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§1. Introduction

Jan and Jill have a new computer game. Playing is more fun than watching, but
watching is more fun than doing nothing. Only one can play at a time. If both try to play
at the same time, they fight and no one gets to play. What should they do? The answer is
easy for us: they should take turns. When experimental game theorists put subjects in
situations qualitatively similar to that of Jan and Jill, they quickly learn to take turns
(Rapoport, Guyer and Gordon 1976, Prisbey 1992). It is not so easy for Jan and Jill.
Children sometimes find it difficult to learn to take turns. But learning to take turns is
important for sharing. In this situation, it seems the best mechanism for sharing equally.
And one might argue that it serves as a prototype for more general forms of reciprocity.

Classical game theory allows for the possibility of talking turns, but it does not
| explain its emergence. Suppose for simplicity that one play of the game takes a certain
amount of time, and there is time for ten plays before bedtime. If Jan and Jill take turns,
then neither would prefer to deviate from this pattern of action on her own. In game-
theoretic parlance, they follow a Nash equilibrium (Nash 1950, 1951). There are two
such “turn taking” equilibria of this finitely repeated game, depending on whether Jill or
Jan plays first. But if Jill gets all ten plays, they follow another Nash equilibrium which
is the most favorable outcome for Jill. And the Nash equilibrium in which Jan gets all ten
plays is Jan's favorite outcome. There are also some mixed equilibria where the children
- flip mental coins. A mixed equilibrium might serve as a fair solution to their problem, in

the sense of equal expected utility for Jan and Jill. But at a mixed equilibrium the
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children expect to end up in conflict a substantial portion of the time. At a “turn taking”
equilibrium, Jan and Jill share the opportunities of playing equally without ever fighting.
This seems to us a decisive objection to the mixed Nash equilibrium route to fairness.

One might well argue that the adults in game theory experiments take turns
because they are already socialized. Taking turns is one of the techniques in their social
tool kit. But how can people learn to take turns in the first place? Here we use a simple
learning dynamics, Markov fictitious play, to investigate the possibility of players
spontaneously learning to take turns. Markov fictitious play is perhaps the simplest form
of adaptive dynamics based on pattern recognition. Like ordinary fictitious play, it has a
Bayesian interpretation. We will find that players starting from randomly chosen initial
positions and using Markov fictitious play can learn to take turns quite often, although
this result is by no means bound to occur. We investigate how the payoff structure

influences the probability of learning to take turns in various games.

§2. Markov Fictitious Play

Fictitious Play and Multinomial Sampling

In ordinary fictitious play, players on each round form a prediction of the play of
others based on historical frequency, and then play their best response to the prediction.
The method of forming beliefs based on past frequency has a parametric Bayesian
interpretation as Bayesian updating for multinomial sampling with a Dirichlet prior.

Suppose that we are sampling from an urn with replacement and that the urn
contains balls of k different colors. Let the unknown chance of drawing color
i € {1,...,k} be X;. The prior density will be on the random vector X = (X1,. .., X}).
The natural conjugate prior is the Dirichlet with parameter @ = (61, ..., ). The 8;s

can be any positive numbers. The prior probability of drawing color 7 is:
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Coﬁditional on evidence of a sample of T > 0 balls, n; of color 1, ..., ny of color k, the
probability of the 1" + 1st ball drawn being of color i is the Generalized Rule of
Succession:

n; + 0;

% .
T+ Z@j
j=1

T+l _
.Xi _

For an updating rule in this class, if the §;’s which are the prior weights are fixed, then all
the information from the sample that is relevant to the probability that the next item be of
color 4, is contained in (7", n;), the ordered pair of the sample size and the frequency of
color ¢. This property can be used to give a subjective Bayesian characterization of
beliefs that behave as if they came from a multinomial model with a Dirichlet prior
(Tohnson 1932, Zabell 1982).

Philosophers may recognize the class of rules that comes from multinomial
sampling with Dirichlet priors as the rules in Rudolf Carnap’s final system of inductive
logic (Carnap 1971, 1980). For multinomial sampling, these rules possess the virtue of
Bayesian consistency (Diaconis and Freedman 1986): For any values of the chances (the
parameters of the multinomial model), as more and more data are observed the updating
rule will (with chance = 1) yield degrees of belief that, in the limit, concentrate point
mass on the true chance probability, that is, (X7 ..., XF*1) = XT+ — X with
chance = 1 as T" — oo.

Fictitious play models belief updating of players engaged in a game with the
Generalized Rule of Succession. Fictitious play gets its name because in its original
interpretation, Bayesian rational players who maximize expected payoff mentally

simulate each other’s actions and update their beliefs over a sequence of imaginary plays
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(Brown 1951). The interpretation of fictitious play we favor is anything but “fictitious”.
In our view, fictitious play is best viewed as a process by which players engaged in an
actual sequence of plays of a game update their beliefs about each other according to what
they actually observe. In standard 2-player fictitious play, n; is the number of times a
player's opponent has followed his ith alternative pure strategy over T plays. Fictitious
play does not always converge because in the interactive game-theoretic situation,
multinomial sampling is the wrong model. Trials are not independent and identically
distributed. But with good luck, they may be so in the limit. There are large interesting
classes of games for which fictitious play converges to Nash equilibrium and there are
other interesting classes of games for which it does not converge at all.!

Fictitious play acts as if only sample frequencies are relevant to prediction and so
it cannot detect patterns. The simplest patterns are those one might find in a Markov
chain. So we might move from a parametric model of multinomial sampling with
unknown composition of the urn, to a model of a Markov chain with unknown transition
probabilities. Then we could base our prediction of the next play by the other player (or
players) on the current state and the empirical transition counts from that state to other
states in the same way as before.

In a Markov chain model, each state j is equipped with its own prior weight, §;,
which may be different for different states, and for a given state the probability of a
transition to state 4, is given by the generalized rule of succession where n; is the count
of transitions from the state at issue to state ¢, and 7T is the total number of transitions
from the state at issue. These are the rules of Carnapian inductive logic for Markov
chains (Martin 1967, Kuipers 1988, Skyrms 1991). Carnapian inductive logic for Markov
chains is Bayesian consistent for recurrent Markov chains. (If the true model is a
recurrent Markov chain, then with probability one each state is visited infinitely often
(Skyrms 1991). A subjective characterization of beliefs that give rise to the Carnapian

inductive rules for Markov chains can be given (Zabell 1995).
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Below we define Markov fictitious play. For simplicity we only consider two
players. For each player, the relevant state is the outcome of the game they follow. Her
end of this outcome is a best response to the act she expects from the other player. Each
player enters with prior degrees of belief over the acts of the other, and these beliefs must
give positive probability to each act. Each player enters with a set of generalized rules of
succession (one for each state) for forecasting transitions. That is, for each state, each
player has a set of prior weights for use in the generalized rule of succession to calculate
transition probabilities from that state. These prior weights must all be positive. At each
stage, each player chooses an act that is a best response given her beliefs. (If the current
act is a best response and there is a tie for best response, she chooses the current act. If the
current act is not a best response, and there is a tie for best response among other acts, she
chooses a best response at random.) We now proceed to apply Markov fictitious play to

situations like the one described at the beginning of this paper.

Markov Chain Expectations
We begin with a 2 x 2 game in strategic form, summarized in Figure 1. When
they follow the strategy profile (s;, s;) (Player 1 chooses s; and Player 2 chooses s;), then

Player 1’s payoff is u; (s;, s;) and Player 2’s payoff is ua(s;, s;).

Figure 1. General 2 x 2 Game
Player 2

81 82

Player 1 51 | (u1(s1, 81), ua(s1,81)) | (w1(s1, 82), ua(s1, 52))

so | (u1(s2, 81),u2(s2,51)) | (u1(s2, 52), up(s2, 52))

Players 1 and 2 play this game at a particular time or round T + 1, and possibly have

some knowledge of what has occurred in previous rounds 1, 2, ..., T". (For the time
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being, we will not specify whether or not at round 7" + 1 Players 1 and 2 are the same
players who have played the Figure 1 game in the previous rounds.) Let 855 = (81, 85),
i,j € {1,2}, s, = {(si, 5;) is played at round T}, let T ( - ) denote Player i’s subjective

probability distribution at time T, and set
T+l _  T+1( T+1| T 2
ikl =P (S Isi)
T+1 _  T+1¢ T+1) T
Bisw = M2 (S Is
That is, the azﬁ} s are Player 1’s transition probabilities and the ﬂg};} s are Player 2’s

transition probabilities. Then we have two matrices of transition probabilities, or Markov

chains:
T+1 T+1 T+1 T+1
O %12 Q1101 Q1122
T+1 T+1 T+1 T+1
2.a.1) o’ Opp11 Q1212 C1221 (1299
-a. = T+1 T+1 T+1 T+1
G111 %2112 %9101 9122
T+1 T+1 T+1 T+1
Ogo11 Q212 (o1 (9999
T+l gT41 T+ gT+l
1,11 Pz Pugr P
BT-H T+1 5T+1 ,BT+1
2.a2) /BTH . 1211 Fiz12 P22 Piz2
.a. = T-+1 T-+1 T+1 T+1
21,11 P21,12 Po121 P
T-+1 T+1 T+1 T+1
22,11 M22,12 P21 P22

One can view ol and BT+ as Markov chains of beliefs, since the transition

probabilities are the players’ degrees of beliefs that they will follow a certain strategy
profile given that they just followed another profile. Let s;. (s.;) denote the pure
strategies that range when i (j) is held fixed, and let EX ™1( - ) denote Player 4’
expectation operator with respect to M?H( +). Atround T + 1, players compute expected
payoffs for their next strategy choice given the strategy profile just played at round 7.
That is,

E{H (wi(se)ls;) = wa(sn) - gl P (slsh) + wr(s12) - ud ™ (52]sT)

= wi(s11) - (af5] + o) + wi(s1) - (ofih + ol )

and similarly
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Ef (wi(s2)|sf) = wi(sm) - (ofh + ob81) + ui(sa) - (o5} + aZh)
EF* (ug(s.0)ls5) = ua(su) - (6511 + B513) + ua(sar) - (655 + A5
By (uz(s2)sy) = ua(s12) - (6511 + BEE3) + ua(saz) - (BLEL + BELE)

For illustration, consider the Figure 2 game. This game models one of Jan and
Jill's opportunities to play their computer game before bedtime. If Jill plays (s3), then
Jan’s unique best response is to watch (s1), for only s; maximizes Jan’s expected payoff
given that Jill chooses s;. s is also Jill’s unique best response to Jan’s choosing s;, so
s12 is a strict Nash equilibrium. s, is also a strict Nash equilibrium. The Figure 2 game
is an impure coordination game (Lewis 1969), because Jill’s and Jan’s preferences over

the equilibria s15 and s9; conflict.

Figure 2. Computer Game
Player 2 (Jill)

S1 S92

Player 1 (Jan) $1 (L,1) | (2,3)

s3] (3,2) | (0,0)

s1 = watch, s; = play

Suppose the transition matrices satisfy

T+1 T+1 T+1 T+1
O %112 91101 Q9122
T+1 T+1 T+1 T+1
o o o «
(2.6.1) ot = 1(2),11 18,12 1;,21 18,22

T+1 T+1 T+1 T+1
Qo111 G912 Q291 (9990
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T+l T4l T+ T+l
p B g B

11,11 11,12 11,21 11,22

IBT—H T+1 ,8T+1 T+1

2.5.2) 13T+1 _ 12,11 12,12 12,21 12,22
@b. 1 o 0 1 0

T+1 T+1 T+1 T+1
22,11 Ma2212 FPaza2r  Pazo2

that is, if the players play sy; at a given round, they believe with probability one that they
will play sy at the next round. Then if the players play s5; at round 7, then

B (wi(s1)ls31) = wilsn) - (od] + o2f) + wi(sia) - (o4 + 1
=1-(0+1)+2-(04+0) =1

B (ui(sa)[s31) = wa(sar) - (031 + o) + ua(s22) - (0,17, + o)
=3-(0+1)+0-(0+0) =3

Eg+1(u2(3~1)|351) = u2(311) ) (5§1+111 + 551112) + uz(s21) - (B g1+211 + /6%1:212)
1-(0+0)+2-(1+0)=2

E§+1(u2(3-2)I8§1)= 2(s12) - (B3 + B3) + ua(s22) - (B3 + B

=3-(0+0)4+0-(140)=0
that is, at the 1" + 1st round of play they maximize their expected payoffs by playing so;
again. So the players’ transition probabilities for sy; characterize a Nash equilibrium.
More precisely, their so; transition probabilities are an equilibrium-in-beliefs because
they define equilibrium play from the perspective of each players’ probabilities over the
other player’s strategies (Aumann 1987). If for some m the transition matrices satisfy
(2.5.1) and (2.5.2) for all rounds of play T' > m, then if the players visit the equilibrium
s91 at the mth or any subsequent round of play, then given their beliefs they will play sq;
for all successive rounds.

Now suppose that the transition matrices are such that

T+1 T+1 T+1 T+1
o111 %1112 %1101 9122

0 0 1 0

0 1 0 0

T+1 T+1 T+1 T+1
Qo111 Q2212 Q2991 G990

(2.c.1) o+l =
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T+1 T-+1 T+1 T-+1
Birit Biria ﬁ11,21 Btz

o 0 1 0
T+1 __
2.c.2) pr=1 . 0 0

T+1 T+1 T+1 T-+1
22,11 M22,12 P21 P22

that is, each player believes with probability 1 that if 515 (s51) has just been played, so;
(s12) will be played next. Then if the two players play sis at round 7', then

Ef“(ul(sl.)lssz) = uz(s11) - (aszJ,rlll + 0‘1T2J,r211) + u1(s12) - (0‘?{112 + a%;,rzlz)
=1-(0+1)4+2-(04+0)=1

Efﬂ(ul(sl)lssz) = uy(s21) - (af;ﬁll + a,inJ,rzll) + u1(s22) '.(a?zfllz + a{zj,;lz)
=3-(0+1)4+0-(0+0)=3

EzTH (u2(3~1)|3r{2) = up(s11) - (ﬁgf_lll + 5’312) + ua(sa1) - ( %;,rzll + 5£T212)
=1-(04+0)+2-(14+0)=2

B3 (ug(s.2)[sT5) = ua(s1a) - ( %;-f_lll + ﬁ%;,rllz) + uz(822) - ( 3511 + 5{24,-212)
=3-(0+0)+0-(1+0)=0

so the players will play sy; at round 7"+ 1. Similarly, if the two players play so; at round

T, then

E?“(Ul (51-)|5%11) = u1(s11) - (agf,-lll + aglel) + ui(s12) - (agﬁllz + agf,L212
=1-(0+0)4+2-(14+0)=2

Ef (uy(s2.)1s3)) = wi(sa1) - (ag;—t—lll + agﬁll) + u1(s22) - (agf112 + 0‘2TlJ,r212)
=3.(04+0)+0-(140) =0

By (ua(s1)|s51) = ua(sn1) - (B + BLL) + ua(smr) - ( o2+ Ba)
—1-(0+1)+2-(0+0) =1

Eg+1(u2(3-2)!351) = up(s21) - ( §1T111 + 52T11,L112) + uz(822) - ( %11511 + ﬂleJ,rzlz)
=3-(0+1)4+0-(0+0)=3

so the players will play s, at round 7"+ 1. So given these transition matrices, if the
players ever play either coordination équilibn'um 812 Of $31, they will maximize expected
payoffs by alternating between s;5 and sy; on successive plays. If the transition matrices
are of the form (2.c.1) and (2.¢.2) for all rounds T > m, then if the players ever play

either sy or s9; at round m or at any round thereafter, they will alternate successively
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between s13 and sy; for all future rounds of play, and this alternation scheme is a “taking
turns” equilibrium.

Note that this “taking turns” equilibrium resembles a correlated equilibrium
(Auménn 1974, 1987) where the players peg their pure strategies upon information they
have regarding some random event. Figure 3 summarizes a “coin-flip” correlated
equilibrium of the Figure 2 game, in which Jan and Jill observe a coin toss and play s;5 if

the coin lands “heads-up” and sy, if the coin lands “tails-up”.

Figure 3. “Coin Flip” Correlated Equilibrium
of the Computer Game
Player 2 (Jill)

S 52

Player 1 (Jan) 51 | (1,1) (2,3)“

sy | (3,2)%2 | (0,0)

w; = “heads”, wy = “tails”

If they follow this correlated equilibrium over successive plays, the players alternate
randomly between the profiles s;5 and s91 according to the result of the coin flip at each
round. If the coin is fair and the players know this, then they achieve a fair expected
payoff of 5 - 3 + 4 - 2 = 3 for both at each round by following the “coin-flip”
equilibrium. However, the actual average payoff each receives converges to g only in the
limit. The “taking turns” equilibrium described in the previous paragraph does not
require an external experiment. One can view the strategies defined by the “taking turns”
equilibrium at the current round as a correlated equilibrium where the players correlate
their strategies now with what they did at the previous round. But there is an important

difference between the “coin-flip” and the “taking turns” equilibria. At the “taking turns”
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equilibrium, Jan and Jill alternate successively between s, and so;. As a result, the
“taking turns” equilibrium always results in a fair outcome for any even number of plays.

In the case where Jill and Jan play the Computer Game ten times, by following the “coin-

llO

5~ 0.246, while by

flip” equilibrium each gets five plays with probability only (150)

following the “taking turns” equilibrium each is guaranteed five plays.

Carnapian Markov Dynamics

So far, we have looked at how players can use Markov chains of beliefs to
compute expected payoffs and possibly follow an equilibrium without saying anything
explicit about how this process might influence the beliefs themselves. It is natural to
suppose that the players will modify their transition probabilities over time as they learn
from experience. One possible way the players might update their transition probabilities
follows the Carnapian inductive logic for Markov chains or Carnapian Markov rule
developed in Skyrms (1991). Player 1 applies this Carnapian Markov rule to update her
transition probabilities as follows: Let

1, (m) = 1if Players 1 and 2 play s;; at round m
AR 0 otherwise

1 if Players 1 and 2 play s;; at round m — 1 and sy; at round m
0 otherwise

L) = {

and set

T
nz;: Z 1, (m)

m =1

r T

Nijkl = Z lsij,Skz(m) .
m =1

That is, over the first 7" rounds, ng is the number of rounds at which the players have

played s;; and nz; %1 18 the number of transitions from s;; to sg;. ozgj w1 18 Player 1's prior
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probability for the transition from s;; to sz, and A\; > 0 is a constant which governs the
weight which Player 1 places on the prior. Atround 7" + 1:
(@1, (T+1)=1if

Ei”l(ul(sk.)[sz;-) > Ef“ (uy (sp‘)]sg;-) for s, # si,
E5H (uz(sa)ls5;) > Ej T ug(s.q)|sh) for sq # s

and (b) 1,,,,(T + 1) = 1 only if

Ef+1(u1(sk4)]s£) > E1T+1(u1(sp.)|sg;-) for s, # si
EIH (uz(s,l)lsg;-) > E2T+1(u2(s.q)|sg;) for s, # s

Player 1% transition probability for sj; from s;; is defined by

T 0
Nijg T Alaij’kl
T

T+ T+ Ty — T+
2.1) | p (s lsy) = o =

The product A, a%’ 11 corresponds to the prior weight of the Generalized Succession Rule.
Condition (b) is included to allow for alternative rules for handling ties in the conditional
expected payoffs, in line with the similar practice in the ordinary fictitious play literature.
Player 2’s transition probabilities are similarly defined. For the remainder of this paper
whatever we discuss about the Markov fictitious play process with respect to Player 1
applies to Player 2, mutatis mutandis. (2.1) can also be written as

Lo, o(T)  nhk 1+ X
ni+ A nk+ N

@19 mr (s ls) = - (shalsig

which emphasizes the recursive nature of this induétive rule.3

In ordinary fictitious play, strict Nash equilibria are fixed points of sequences of
updated beliefs. The situation is more general for Markov fictitious play. Both strict
Nash equilibria and “taking turns” equilibria are fixed points of Markov fictitious play.
To show this, we generalize in a straightforward way the arguments we gave to show that
the absorbing state of the Markov Chain pairs (2.5.1) and (2.5.1) and the periodic set of
the Markov chain pairs (2.c.1) and (2.c.1) characterize equilibria-in-beliefs of the Figure 2

game. The following result is proved in Appendix 2.:
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Proposition 1. (i) If the transition matrices of Markov fictitious play make a strict Nash
equilibrium an absorbing state of the Markov chains, then Markov deliberators who ever
visit this state will always follow this equilibrium. (if) If the transition matrices make a
“taking turns” equilibrium a periodic set of the Markov chains, then deliberators who

enter into this set always follow this equilibrium.

Proposition 1 says that strict Nash and “taking turns” equilibria are equilibria of the
Markov fictitious play process, that is, they are deliberational equilibria. Proposition 1
also establishes that in games with two distinct strict Nash equilibria, deliberational
equilibria of Markov fictitious play exist which characterize both the strict Nash
equilibria and a “taking turns” equilibrium.

Another important result, also proved in Appendix 2, is the following:

Proposition 2. (i) If Markov deliberators ever follow a strict Nash equilibrium s* in
consecutive rounds, then they will follow s* all subsequent rounds. (ii) If s} and s} are
distinct strict Nash equilibria and Markov deliberators ever follow s7, s5 and s} in
consecutive rounds, then they will subsequently always alternate between s* and s** in

consecutive rounds.

Proposition 2 is the Markov fictitious play analog of the Absorption Theorem of ordinary
fictitious play (Fudenberg and Tirole 1998, Vanderschraaf 2001). The Absorption
Theorem says that if players who update beliefs according to the ordinary fictitious play
rule ever visit a strict Nash equilibrium, they will remain at this equilibrium for all future
rounds of play. The situation is more complex with Markov fictitious play. Proposition 2
says that if Markov deliberators visit a strict Nash equilibrium twice in a row, then their
play is “absorbed” into this strict equilibrium for all future rounds of play. But if Markov
deliberators visit one strict Nash equilibrium, then visit another and then return to the
first, their play is “absorbed” into a “taking turns” equilibrium of consecutive visits

between the two strict equilibria.
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§3. Learning to Take Turns
Jan and Jill

“Taking turns” equilibria exist, but we would like to know whether they can arise
spontaneously, and if so whether this should be an extremely unlikely occurrence or one
that we might expect to occur naturally with some regularity. Suppose we just pick some
initial beliefs for Jan and Jill at random, and start them out in Markov fictitious play.
What should we expect to see?

Proposition 2 suggests the possibility that a “taking turns” equilibrium has a
nonnegligible basin of attraction, that is, a part of the simplex of possible transition
probabilities such that if the players' beliefs ever fall in this part, they will start to follow
the taking “turns equilibrium” and continue to follow it.# If players' beliefs ever enter
into the basin of attraction of the “taking turns” equilibrium, then their beliefs eventually
converge to the equilibrium-in-beliefs that defines this equilibrium. When the four
inequalities

1
T+1 T+1
(3.a) %201 > 5 T Qa1

1
T+1 T+1
Bizo > 57 Biao

T+ .1
0511 > 5 T %2122

ﬂT-{-l > _]_“ _ AT+1
2112 ~ 5 21,11

are satisfied, Jan and Jill are sure to follow the “taking turns” equilibrium of the Figure 2
game, so this equilibrium indeed has a nonnegligible basin of attraction.’
Players can learn to take turns in the Computer Game from initial conditions that

do not necessarily satisfy (3.a). Suppose that Jan's and Jill's transition priors satisfy

0o 1,0 > = 09 19 > =, 0l >1
Q1,12 2:0{12,21 2,0421,12 2aa22,21 5
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1

1 1 1
/3?1,12 > 5 ﬂ?z,m > 5 /881,21 > 5 582,21 > 5

that.is, Jill initially believes that Jan is more likely than not to try to stay at given strict
Nash equilibrium over successive plays, while Jan believes that Jill is more likely than
not to alternate between the strict Nash equilibria. So long as all eight stated inequalities
are satisfied, play will follow a cycle where the pattern s15, s22, 521, 511, S19 Tepeats.
Suppose now that )\; is large relative to Ay, so that Jan requirés more transitions to
reverse only one of the stated inequalities than Jill requires to change two. That is,
relative to each other, Jan is resolute in her initial beliefs while Jill is a “quick learner”.
Eventually, Jill reverses an inequality while Jan does not. Suppose Jill first reverses her
inequality ﬂgz,u > 1 and concludes that ﬂfz,m > L. Then when they visit ;5 Jan and Jill
now go to s91 because Jan did not reverse her inequality 0‘(1)2,21 > 1. Similarly, if Jill
reverses her inequality 33, 5, > § so that 87 ,; > % then from sy; the players now make
the transition to s15. Once both reversals occur Jan and Jill take turns between s1, and
s91. Suppose the reversal ﬂ%,zz > % occurs first. Then play enters into the cycle s;, 591,
811, 812, and eventually this leads Jill to make the second reversal by reinforcing the
transition from s9; to s1;. Then play enters the cycle s19, s21, 512 and is absorbed into the
“taking turns” equilibrium by Proposition 2. Jan has “trained” Jill to take turns!

However, it is by no means a foregone conclusion that if Jan and Jill update their
beliefs according to the Carnapian Markov rule that they will learn to take turns. The |
strict Nash equilibria also have nonnegligible basins of attraction for this dynamics.
Other of Markov fictitious play are also possible, including sequences of play where Jan
and Jill miscoordinate on sj; and soy every time. What are their prospects for learning to
take turns as Markov fictitious players?

We explored the properties of Markov fictitious play in Jan and Jill's Computer
Game by running a series of 10,000 computer simulations. The results of these and other

simulations we ran are summarized in detail in Appendix 1. In each simulation, a pair of
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initial beliefs over the transitions of the states of the Computer Game were selected at
random and then updated according to the Markov fictitious play rule (2.1). Beliefs
nearly always converged to either a pure Nash equilibrium or a taking turns equilibrium.
In our simulations, players settled into a taking turns equilibrium over a third of the time,
and more often than they settled into either strict Nash equilibrium. (Other theoretical
possibilities such as a mixed Nash equilibrium were seen less than 2% of the time.) We
don't attach much significance to the exact numbers in these simulation results. But we
can draw an important qualitative conclusion. From a randomly chosen starting point
under fictitious play, Jan and Jill can spontaneously learn to take turns. It is far from

guaranteed that they will succeed, but it does not require a miracle for them to do so.

Populations

Suppose that Jan and Jill do not have the computer to themselves, but that other
children in the room take their places, and are themselves replaced by others. All the
children have seen what has happened, but new children have their own initial weights for
transitions. In this social setting we have a far more heterogeneous assortment of learning
styles, here represented by different inductive rules. Is it possible to learn to take turns in
this more challenging setting?

There is a natural way to generalize the Carnapian inductive rule. If one uses a
“representative” interpretation of the updating process in which at each round fresh
individuals assume the roles of each player and update according to the observed past
history of plays, then the players' priors and weighting constants \;'s can vary with T, so

that (2.1) generalizes to:

T - 0
(3.1) T H (sTH[T) = T4l = [k + (T +1) o (T + 1)
1 Kl tj ij,kl nz; Y (T n 1)

In this variant of Markov fictitious play, the dynamical system of updated beliefs is

constantly “bombarded” by the random fluctuations in individual players' priors and



Learning to Take Turns 17

weighting constants. There are no analogs of Propositions 1 and 2 for the (3.1) Markov
dynamics, because even if a population settles into a strict Nash or a “taking turns”
equilibrium for a very long time, it is always a theoretical possibility that newcomers with
their own idiosyncratic weighting constants and priors can disrupt the system and throw
the population off the incumbent equilibrium.

Do Markov deliberators in such an inherently “noisy” system have any prospect of
ever reaching an equilibrium? As a matter of fact, for the 2 x 2 case the (3.1) Markov
dynamics exhibits remarkable convergence properties. Again we ran computer
simulations, this time with the representative Markov fictitious play rule (3.1) with each
representative's initial transition probabilities and weighting factor picked at random. We
were somewhat surprised to find that the results in this social learning model were quite
similar to those of the previous case where Jan and Jill were the only players. In these
simulations, taking turns emerges about a quarter of the time, and play always converges
to either one of the strict Nash equilibria or to a taking turns equilibrium. In these cases
the expectation that the players would take turns arose spontaneously and then was passed

along to new players in the social context.

§4. Conclusion

Our Markov fictitious play model shows that taking turns can emerge as the result
of trial and error learning. At the same time, Markov fictitious play supplies an answer to
an old criticism of fictitious play. It is well known that players who update their beliefs
according to traditional fictitious play can converge to a Nash equilibrium-in-beliefs and
yet never successfully coordinate their behavior. For instance, if Jan and Jill update their
beliefs according to their history of play of the Figure 2 game with the traditional
fictitious play rule, then it is possible for their beliefs to converge to the mixed Nash
equilibrium-in-beliefs at which each believes the other plays s; with probability % Yet if

this happens, then their play oscillates between (s1,81) and (sg, s2), and neither ever
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actually gets to play the computer game! This is not what we would expect Jill and Jan to
do, and this is not what experimental subjects placed in similar situations do. Faced with
impure coordination problems like the Figure 2 game in the laboratory, people tend to
quickly settle into “taking turns” equilibria (Rapoport, Guyer and Gordon 1976, Chapters
9, 10, 11). Traditional fictitious play cannot account for this commonplace phenomenon.
Traditional fictitious play fails to model even the simplest nontrivial patterns of play, and
so many have argued that fictitious play is too crude to be used as a model of learning in
game theory. Markov fictitious play extends the traditional model so as to model an
especially important part of social interaction, namely, learning to taking turns. Our
general approach is also not limited to Markov fictitious play. Other models of pattern
recognition learning could allow players to learn to take turns (Sonsino 1997). This
suggesfs that game theorists should study models of fictitious play with the aim of finding
the correctly general model, not that fictitious play is the wrong model of learning in

- game theory. To be sure, we do not claim that the Markov fictitious play rules defined by
(2.1) and (3.1) are fully accurate models of human learning. This kind of Markov
fictitious play surely oversimplifies the learning process that goes on in human
communities. Yet the very simplicity of this model is illuminating. Even a community of
players who have no prior experience of interactions and who update their beliefs
according to the simple rules (2.1) and (3.1) can learn to take turns. We conjecture that
players like Jan and Jill, who are neither so naive nor so ignorant as the deliberators of

- our Markov learning model, have even better prospects for learning to take turns.
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Appendix 1. Computer Simulations

Each simulation was run using a fixed 2 X 2 base game with two strict Nash
equilibria.® This property is a necessary and sufficient condition for the existence of a
“taking turns” equilibrium in a 2 X 2 game. We ran two sets of simulations on 16
different 2 x 2 games, each of which has important applications in moral and political
philosophy and the social sciences. The payoff structures of these 16 games are given in
Table 1.

In the first set of simulations, transition probabilities were updated according to
rule (2.1) as described above in §2. Our program dynamics simulates a sequence of
successive rounds of play of a game, or run, in which a pair of players enter into the game
with fixed transition priors and weighting constants and who update their transition
probabilities according to rule (2.1). At the start of a run, a?j’kl and ﬁ?j’kl were sampled
from the uniform distribution over the interval [0, 1], and A\; and A, were sampled from
the random variable Y = 10 - abs(X), where X is a normally distributed random variable
with mean O and variance 1. a?j’ i and ﬂ%’kl were uncorrelated, and \; and A\, were
uncorrelated as well. We put no a priori upper bound on the size of the a player's
weighting constant );, and sample priors from the uniform distribution so as not to bias
the dynamics initially in favor of any particular equilibrium. Each simulation in this set
consisted of 10,000 independent runs of 500 rounds each. A run of 500 rounds is
typically more than sufficiently long for a pair of deliberators satisfying these parameters
to settle into one of the game's equilibrium points. The parameters of the 10,000 runs in
each simulation were stochastically independent of each other so as to investigate the
tendency of a pair of Markov Carnapian updaters to settle into a certain equilibrium of a
game with no prior correlation on any equilibrium they might have derived from the
observing other players who have been playing a game with “taking turns” equilibria.

Table 2 summarizes the results of this set of simulations. Table 2 records the frequency
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distribution of convergence into a pure strategy profile, a “taking turns” equilibrium or a
mixed Nash equilibrium for each simulation. For instance, in the simulation run on the
Computer Game of Figure 2, in 10,000 runs the dynamics converged upon the strict Nash
equilibrium (s1, $2) 32.29% of the time (3229 times in 10,000 runs), upon the strict Nash
equilibrium (s3, s1) 31.10% of the time, upon a mixed Nash equilibrium 1.93% of the
time, and upon a “taking turns” equilibrium 34.68% of the time.

In the second set of simulations, transition probabilities were updated according to
rule (3.1) as described in §3 where at any given round T, a?j,kl(T) and ?j, (L) were
sampled from the uniform distribution over the interval [0, 1], and A; (T') and A(T') were
sampled from the random variable Y = 10 - abs(.X), where X is a normally distributed
random variable with mean 0 and variance 1. a?j, (L) and ﬁ%’kl(T) were uncorrelated,
as were A\;(T') and A\p(T"). Setting these conditions on the dynamics simulates a run in
which after each round of play the players who have just faced each other are replaced
with a fresh pair of players who have their own priors and weighting constants, and who
also know the frequencies of transitions over past rounds. We put no a priori upper
bound on the A;(T")'s, and sampled priors from the uniform distribution for the same
reason we followed the similar practice in the simulations of the (2.1) dynamics, namely,
so as not to initially bias the (3.1) dynamics towards any of the game's equilibria. Each
simulation consisted of 10,000 independent runs of 500 rounds each. Intuitively, we
might think of each run in a simulation as mimicking the activities of a community whose
members participate in a game for 500 rounds, each round pairing two fresh members
who have observed the frequency of transitions made by their predecessors. 500 rounds
is typically more than sufficiently many for a system of deliberators satisfying these
parameters to settle into one of the game's equilibrium points. (Convergence failure over
any finite number of rounds is a theoretical possibility with the rule (3.1) Markov

dynamics, but this never occurred in any of the 160,000 runs of our simulations.) The
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parameters within each run and over the 10,000 runs in each simulation were all
stochastically independent so as to investigate the tendency of a community of Markov
Carnapian updaters to settle into a certain equilibrium of a game with no prior correlation
on any equilibrium they might have derived from the practices of other communities. In
Table 3, we record the frequency distribution of convergence into a pure strategy profile
and a “taking turns” equilibrium for each simulation. For instance, in 10,000 runs of the
Figure 2 Computer Game, the dynamics converged upon the strict Nash equilibrium
(81, 82) 37.31% of the time (3731 times in 10,000 runs), upon the strict Nash equilibrium
(82, 81) 38.87% of the time, and upon a “taking turns” equilibrium 23.82% of the time.
These simulations show that a “taking turns” equilibrium can indeed emerge
spontaneously, even if the belief updating rule is a very simple ordinary Markov updating
rule used by players who have no a priori tendency to follow any particular equilibrium.
In every simulation run with the rule (2.1) dynamics, the system almost always converges
either to a strict Nash equilibrium or to a “taking turns” equilibrium. (In less than 2% of
the cases, the dynamics converged to a suboptimal sequence of plays corresponding to a
mixed Nash equilibrium.) In every simulation run with the rule (3.1), the system
converges either to a strict Nash equilibrium or to a “taking turns” equilibrium. (We
believe this remarkable result stems from the fact that in a system of rule (3.1)
deliberators, transitions probabilities are constantly bombarded with the “noise” of priors
and )\;(T")'s of fresh representatives, which forestalls the system settling into the
negligible basin of attraction of a mixed Nash equilibrium.) In most of the games with
symmetric payoffs, the “taking turns” equilibrium emerges somewhat less often than
either of the strict Nash equilibria. This may be due in part to the simplicity of the
Markov updating rules (2.1) and (3.1) and the fact that taking turns is a more complicated
equilibrium for players to follow than simply following one strategy profile
unconditionally. What is striking is that taking turns emerges at all in these simulations.

For recall that by construction these players have no prior experience of taking turns, and
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no encouragement from others who have already learned to take turns to help guide them,
s our young friends Jan and Jill would have. These types of players represent a “lower
bound” in terms of prior knowledge and sophistication of players who could learn to take
turns, and they converge to “turn taking” equilibria a significant amount of the time.

Note that we ran simulations on only two games with asymmetric payoffs. This is
because games with asymmetric payoffs do not fit that well into our model of
representative players playing the game, since we cannot easily explain the asymmetries
in payoffs without making arbitrary assumptions about the players in the system who get
assigned to the row or the column position. The results of the simulations on Games 15
and 16 are not at all surprising. The fact that the asymmetries of the game seem to favor
'one player over the other makes one of the strict Nash equilibria an especially powerful
attractor of the Markov dynamics, same as in ordinary fictitious play. Yet while we
believe that our representative model applies best to games with a symmetric payoff
structure, it is interesting to note that in the rule (3.1) simulations run on the two
asymmetric games, taking turns emerges more frequently than the strict Nash equilibriuﬁx

which is the weaker attractor in ordinary fictitious play.
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Table 1. Payoff Structures of 2 x 2 Games Used in Simulations

1. Computer Game
Player 2

81 82

Player 1 St (1,1) | (2,3)

s2 | (3,2) | (0,0)

3. Battle of the Sexes 17

Player 2

S1 S2

Player1 S1 (3,1) | (0,0)

sy {(0,0) | (1,3)

5. Telephone Tag I
Player 2

$1 82

Player 1 S1 (0,0) | (2,1)

s2 | (1,2) | (0,0)

7. Telephone Tag IT1
Player 2

S1 82

Player 1 st | (0,0) | (5,1)

s2 | (1,5) | (0,0)

2. Battle of the Sexes
Player 2

51 82

Player1 51 | (2,1) | (0,0)

82 (07 O) (17 2)

4. Battle of the Sexes II1
Player 2

S1 S2

Player 1 S1 (5,1) | (0,0)

sy | (0,0) | (1,5)

6. Telephone Tag I1
Player 2

S1 59

Player 1 51 (0,0) | (3,1)

sy | (1,3) | (0,0)

8. Chicken I

Player 2

S1 82

Player 1 91 (6,6) | (2,7)

s3] (7,2) | (0,0)




Learning to Take Turns

9. Chicken 11

Player 2

S1

52

Player 1 S1 (3,3) | (2,9)

sy | (4,2) | (0,0)

11. Pickup

Player 1 St

S92

Player 2

S1 82

4,4) | (4,5)

(5,4) | (0,0)

13. Winding Road

Player 1 S1

82

Player 2

S1 S92

(1,1) ] (0,0)

(0,0) | (1,1)

15. Battle of the Sexes IV

Player 1 S1

52

Player 2

S1 S2

(3,1) | (0,0)

(0,0) | (1,4)

10. Chicken II1

Player I' 51

S2

12. Stag Hunt

Player 1

14.

Player 1

16.

Player 1

S

26

Player 2

59

(0,0)

(2,3)

(3,2)

(— 10, — 10)

S2

Intersection

S2

Chicken IV

52

Player 2

81

52

(2,2)

(0,1)

(1,0)

(1,1)

Player 2

S1

(0,0)

(1,1)

Player 2

S

59

(6,6)

(2,7)

(8,2)

(0,0)
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Table 2. Simulation Results of the Rule (2.1) Markov Dynamics

Game (s1,81) | (s1,82) | (s2,81) | (s9,82) | “take turns” | mixed
1. Computer Game 0.00% | 32.29% | 31.10% | 0.00% 34.68% | 1.93%
2. Battle of the Sexes 1 37.48% | 0.00% | 0.00% | 36.52% 24.63% | 1.37%
3. Battle of the Sexes II 39.67% | 0.00% | 0.00% | 40.22% 19.50% | 0.61%
4. Battle of the Sexes III | 42.34% | 0.00% | 0.00% | 42.60% 14.75% | 0.31%
5. Telephone Tag I 0.00% | 36.21% | 37.57% | 0.00% 25.02% | 1.20%
6. Telephone Tag II 0.00% | 39.97% | 40.36% | 0.00% 19.09% | 0.58%
7. Telephone Tag III 0.00% | 42.60% | 42.81% | 0.00% 14.26% | 0.33%
8. Chicken / 0.00% | 36.68% | 36.98% | 0.00% 24.99% | 1.35%
9. Chicken II 0.00% | 36.33% | 36.92% | 0.00% 25.40% | 1.35%
10. Chicken III 0.00% | 41.97% | 41.67% | 0.00% 15.95% | 0.41%
11. Pickup 0.00% | 41.36% | 41.31% | 0.00% 16.62% | 0.71%
12. Stag Hunt 3137% | 0.00% | 0.00% | 31.81% 34.88% 1.‘94%
13. Winding Road 30.39% | 0.00% | 0.00% | 32.14% 35.79% | 1.68%
14. Intersection 0.00% | 31.51% | 31.21% | 0.00% 35.31% | 1.97%
15. Battle of the Sexes IV | 30.53% | 0.00% | 0.00% | 55.64% 13.83% | 0.00%
16. Chicken IV 0.00% | 7.21% | 79.02% | 0.00% 13.77% | 0.00%
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Table 3. Simulation Results of the Rule (3.1) Markov Dynamics

Game (s1,81) | (s1,82) | (s2,81) | (82,82) | “take turns” | mixed
1. Computer Game 0.00% | 37.31% | 38.87% | 0.00% 23.82% | 0.00%
2. Battle of the Sexes I 37.75% | 0.00% | 0.00% | 38.02% 24.23% | 0.00%
3. Battle Vof the Sexes I1 36.86% | 0.00% | 0.00% | 38.14% 25.00% | 0.00%
4. Battle of the Sexes III | 37.38% | 0.00% | 0.00% | 37.22% 25.40% | 0.00%
5. Telephone Tag I 0.00% | 37.44% | 37.37% | 0.00% 25.19% | 0.00%
6. Telephone Tag I1 0.00% | 37.55% | 37.73% | 0.00% 24.72% | 0.00%
7. Telephone Tag 111 0.00% | 37.79% | 37.57% | 0.00% 24.64% | 0.00%
8. Chicken 0.00% | 38.68% | 37.53% | 0.00% 23.79% | 0.00%
9. Chicken I1 0.00% | 38.75% | 36.48% | 0.00% 24.77% | 0.00%
10. Chicken 11T 0.00% | 38.32% | 37.03% | 0.00% 24.65% 0.00%
11. Pickup 0.00% | 36.91% | 38.54% | 0.00% 24.55% | 0.00%
12. Stag Hunt 37.68% | 0.00% | 0.00% | 37.07% 25.25% | 0.00%
13. Winding Road 36.95% | 0.00% | 0.00% | 37.71% 25.34% | 0.00%
14. Intersection 0.00% | 37.72% | 36.78% | 0.00% 25.50% | 0.00%
15. Battle of the Sexes IV | 12.83% | 0.00% | 0.00% | 67.66% 19.51% | 0.00%
16. Chicken IV 0.00% | 0.19% | 97.13% | 0.00% 2.68% | 0.00%
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Appendix 2. Proofs of §2 Results

- Proposition 1. (i) If the transition matrices of Markov fictiﬁous play make a strict Nash
equilibrium an absorbing state of the Markov chains, then Markov deliberators who ever
visit this state will always follow this equilibrium. (ii) If the transition matrices make a
“taking turns” equilibrium a periodic set of the Markov chains, then deliberators who
enter into this set always follow this equilibrium.

PROOF. (i) Let s}; = (s, 55) be a strict Nash equilibrium. Assume that

T ) _ T _ . * . . T T
Qg i o jo = Djn e oo = 1, that is, s7; is an absorbing state of the Markov chains o and

defined by (2.a.1) and (2.a.2). Suppose that s = s;;, that is, Markov deliberators follow

s;; atround T'. Then at round T" + 1, by (2.1')
T-1
S Rl CONNL T N
7’.]77‘.7 ng;j*_{_Al nZ’:]*_'_A]_ Z.717’.7
i (T) n nz:;«l + M .
nz:]* + >\1 ’I’LZ:]* + >\l

_ 1si*j*,i*

and similarly

az’:}t{kl = ag:j*,kl = 0 for s3; # i+
So at round T' + 1, Player 1's expected payoff if she follows the pure strategy s; is

Ef (ug(s1)|s};) Zm(% it (s 4ls%;) = wa(sy, 55) - 1

and so

Efﬂ(ul(sf.)lsif) = u1(sy;) > Ul(sl, Sp) = Ef‘Ll(ul(sl.)lsfj) forl # i
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because sj; is a strict equilibrium. Hence Player 1 will follow s; at round 7" + 1 and by a
.symmetric argument Player 2 will follow s; at T 4 1. By induction, the players will
follow sj; for all rounds after T'.

(i1) The proof is essentially the Case (i) proof applied twice. Let 55 = (8i*, 8j+) and

531 = (Sk+, s1+) both be strict Nash equilibria. Assume that
T _ AT _ AT _ AT -
ai*]‘*,k*l* —_— ﬁi*j*,k*l* - ak*l*,i*j* - ﬂk*l*’i*]‘* - 1 s

that is, s;; and s}; together form a periodic set of the Markov chains o” and 57. Suppose

that s%’; = sf;. Then at round T' + 1, by (2.1')

ozz-;j;lk*l* _ 13?*_“1* (T) n%:]—*l -+ )\1 ) O!"il;j* -
’ ni*j* + )\1 ni*j* + /\1 !
131’*;’*,1:*1* (T) nZ;j_*l + M i
nha+ A nki4+ N
nZT] + A
o nz:j* + )\1 -

and similarly

T+1 T —
az*] k= i*j*,k‘l =0 for Skl 75 Skp* .

So at round T" + 1, Player 1’s expected payoff if she follows the pure strategy s; is

ET 1 (uy (s, )si;) Zul s15) - :f+1(s.j|s;~*j) = ui(s, 1) - 1

and so

B (un (s )lsiy) = wi(siy) > wisy, s) = E{ M (ua(sy)|s) for 1 # i

because sj; is a strict equilibrium. Hence Player 1 will follow s} at round T' + 1 and by-a
symmetric argument Player 2 will follow s; at T + 1.

This gives us sT+1 = s},;. But.then at round T + 2, by (2.7),
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1sk*l*,i*j* (T —I" 1)

T
Mg + A1 1y

ag:zr*zi*j* = T+1 T+1 Qe i
! nk*l* + )\1 nk*l* + A1 ’
_ 1sk*l*,i*j* (T + 1) n%‘*l* + A]_ 1

nf;?} + M\
— ng*—,l_*l + Al _ 1
n{;}l + A\

and similarly

T+1

T+1
nk*l* + )\]_

— T —
'ak*l*,kl = ak*l*’kl =0 for Skl 7é Sgegr .

So at round T' 4 2, Player 1’s expected payoff if she follows the pure strategy s; is

B2y (s1)[sin) = D ua (o) - T ¥2(5,15%) = wa(st, 57) - 1
J

and so

By (un(s))Isiy) = wi(sfy) > wasi, s30) = BT (un(s1)|sfy) for 1 # 4

31

because sj; is a strict equilibrium. Hence Player 1 will follow s} at round 7" + 2 and by a

symmetric argument Player 2 will follow s} at 7' + 2. By induction, the playérs will take

turns between s;; and sy, for all rounds after 7'.

Note that a symmetric proof yields this case if the players visit s}; at round 7', so

this periodic set is a fixed point of Markov fictitious play no matter where Markov

deliberators enter into the set. [J
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Proposition 2. (i) If Markov deliberators ever follow a strict Nash equilibrium s* in
consecutive rounds, then they will follow s* all subsequent rounds. (if) If s} and s are
distinct strict Nash equilibria and Markov deliberators ever follow s7, s3 and s in
consecutive rounds, then they will subsequently always alternate between s* and s** in
consecutive rounds.

PROOF. The notations used in Proposition 1 remain in force here. If Markov
deliberators follow the pure strategy profile s™ = (s7*, s5*) at round m of deliberation,
then

(1) E™(uy (sT)|s™ 1) > EP(uy(s1)|s™ ) for s; # s

B (uz(s3)]s™ ") 2 B (ua(s.)|s™ ") for sp # 57

which implies that
(1) > [ur(sTs5) — ur(s1, 85) 1 (s.4s™ 1) > 0

> lua(si, s5%) — ua(si, s)]ps'(si|s™ 1) 2 0

S

The proofs of (i) and (i7) are quite similar:

T'=sT-1 =g By(l)we

(i) Suppose that s7; is a strict Nash equilibrium. Assume s 3

have

@i.1) ET (uy(s3.)

5i) 2 BF (ui(s0)|s3) for st # sie

We want to show that at round T" + 1,

(i.2) ET 1 (uy (s30.)

85) > E1T+1(u1(sl.)|s;‘j) for all 5; # s;+.

We have
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ET+1 (Ul (Sz* )

iD= BU M w(s)lsh) =) fua(siess) — un (s, 85)]ul (s.4]s%)

lsi*j*,'(T) z* L+ A1
=2 luors) — e, o) (G55, + g, el
1+ nl7t + N
= [wi(se.57) —wa(si, s30)] - _—wﬁlﬁ_

-1
ni*]‘* + A]_

T *
84,85) — u1(S1, 85)] - 41845
ATy 2 la(sess) = wnlon 5] - i s

s_,-:,és]-*
because by hypothesis at 7" — 1 the deliberators visited S3j» SO

1if 5;; = S
i T—-1) = g T
Loiej0i( 1)= { 0 otherwise

Hence,

1
ET (ui(sir)

T
ni*j* + )\1

si) — B Mua(sy)|sf;) = [u(si,85+) — w1 (s, s5)]

-1
ni*j* + )\1

.8:) — M. I(s .|s*.
Ty, (e — (o )] o)

In the right member this equation, the first term is positive because s;; 1s a strict Nash
equilibrium, and the second term is nonnegative by (1') and (i.1). This establishes (i.2).

By a similar argument,

E%—'—H ('U/Q(S. j*

st;) > B3 M (ug(s.)|s};) for sy # 55,

So at round T" + 1, Players 1 and 2 will follow sT*! = s3;- (i) follows by complete

induction on T'.

(i) Suppose that s] = sj; and s3 = s}, are both strict Nash equilibria. Assume

sT = sT2 £ sT-1 and s7-! = sjjand s772 = sT = s}, By (1) we have

(ii.1) ET Y (uy(s.)|8%y) > EF (uy(s1)|syy) for s; # s , and
Ef(ul(sk*.)ls%) > Ef(ul(sl.)]s;‘j) for s; # sp~ .

We want to show that at round T" + 1,

(ii.2) ETH (uy (s30.) st > BT (uy(s))|sy;) for all s; # s
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We have
B (ur(sie)lsh) — BT (wa(s1)lspy) = > [ua(sies5) — wn sy, 55)]ul (s.5s0)

Sj

13 ]k, (T) nk l* + Al
= 2l ses) —wilon )} (25 TR s lsi)

T-1

nk*l* +A1 T %
= —— Y [u1(8s,85) — u1(s1,8;)] - pq (5.4]s
e Do) = (o) oo

because by hypothesis at T' — 1 the deliberators visited s;, so at T, 1,.,. 5,,(T") = 0 for all

Z] ’

sx;. Now note that

(ii.3) Z [u1 (siv,55) — wr(s1, 55)]ud (s.5ls%:)

Tprpe s (T 1) -+ TLT*_? + A — "
- Z [y (siv,85) — wa (s, Sj)]( = nT-1 1 )\lk w1 (slsk)
2

1+ni2+ N\
= [ul(si*,sj*) - ul(sla Sj*)] _#______

nk*l* + )\l
n * ¥ + Al —
Ter T oy D [ (sins5) = wi (st )l (s lst)
nk*l* 8 76.9]'*
1
= Ly, ralsess) — s, o)
nlo2 4+ A1 _
’I’Lk l Z ul(sz* 3] 1(5l7 Sj)]:u{ 1(5'.7ISZZ)
k*l*

because by hypothesis at T — 2 the deliberators visited s}; and at 7' — 1 the deliberators

visited s*., so

i5°
1if Sij = Six g
0 otherwise

15k*l*asij (T - 1) = {

In the rightmost member of equation (ii.3), the first term is poéitive because sj; is a strict
Nash equilibrium, and the second term is nonnegative by (1’) and (ii.1). This establishes
(11.2).

By similar arguments,
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By " (ua(s )lsiy) > B3 T (ua(si)lsky) for s # 55,
Ef”(ul(sk*.)lsfj) > E1T+2(u1(sl.)Is:-‘j) for s; # s+ , and
E2T+2(u2(s.l*)|sfj) > Ef“(uz(s.k)]s;‘j) for sp # sp .

So at round T' + 1, Players 1 and 2 will follow s7*1 = s;; and at round T" + 2 they will

follow sT*2 = s},. (ii) follows by complete induction on T. [
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NOTES

IFudenberg and Levine (1998, Chapter 2) review the best-known convergence
theorems for fictitious play. Shapley (1964) was the first to present an example of a game
for which the distribution of fictitious play cycles rather than converges whenever the
priors are not initially at Nash equilibrium. Richards (1997) gives an example of a game
in which the distribution of fictitious play is chaotic.

2Player 4’s conditional probability u7 ( - | B) given the event B is defined as

_ W (ANB)
pi (A|B) = B

i

if u7(B) >0 ,and

pi (A|B) = 0if pf (B) = 0

for any event A.
3This identity is easy to derive. We have

(o) = TR X A
T(sT-1) =
PR nfit+ N

and

ng’;}kl + )\la?j,kl _ zJ Kl 1+ 18@] ] (T) + )\101” ki
’I’LT -+ )\1 nz‘j —+ }\1

_ 51] kl (T) 1
13ij (T) nT'_l + /\1 1

= T,kl 4 ZJT : . T ( h kl + Alﬂf” kl)
n"+/\1 TL--+)\1 Nij + A

_ 51] ki (T) - + A].

'u,{—f-l( T+1|8T') —

( z] kl + /\1azj kl)

W (SE

4By nonnegligible set we mean a set in the simplex of positive Lebesgue measure.
- SAt the “taking turns” equilibrium of the Figure 2 Computer Game where Jan and

Jill alternate between s;o and sg;, the inequalities
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(3.9 Ef (u(sy)|sTy) < BT (ua(s)|sT)
(3.ii) By " (ua(s1)ls1y) > B3+ (ua(s2)lsTy)
(3.iii) Ef* (w(s1)]s31) > BT (ua(s2)s,)
(3.1v) B3 (up(s1) s31) < By T (ua(s2)lsh;)

must all be satisfied. Inequality (3.7) is satisfied when
1. (alT{111 + 0‘?{211) +2- (O‘rir;llz + 0‘:1[1{212) <3 (O‘F{Zﬁ + 0‘?{211) +0- (aszJ,r112 Ta

T+1 T41 T+1 T+1
2(angiz + @155) < 2(0gy7; + 0951

T+1 T+1 T+1 T+1

Qg1 T 07990 < Q911 + Aoy

T+1 T+1 T+1 T+1 T+1 T+1
Qg9 +1 -0y — Q1p01 — 07212 < Q11 T Qg9
T+1 T+1 T+1 T+1

L —agah; — 0q9y < 091 + 99

T+1 T+1
1= 209571 <2045y

1 T
+1 T+1
5(1 — 2a3577) < ®1291

Similarly, inequalities (3.i7), (3.iii) and (3.iv) are satisfied when

1
o T+1 T+1
(3.i) Praz > 5 P2
1
T 1
3 IS R S
3.0v) Bora > 5 ~Pan

so (3.if'), (3.iif") and (3.1v') together with

1
o/ T41 T+1
(3.1) Q991 > 5 T %21

show that the “taking turns” equilibrium has a nonnegligible basin of attraction.

6The simulations were programmed and run in GAUSS.

T+1
12,22



