restrictive working conditions under which his scientific endeavors had to be
pursued. -- The biographical facts in this Note stem from these two sources.

Special thanks to Martin Davis, John Dawson, Solomon Feferman, and Charles Parsons
for helpful e-correspondence concerning a draft of this Note; John Dawson helped me to locate
information on the mathematician Jesse Douglas mentioned in the Postscript of Post’s letter of 29
October 1938.



From 1917 to 1920 he was a graduate student at Columbia University,
finishing with a thesis under the direction of Cassius Keyser. The thesis was
published as Post 1921 and concerned the propositional calculus in Whitehead
and Russell’s Principia Mathematica. Post established the semantic completeness®
of the calculus; he went on to generalize the “postulational method” and the
“truth-table development” for finitely many, arbitrary propositional connectives.
The former generalization was the starting-point for Post’s investigation of
symbolic logics that led to the anticipation of Gddel’s result. Post’s 1941 gives an
" account of this work; the paper was rejected for publication and appeared only in
Davis 1965.

The central new mathematical result of 1941 - the reduction of arbitrary
canonical systems to systems in normal form - was presented in Post 1943. Post’s
Thesis® secures then the reduction for all symbolic logics. Post describes in his
letter how this reductive result led him first to the discovery of an absolutely
unsolvable problem and then to the realization of the incompleteness of all
symbolic logics. Post emphasizes that a particular proposition can be seen to be
undecidable, i.e., “... a particular enunciation of the logic, determined by the
logic, and of course the entscheidung problem [sic] and the method of proving
the above contradiction, was such that neither it nor its negative was asserted in
the logic.”” These very sketchy considerations are detailed in section 2 of Post

1944; that section is entitled “A form of Godel’s theorem”.

Post formulates then in his letter what he takes to be the main point of
Godel’s Theorem: “... the existence of an undecidable proposition in each logic

sufficiently general and yet a ‘symbolic logic’.” This is a formulation of sufficient

generality, such as Godel himself had been aiming for. Its rigorous mathematical

2 This is the Fundamental Theorem in section 3 of Post 1921. - Hilbert and Bernays established
the (Post) completeness of the propositional calculus in lectures of 1917/18 and Bernays’s
Habilitationsschrift of 1918. Some of the results of the latter were published only in Bernays 1926;
cf. Sieg 1999 and Zach 1999.

% In Davis 1982, p. 21, Post’s Thesis is formulated roughly as follows: any set of strings on some
alphabet that can be generated by a finite process (thus any symbolic logic) can be generated by
canonical productions and, using the reductive result, by normal productions.



version depends for its adequacy on Post’s Thesis.* Indeed, Post’s proof of the
incompleteness result relies on it by identifying symbolic logics with normal
systems. The remainder of the letter is devoted to the underlying
methodological problem and how its difficulty, together with the personal and
professional reasons hinted at in Note 1, prevented Post from publishing his

considerations.

The thesis has, according to Post, “but a basis in the nature of physical
induction”. He believes that that is true not only for his own work, but for “any
~ work”. Such a perspective had been taken in 1936 where Post presents his
formulation 1, a model of computation essentially identical with Turing’s. On p.

105 of that paper he asserts:

The writer expects the present formulation to turn out to be logically equivalent to recursiveness
in the sense of the Godel-Church development. Its purpose, however, is not only to present a
system of a certain logical potency but also, in its restricted field, of psychological fidelity. In the
latter sense wider and wider formulations are contemplated. On the other hand, our aim will be
to show that all such are logically reducible to formulation 1. We offer this conclusion at the
present moment as a working hypothesis. And to our mind such is Church’s identification of

effective calculability with recursiveness.

In a footnote to the last sentence, Post claims that the actual work of Church and
others has carried “this identification considerably beyond the working
hypothesis stage”. He warns, however, that calling the identification a
definition may blind us “to the need of its continual verification” by considering,
quasi-empirically, wider and wider formulations and reducing them to
formulation 1. The success of this research program, he says in the main text,
would “change the hypothesis not so much to a definition or an axiom but to a

natural law” .

Post, in his letter to Godel, states that the quasi-empirical work supporting

the “induction” could be extended to cover the system of Godel 1931 and to

* Godel emphasized in the Postscriptum to his 1934 the need of Turing’s penetrating analysis for
being able to formulate his incompleteness theorems for all formal systems (that are consistent



obtain, in this way, the incompleteness theorem specifically for that system
without appeal to the thesis. That this could be done for the system of Principia
Mathematica itself Post claims to have seen in the twenties. Post did not then
pursue the inductive avenue, because he thought he saw a way of properly
analyzing “all finite processes of the human mind” and thus a possibility of
establishing the theorem “in general and not just for Principia Mathematica”.
Post adds in parentheses after “human mind” in the last quote “something of the
sort of thing Turing does in his computable number paper”® How closely
related Post’s foundational considerations were to those of Turing can be seen
from later developments reflected in Post 1947, Turing 1950, and Turing 1953.
Post used in 1947 a description of Turing machines by production systems to
show the unsolvability of the Thue problem (established independently in
Markov 1947 using quite directly Post’s normal systems). Turing employed in
1950 the same techniques to extend Post’s result. In his semi-popular 1953, he
formulated a version of his thesis in Post’s way: all puzzles (i.e., combinatory
problems) can be transformed into substitution puzzles (i.e., Post’s normal
systems); then he gave a perspicuous presentation of solvable and unsolvable

problems via substitution puzzles.

and include a modicum of elementary number theory). _
> The reference is of course to Turing 1936 and, more particularly, to Turing’s argument in section
nine of that paper; as to the analysis of that argument, see Sieg 2001 and literature quoted there.
In his own 1943 Post writes in note 18: “Since the earlier formal work made it seem obvious that
the actual details of the outline [of the proof of his version of the incompleteness theorem, WS]
could be supplied, the further efforts of the writer were directed towards establishing the
universal validity of the basic identification of generated sets with normal sets.”
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Introductory Note to the Gédel-von Néumann Correspondence’

Wilfried Sieg

September 4, 2001

* Many thanks go to Sam Buss and John Dawson for providing me with information on Buss 1995 and Clote
e.a. 1993, respectively Hartmanis 1989. Solomon Feferman and Charles Parsons suggested substantive and
stylistic improvements.



The correspondence between Johann von Neumann and Godel opens with an
extraordinary letter from von Neumann, written on 20 November 1930. In early
September of that year von Neumann had met Godel at a congress in Konigsberg
and was informed about a theorem Godel had just discovered — (a form of) the
first incompleteness theorem. Von Neumann was deeply impressed; he turned
his attention to logic again and gave lectures on proof theory in the winter term
of 1930-31. As can be gathered from Herbrand’s letter to Claude Chevalley,' von
Neumann was preoccupied with Godel’s result and, as he put it in his own letter,
with the methods Godel had used “so successfully in order to exhibit
undecidable properties.” In reflecting on this result and Go6del’s methods, von
Neumann arrived at a new result that seemed remarkable to him, namely, that
the consistency of a formal theory is unprovable within that theory, if it is
consistent. He formulates this “new result” in the letter to Gédel and claims, less
precisely, that the consistency of mathematics is unprovable; this strong
interpretation of - what we know as -the second incompleteness theorem was to

become be a point of contention between Gédel and von Neumann.

In his next letter of November 29, von Neumann acknowledges the receipt
of a “Separatum” and a letter from Godel? It is most likely that the separatum
was a copy of the abstract 1930b that had been presented to the Vienna Academy
of Sciences on 23 October 1930 and already contained the classical formulation of
the second incompleteness theorem.’> Von Neumann states in his response: “As
you have established the theorem on the unprovability of consistency as a
natural continuation and deepening of your earlier results, I clearly won’t
publish on this subject.” Their differing views on the impact of this result for
Hilbert’s consistency program is discussed below. Two additional topics of

scientific interest are addressed in later correspondence: (i) the relative

1 Cf. the Introductory Note to the Gddel-Herbrand correspondence; Herbrand wrote the letter on 3 December
1930.

? Unfortunately, it seems that this letter and two others in this early correspondence have not been
preserved: von Neumann acknowledges in his letter of 12 January 1931 that he had received two letters
from Godel. (The von Neumann Archives in the Library of Congress do not contain these letters.)

® Godel had by this time completed his 1931; indeed, the paper had been submitted for publication on 17
November 1930. Von Neumann acknowledged receipt of the galley proofs of Godel 1931 in his letter of 12
January 1931. From Mancosu 1999 it is clear that Godel had not sent the galleys before the end of December
1930; see the letters between Hempel and Kaufmann quoted there on pp. 35-36.



consistency of the axiom of choice and the generalized continuum hypothesis, in
letters from 1937 through 1939, and (ii) the feasibility of computations (related to
the now famous P vs. NP problem), in Godel’s last letter to von Neumann in
1956.

As von Neumann's life and work are well-known, only the briefest
biographical sketch is presented.* Born on 28 December 1903 in Budapest
(Hungary), von Neumann grew up in a wealthy Jewish family and attended the
excellent Lutheran Gymnasium in Budapest from 1914 to 1921. He then entered
the University of Berlin as a student of chemistry, but switched in 1923 to the
Eidgenossische Technische Hochschule in Ziirich, where he earned three years
later a diplom degree in that subject. He obtained, also in 1926, a doctoral degree
in mathematics from the University of Budapest. Von Neumann spent the
academic year 1926-27 in Gottingen supported by a Rockefeller Fellowship. He
was Privatdozent in Berlin (1927-29) and Hamburg (1929-30). In 1930 he was
appointed visiting lecturer at Princeton University with the agreement that he
would be back in Berlin for the winter term of 1930-31. In 1931 he was promoted
to professor of mathematics at Princeton and became two years later one of the
six mathematics professors at the newly founded Institute of Advanced Study,
together with J.W. Alexander, A. Einstein, M. Morse, O. Veblen, and H. Weyl; he
kept that position for the remainder of his life. Returning to the correspondence
with Godel, it obviously started while von Neumann was staying in Berlin

during the winter term of 1930-31.

In the 1920s von Neumann contributed to the foundations of mathematics
not only through a series of articles on set theory (1923, 1925, 1926, 1928, 1928a,
1929) but also very specifically to Hilbert’s emerging finitist consistency program
through his paper Zur Hilbertschen Beweistheorie. Though published only in 1927,
the paper had already been submitted for publication in July of 1925. In it von
Neumann established the consistency of a formal system of first-order arithmetic

with quantifier-free induction; he also gave a detailed critique of the consistency

* For accounts see the collection of essays Birkhoff e.a. 1958 (in particular the accessible description by Ulam
on pages 1-49) and the book Macrae 1992.



proof in Ackermann 1924. What is of interest in the context of his early
correspondence with Godel is the general strategic attitude he took towards
proof-theoretic research. It is expressed in the following quote from the
introduction to his 1927, where he formulates four guiding ideas of Hilbert’s
proof theory. (Note that “intuitionist” and “finitist” were evidently synonymous
for von Neumann.) Viewing an intuitionistic consistency proof for classical

formal theories as the crucial aim, he articulates the final guiding idea as follows:

Here one has always to distinguish sharply between two different ways of “proving”: between
the formalized (“mathematical”) proving within a formal system and the contentual
(“metamathematical”) proving about the system. While the former is an arbitrarily defined
logical game (that must be, however, to a large extent analogous with classical mathematics), the
latter is a chaining of immediately evident contentual insights. This “contentual proving” has
consequently to be carried out completely within the intuitionistic logic of Brouwer and Weyl:
proof theory is to rebuild classical mathematics so-to-speak on an intuitionistic basis and in this

way reduce strict intuitionism ad absurdum.®

The strategic goal of proof-theoretic research, as interpreted by von
Neumann, also shaped his talk at the Second Conference for Epistemology of the
Exact Sciences. The conference was held in K&nigsberg from 5 to 7 September
1930, and on the first day of the congress von Neumann talked about Hilbert’s
finitist standpoint in a plenary session, where Carnap and Heyting presented the

logicist, respectively intuitionist position.® On the next day Gédel described the

Svon Neumann 1927, pp. 2-3. The German text is this: “Hierbei mufl stets scharf zwischen zwei
verschiedenen Arten des “Beweisens” unterschieden werden: Dem formalisierten (“mathematischen”)
Beweisen innerhalb des formalen Systems, und dem inhaltlichen (“metamathematischen”) Beweisen iiber
das System. Wihrend das erstere ein willkiirlich definiertes logisches Spiel ist (das freilich mit der
klassischen Mathematik weitgehend analog sein muB), ist das letztere eine Verkettung unmittelbar
evidenter inhaltlicher Einsichten. Dieses “inhaltliche Beweisen” muf8 also ganz im Sinne der Brouwer-
Weylschen intuitionistischen Logik verlaufen: Die Beweistheorie soll sozusagen auf intuitionistischer Basis
die klassische Mathematik aufbauen und den strikten Intuitionismus so ad absurdum fiihren.”

¢ Godel reviewed the published versions of these presentations in Godel 1932e, f, and g. Waismann had
actually also given a paper in the plenary session, entitled Das Wesen der Mathematik: Der Standpunkt
Wittgensteins; his talk was not published. '

From the letters between von Neumann and Carnap, quoted in Mancosu 1999, we know that their
Kénigsberg talks were published (in the form they were) only to reflect the situation before Godel’s results.
Von Neumann writes, in his letter to Carnap of 7 June 1931:

“Ich halte daher den Konigsberger Stand der Grundlagendiskussion fiir iiberholt, da Gédels fundamentale
Entdeckungen die Frage auf eine ganz verdnderte Plattform gebracht haben. (Ich weiss, Godel ist in der
Wertung seiner Resultate viel vorsichtiger, aber m. E. {ibersieht er die Verhiltnisse an diesem Punkt nicht
richtig.)

Ich h§be mit Reichenbach mehrfach besprochen, ob es unter diesen Umsténden tiberhaupt Sinn hat, mein
Referat zu publicieren — hitte ich es 4 Wochen spiter gehalten, so hitte es ja wesentlich anders gelautet. Wir



results of his dissertation” The plenary session was complemented on 7
September by a roundtable discussion concerning the foundations of
mathematics. That discussion was chaired by Hans Hahn, and its participants
included Carnap, Heyting, and von Neumann, but also three additional scholars,
namely, Arnold Scholz, Kurt Reidemeister, and Goédel. A shortened and edited
transcript of this discussion was published as Hahn e.a. 1931 in Erkenntnis. Godel
was invited by the editors of the journal to expand on the very brief remarks
about the first incompleteness theorem he had made during the discussion; the
resulting note was added as a Nachtrag to the transcript (see Gidel 1931a).
According to Dawson 1997, Godel had already discussed the new discovery with

Carnap and Waismann before the conference in Vienna, on 26 August 1930:

The main topic of conversation was the plan for their upcoming journey to the conference in
Kdnigsberg, where Carnap and Waismann were to deliver major addresses and where Godel was
to present a summary of his dissertation results. But then, Carnap tersely noted, the discussion
turned to “Godel’s discovery: incompleteness of the system of Principia Mathematica; difficulty of

the consistency proof.”®

This provides a sketch of the background for the meeting at which von
Neumann made the acquaintance of Godel. In his 1981, Wang reports (Godel’s

view) about the encounter with von Neumann:

In September 1930, Godel attended a meeting at Kénigsberg (reported in the second volume of
Erkenntnis) and announced his result [[i.e., the first incompleteness theorem, WS]]. R. Carnap, A.
Heyting, and J. von Neumann were at the meeting. Von Neumann was very enthusiastic about
the result and had a private discussion with Godel. In this discussion, von Neumann asked
whether number-theoretical undecidable propositions could also be constructed in view of the
fact that the combinatorial objects can be mapped onto the integers and expressed the belief that
it could be done. In reply, Godel said, “Of course undecidable propositions about integers could

be so constructed, but they would contain concepts quite different from those occurring in

kamen schliesslich iiberein, es als eine Beschreibung eines gewissen, wenn auch iiberholten Standes der
Dinge doch niederzuschreiben.”

In a note to the last sentence von Neumann adds: “Ich méchte betonen: Nichts an Hilberts Ansichten ist
falsch. Wiren sie durchfiithrbar, so wiirde aus ihnen durchaus das von ihm Behauptete folgen. Aber sie sind
eben undurchfiithrbar, das weiss ich erst seit Sept. 1930.”

7 The abstract of Gédel’s talk is 19304, the draft of his talk presumably 1930c. Dawson’s 1990 and 1997, and
also Mancosu'’s 1999, describe the early reception of the incompleteness theorems.

8 Dawson 1997, p. 68.



number theory like addition and multiplication”. Shortly afterward Godel, to his own
astonishment, succeeded in turning the undecidable proposition into a polynomial form
preceded by quantifiers (over natural numbers). At the same time but independently of this
result, Godel also discovered his second theorem to the effect that no consistency proof of a

reasonably rich system can be formalized in the system itself.’

As to the discovery of the second incompleteness theorem, we thus clearly know
that Godel did not have it in Kénigsberg and that, in contrast, the abstract 1930b
contains its classical formulation. The abstract was presented by Hahn on 23
October 1930 to the Vienna Academy of Sciences. The full text of Godel’s 1931
was submitted for publication to the editors of Monatshefte on 17 November
1930.

There is genuine disagreement between Godel and von Neumann on how
the second incompleteness theorem affects Hilbert’s finitist program. Von
Neumann states his view strongly in his letters to Godel of 29 November 1930
and 12 January 1931. (As to other views, cf. the Introductory Note to the
correspondence with Herbrand and the exchange with Bernays, in particular, the
letters of 24 December 1930, 18 January 1931, 20 April 1931, and 3 May 1931.) In

his letter of 29 November to Godel, von Neumann writes:

I believe that every intuitionistic consideration can be formally copied, because the "arbitrarily
riested"” recursions of Bernays-Hilbert are equivalent to ordinary transfinite recursions up to
appropriate ordinals of the second number class. This is a process that can be formally captured,
unless there is an intuitionistically definable ordinal of the second number class that could not be
defined formally -- which is in my view unthinkable. Intuitionism clearly has no finite axiom

system, but that does not prevent its being a part of classical mathematics that does have one :

From the general fact of the unprovability of a system’s consistency within the
system, he concludes that “There is no rigorous justification of classical
mathematics.” In the second letter, after having received the galleys of Godel’s

1931, he writes even more forcefully:

® Wang 1981, pp. 654-5. The Introductory Note to the correspondence with Wang, these Works, describes on
pp. XX-YY the interaction between Godel and Wang on which this paper is based.



I absolutely disagree with your view on the formalizability of intuitionism. Certainly, for every
formal system there is, as you proved, another formal one that is (already in arithmetic and the

lower functional calculus) stronger. But intuitionism is not affected by that at all.

Denoting first order number theory by A, analysis by M, and set theory by Z, von

Neumann continues:

Clearly, I cannot prove that every intuitionistically correct construction of arithmetic is
formalizable in A or M or even in Z -- for intuitionism is undefined and undefinable. But is it not
a fact that not a single construction of the kind mentioned is known that cannot be formalized in
A, and that no living logician is in the position of naming such [[a construction]]? Or am I wrong,
and you know an effective intuitionistic arithmetic construction whose formalization in A creates
difficulties? If that, to my utmost surprise, should be the case, then the formalization should

work in M or Z!

We know of Goédel’s response to von Neumann'’s dicta not through a letter from
Godel, but rather through the minutes of the meeting of the Schlick Circle that
took place on 15 January 1931. These minutes report what Godel viewed as
questionable, namely, the claim that the totality of all intuitionistically correct
proofs is contained in one formal system. That, he emphasized, is the weak spot
in von Neumann’s argumentation.” However, we also know that by December
of 1933 Godel had changed his view as follows: Finitism, considered by Godel as
the strictest form of constructive mathematics, is narrower than intuitionism and
(its practice) can be captured in a formal system. Thus he argues, alluding to the
second incompleteness theorem, the hope of succeeding along the lines proposed
by Hilbert “has vanished entirely in view of some recently discovered facts”.
That change is made explicit in his talk 19330 to the Mathematical Association of

America.l!

Von Neumann’s admiration for Godel’s work is expressed directly in his

very first letter of 20 November 1930, when he calls the first incompleteness

'° The minutes are found in the Carnap Archives of the University of Pittsburgh. Part of the German text is
quoted in Sieg 1988, note 11, and more fully in Mancosu 1999, pp. 36-7. Interestingly, Bernays 1933 uses “von
Neumann’'s conjecture” to infer that the incompleteness theorems impose fundamental limits on proof
theoretic investigations.

1 Cf. *19330, these Works, volume III, pp. 51-2 and also the Introductory Note to the correspondence with
Herbrand.



theorem “the greatest logical discovery in a long time.” That admiration is also
reflected, for example, in his decision to talk about the incompleteness theorems
when he lectured at Princeton in the fall of 1931. Kleene reports in his 1987b (on
page 491) that through this lecture “Church and the rest of us first learned of
Godel’s results.” Von Neumann’s friend Ulam states in his Adventures of a

Mathematician:

When it came to other scientists, the person for whom he [[von Neumann]] had a deep
admiration was Kurt Godel. This was mingled with a feeling of disappointment at not having
himself thought of “undecidability.” For years Godel was not a professor at Princeton ... Johnny

would say to me, “How can any of us be called professor when Godel is not?”*

The letters from 13 July 1937 through 17 August 1939 are mainly focused on
practical issues surrounding the publication of Gddel’s work on the relative
consistency of the axiom of choice and the generalized continuum hypothesis.
After von Neumann finally had the opportunity to study Goédel’s lectures
thoroughly, he wrote on 22 April 1939: '

I would like to convey to you, most of all, my admiration: You solved this enormous problem
with a truly masterful simplicity. And you reduced to a minimum the unavoidable technical
complications of the proof details by a presentation of impressive persistence and drive. Reading

your investigations was really a first-class aesthetic pleasure.

It is quite impressive that von Neumann studied Godel’s investigations in
sufficient detail to make also some “critical remarks”; perhaps even more
impressive is his earlier letter of 28 February 1939 in which he directs Godel to
the paper 1938a by Kond6 that contains, in his view, “quite remarkable and
surprising results on higher projective sets”. He asks Godel, “Are such matters
not important for your further investigations on the continuum hypothesis ...?”
Godel responds in his letter of 20 March 1939 by saying with reference to his
1938: “The result of Kondd is of great interest to me and will definitely allow an

important simplification in the consistency proof of 3. and 4. of the attached

2 Ulam 1976, p. 80.



offprint.” (For an explanation of the nature of these results, see Solovay’s

Introductory Note to 1938-1940, these Works, volume II, in particular pages 14-15.)

During the following 17 years, it seems, von Neumann and Goédel did not
exchange letters; after all, they were colleagues at the Institute for Advanced
Study. In the spring of 1955, von Neumann took a leave from the Institute and
moved from Princeton to Washington, D.C., in order to work as a member of the
Atomic Energy Commission to which he had been appointed by President
Eisenhower. In the preface to von Neumann’s posthumous 1958, his widow
Klara reports that von Neumann was diagnosed with bone cancer in August
1955. His health deteriorated quickly. By January 1956 he was confined to a
wheelchair, though he still attended meetings and worked in his office. There
was also some hope that X-ray treatment might be helpful. Klara von Neumann
writes that by March of 1956, however, “... all false hopes were gone, and there
was no longer any question of Johnny being able to travel anywhere. ... In early
April Johnny was admitted to Walter Reed Hospital; he never left the hospital
grounds again until his death on February 8, 1957.”

Godel wrote his last letter to von Neumann on 20 March 1956. He had
heard, sobhe states in this letter, that von Neumann had undergone a radical
treatment and was feeling better. “I hope and wish,” Godel continues, “that your
condition will soon improve even further and that the latest achievements of
medicine may, if possible, effect a complete cure.” Then he formulates a striking
mathematical problem and asks for von Neumann’s view on it. It concerns the
feasibility of computations and is closely connected to the problem that has
caught, independently, the attention of mathematicians and coniputer scientist,

the P versus NP problem.” For Godel it is the question “how significantly in

3 This is the question, whether the class P of functions computable in polynomial time is the same as the
class NP of functions computable non-deterministically in polynomial time. For a very good introduction to
the rich and multifaceted problems that fall into the NP category, see Garey and Johnson 1979.

Part of the letter was already published in Hartmanis 1989; the full German letter and its English
translation are found in the Preface to Clote e.a. 1993. In both papers Goédel’s question is related in
informative ways to contemporary work in computational complexity. All the mathematical issues raised
in Godel’s letter are addressed and resolved in Buss 1995. In particular, Buss shows that indeed ¢(n)=Kn, for
some constant K and infinitely many n, and that the n-symbol provability question raised by Godel is NP-
complete for predicate logic and, surprisingly, even for sentential logic.
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general for finitist combinatorial problems the number of steps can be reduced

’

when compared to pure trial and error.” The context in which he locates the
general issue is noteworthy. Consider the question, whether a formula F in the
language of first-order logic has a proof of length n, i.e.,, n is the number of
symbols occurring in the proof. A suitably programmed Turing machine can
answer this question. If y(F,n) is the number of steps an “optimal” machine

must take to obtain the answer and ¢(n)=maxpy(F,n), then the important

question is how rapidly ¢(n) grows. Godel remarks that it is possible to prove
that ¢(n)=Kn, for some constant K. If there were a machine such that ¢(n) would
grow essentially like Kn (or even Kn®), Godel suggests, “that would have
consequences of the greatest significance. Namely, this would clearly mean that
the thinking of a mathematician in case of yes-and-no questions could be
completely replaced by machines, in spite of the unsolvability of the
Entscheidungsproblem.” In the next-to-last paragraph Goédel mentions
Friedberg’s recent solution of Post’s problem and returns then to an issue that
had been underlying much of the foundational discussion of the twenties: In
what formal framework can one develop classical analysis? Godel reports that
Paul Lorenzen has built up the theory of Lebesgue measure within ramified type
’cheory.14 “But,” Godel cautions, “I believe that in important parts of analysis

there are impredicative inference methods that cannot be eliminated.”

In the face of human mortality, Godel thus chose to raise and discuss

eternal mathematical questions.
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