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Abstract

This paper discusses several notions of completeness for systems of math-
ematical axioms, with special focus on their interrelations and historical
origins in the development of the axiomatic method. We argue that higher-
order logic is an appropriate framework for such systems, and we consider
some open questions in higher-order axiomatics. In addition, we indicate
how one can fruitfully extend the usual set-theoretic semantics so as to shed
new light on the relevant strengths and limits of higher-order logic.
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Introduction

One of the guiding tasks of 20th century mathematics and logic was that of
aziomatizing mathematical concepts and even whole fields. This was part
of the trend toward increasing systematization and abstraction in modern
mathematics. Accordingly, the various possible notions of completeness of a
system of axioms have taken on considerable interest, and their development
in the late 19th and early 20th century now invites a historical review. This
is true both for completeness understood as a property of logical calculi,’
and for the quite different notion, or notions, of completeness as applying to
axiomatic characterizations in mathematics generally, including the notion
of categoricity.? Furthermore, recently several new technical results bearing
on these issues have appeared. And finally, there even remain some open
questions of a quite basic kind.

In this paper we address these issues systematically and comprehensively.
In the first part of the paper, we document how the notion of categoricity
and several related notions of completeness were first conceptualized. This
occurred in connection with the development of the axiomatic method in late
19th and early 20th century mathematics, in the works of, among others,
Richard Dedekind, Giuseppe Peano, David Hilbert, Edward Huntington,
and Oswald Veblen. After the systematic development of formal logic there
followed various logical and metamathematical investigations, exemplified
by the well-known results of Kurt Gédel, Alfred Tarski, and others from the
1930s. Two further thinkers who contributed to these early metatheoretic
investigations were Abraham Fraenkel and Rudolf Carnap, some of whose
contributions actually predated those of Gédel and Tarski. Moreover, it
was in Fraenkel’s and Carnap’s works from the 1920s that the most explicit,
systematic comparisons of different notions of completeness can be found.3

A number of the questions formulated in the early metatheoretic works
by Fraenkel, Carnap, and others still remain mathematically interesting to-
day. It will become evident, however, that the now standard restriction
to first-order logic in connection with them is both ahistorical and techni-
cally ill-advised. Topics like categoricity seem more naturally treated us-

'For recent discussions of the history of completeness as a property of logical calculi,
see (Read 1997), (Sieg 1999), and (Zach 1999), earlier also (Goldfarb 1979), (Moore 1980),
(Dreben and Heijenoort 1986), and (Moore 1988).

*Compare here (Corcoran 1980), (Corcoran 1981), and again (Read 1997). In the
present paper we are, among others, answering some questions raised in (Corcoran 1981).

5The interesting role played by Carnap in this connection was established in (Awodey
and Carus 2001). The present paper can be seen as a continuation of one topic discussed
there.




ing higher-order logic, as was, in fact, done originally by Hilbert, Carnap,
Gadel, Tarski, and others. In the second part of this paper, we give a con-
cise introduction to this expanded logical framework, take up again the early
metamathematical investigations, and pursue them in several directions. As
a result, we provide partial answers to the questions mentioned earlier, and
we indicate promising directions for further work.

Besides expanding the logical framework to that of higher-order logic, we
also take a wider view of semantics than is customary, or was even possible
until quite recently. Namely, we extend the range of semantic notions used
from the standard set-theoretic semantics to more general topological and
category-theoretic semantics. This might seem even more radical than the
move to higher-order logic, but we believe it is justified by the light it sheds
on some topics that have previously been obscure. It also allows us to
establish some strengthenings of earlier results along lines hardly foreseeable
by Carnap or Tarski, but not incompatible with their point of view.

Part I
Conceptual and Historical
Background

1 Notions of completeness

Both for historical and logical purposes, it will be useful to start with an
explicit distinction between several different notions of completeness. As-
sume in this connection that a formal language L is given, including the
specification of the logical constructions allowed in the sentences of £ eg.,
propositional operations, quantification, higher types, etc. Assume also that
notions of formal deduction and deductive consequence, on the one hand,
and of interpretation, satisfaction, model, and semantic consequence, on the
other, have been introduced in the usual way. This allows us to consider,
in a mathematically precise way, whether a sentence ¢ is deducible from a
set of sentences I' (written I' - ¢, also expressed by saying that I yields ©);
whether some structure M satisfies a sentence ¢ (written M |= ¢); whether
M is a model of I' (in the sense of satisfying all the sentences in T ); and
finally, whether I' semantically implies ¢ (written T' = , and meaning that
all models M of T' satisfy ¢).

Given such a syntax and semantics for £ we can formulate the following



definitions:

Definition 1. The deductive consequence relation | is called complete rel-
ative to the semantic consequence relation |= if for all sentences o and all
sets of sentences I of £: If T" |= ¢, then T F ¢.

Put informally, a deductive system is complete if it is “strong enough” for
the corresponding semantics in the sense that it yields all the semantic
consequences also as deductive consequences. As is well known, the standard
deductive consequence relations for propositional and first-order logic are
complete in this sense relative to conventional truth-value and set-theoretic
semantics.® In contrast, no deductive consequence relation, in the usual
sense, for second- or higher-order logic can be complete relative to standard
set-theoretic semantics.®

Quite distinct but equally important are several notions of completeness
for mathematical theories T. Logicians today are accustomed to talking
about a “theory” in three related senses: as a set of axioms (perhaps finite or
recursively enumerable) formulated in terms of the primitive notions of some
language L (the traditional mathematical notion of “axiomatic theory”); as
the closure in £ of a given set of sentences under either deductive or semantic
consequence (the now-standard logical notion of “theory”); and as the set of
all the sentences of £ satisfied in some particular structure M (the “theory
of M”). In the historical examples below, it is theories in the first of these
senses—given by finitely many axioms—that are at issue. But the following
definitions apply to all three kinds of theories:

Definition 2. A theory T is called categorical (relative to a given seman-
tics) if for all models M, N of T, there exists an isomorphism between M
and N.

Informally, the idea here is that T has “essentially only one model”. Familiar,
examples are second-order Peano arithmetic, with the usual second-order
induction axiom, and the second-order theory of a complete ordered field.
In contrast, their usual first-order versions are not categorical.®

Two further familiar notions of completeness for a theory T are captured
in the next two definitions. In them we will use the terms “semantically com-
plete”, “deductively complete”, and “logically complete” in ways that are

“See the completeness theorems in (Bernays 1918), (Post 1921), (G3del 1930), (Henkin
1950), and the historical discussions in (Sieg 1999) and (Zach 1999).

5By Godel’s incompleteness theorem; see (Gédel 1931). By “standard set-theoretic
semantics” we mean to exclude Henkin models.

8For a discussion of categoricity in connection with examples related to Peano arith-
metic, compare (Corcoran, Frank, and Maloney 1974).
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not altogether standard. The reason for our choices will hopefully become
evident.

Definition 8. A theory T is called semantically complete (relative to a
given semantics) if any of the following equivalent conditions holds:

1. For all sentences ¢ and all models M, N of T,if M |= ¢ then N = .
2. For all sentences ¢, either T = ¢ or T = —¢.
3. For all sentences ¢, either T |= ¢ or T U {¢} is not satisfiable.

4. There is no sentence ¢ such that both T U {¢} and T U {—¢} are
satisfiable.

Informally, the idea in 3.1 is that all models of the theory are “logically
equivalent”, in the sense that exactly the same sentences are satisfied by all
of them (in the first-order case: elementary equivalent). The idea in 3.2 is
that every sentence of the language is “semantically determined” by T, so
that either it or its negation is a semantic consequence of T (tertium non
datur). Both second-order Peano arithmetic and the second-order theory of
a complete ordered field are semantically complete, while their usual first-
order versions are not. Tarski’s theory of real arithmetic (the first-order
theory for real closed fields) is semantically complete, but unlike the previous
examples it is not categorical.”
Turning now to the deductive or syntactic side:

Definition 4. A theory T is called deductively complete (relative to a given
deductive consequence relation i) if any of the following equivalent condi-
tions holds:

1. For all sentences ¢, either T+ ¢ or T I —¢.
2. For all sentences ¢, either T+ ¢ or T U {¢} is inconsistent.

3. There is no sentence ¢ such that both TU {¢} and T U {~p} are
consistent.®

Informally, the idea in 4.1 is that every sentence of £ is “deductively de-
termined” by T, in the sense that either it or its negation is a deductive
consequence of T (tertium non datur). Neither first- nor second-order Peano

"(Tarski 1951), compare also the discussion in (van den Dries 1988).
8By “consistent” and “inconsistent” we always mean deductively consistent and deduc-
tively inconsistent. Instead of “semantically consistent” we use “satisfiable” (as above).



arithmetic is deductively complete, likewise for the first- and second-order
theories of a complete ordered field. On the other hand, Tarski’s theory of
real arithmetic provides an example that is not only semantically, but also
deductively complete.

Clearly Definitions 4.1-4.3 are the deductive analogues of 3.2-3.4. It
is also not hard to see that Definitions 4 and 3 are equivalent against the
background of any logical system in which the deductive consequence re-
lation is (sound and) complete in the sense of Definition 1, such as in the
case of first-order logic. On the other hand, this is not true in general, as
the second-order examples above illustrate. Note, in addition, that each of
the notions introduced in Definitions 2, 3, and 4 is relative in a certain way:
categoricity and semantic completeness to a corresponding semantics, and
deductive completeness to a corresponding deductive system.

For historical purposes it will be useful to add two further, less familiar
notions of completeness for a theory T:

Definition 5. Let S be a set of sentences in the language £ and let T be a
theory in L. T is called relatively complete (relative to S) if every sentence
@ € S is provable from T.

One can consider both informal and formal versions of this notion, relying
on either an informal mathematical notion of proof or on provability as tied
to some formal deductive system. We will later encounter several historical
examples illustrating this notion. To anticipate, in them S will be the the-
orems of a certain field at a particular point in time, e.g. those of Euclidean
geometry around 1900, and T will be a then-new set of axioms, such as
Hilbert’s.?
Finally, if we let S = {¢: T k= ¢} in the previous definition:

Definition 6. A theory T is called logically complete (relative to a given
semantics) if for all sentences ¢, if T |= ¢ then ¢ is provable from T.

One can evidently again consider both informal and formal versions of this
notion, depending on whether one works with informal mathematical proofs
or with proofs in a formal deductive system. Note that if we work with
the latter, we are back to a case of completeness of the deductive conse-
quence relation in the sense of Definition 1, namely where the parameter
I' is replaced by a particular theory T. By way of example, even though
higher-order deduction is not complete in the sense of Definition 1, it is not

*The historical importance of relative completeness, especially in connection with Hil-
bert, was pointed out to us by Wilfried Sieg. He calls it “quasi-empirical completeness”.



hard to find a specific theory in higher-order logic that is logically complete
in the sense of Definition 6, e.g., that of the notion of a set of some particular
finite cardinality.

We consider next how these notions of completeness arose historically,
namely in connection with the development of the axiomatic method in late
nineteenth and early twentieth century mathematics.

2 Formal axiomatics

The use of the axiomatic method in mathematics goes back at least as far
as Euclid’s Elements, thus to around 300 BC. Traditionally, axiomatics was
a method for organizing the concepts and propositions of an existent science
in order to increase certainty in the propositions and clarity in the concepts.
However, we are interested in a characteristically modern refinement of it,
what is now often called formal aziomatics, earlier also postulate theory. In
formal axiomatics the purpose is not primarily to increase certainly, nor is
it merely to clarify and organize the concepts and theorems of a mathemat-
ical discipline in a systematic way. Rather, a further aim is to treat the
objects of mathematical investigation more abstractly, and then to char-
acterize them completely—to “define them implicitly”, as it is often put
somewhat misleadingly.!® :

Of course, the axiomatic method has also been applied very successfully
in cases where such “completeness” of the axioms is not required, or even
desirable, e.g. in the case of groups or topological spaces. In such cases
it is not a matter of characterizing one particular mathematical structure
but of studying various different, non-isomorphic, systems all satisfying cer-
tain general constraints. Thus in general, notions of completeness arise in
contexts where axiomatizations are being undertaken with specific goals in
mind. To say that an axiomatization is complete is, then, to say that the
axiomatizers have achieved their goal, in particular that no further addition
of “new axioms” is called for.

In its mature mathematical form, formal axiomatics involves using a
formal language, a language that is taken to be uninterpreted and for which
various different interpretations can be considered and compared. Ideally,
at least in principle, formal axiomatics also requires making explicit which
logical inferences between sentences of the language are permitted. This is
usually done by specifying a formal deductive system that makes reference

'®Compare (Corcoran 1995) for the goals of axiomatics. The name “formal axiomatics”
as well as an influential endorsement of it go back to (Hilbert and Bernays 1934), p. 2.



only to the formal language and not its various interpretations.

We will now consider five historical examples of formal axiomatics which,
in our view, represent the steps most relevant in its development. These
examples are also closely linked to each other, as will become apparent,.

2.1 Dedekind and Peano on the natural numbers

An important precursor, to some degree also a first example, of formal ax-
iomatics in the sense just described is the treatment of the natural numbers
and of elementary arithmetic in Richard Dedekind’s “Was sind und was
sollen die Zahlen?” from 1888.11 In this classic essay Dedekind’s goal is to
put the theory of natural numbers on a new, uniform, and “logical” founda-
tion. What that goal amounts to is explained in a well-known letter to the
mathematician Keferstein, from 1890:

What are the mutually independent fundamental properties of
the sequence N, that is, those properties that are not derivable
from one another but from which all others follow? And how
should we divest these properties of their specifically arithmetic
character so that they are subsumed under more general no-
tions and under activities of the understanding without which
no thinking is possible at all, but with which a foundation is
provided for the reliability and completeness of proofs and for
the construction of consistent notions and definitions?2

Note here Dedekind’s emphasis on “completeness of proofs”. This phrase
reflects his goal to avoid any implicit, hidden assumptions in his proofs, thus
to make explicit everything that is (and is not) relevant in the mathemat-
ical concepts involved. It also echoes the opening line of the Preface (first
edition) to “Was sind und was sollen die Zahlen?”, where Dedekind affirms:
“In science nothing capable of proof ought to be accepted without proof.”13

The “more general notions” Dedekind wants to use in giving a foundation
to arithmetic are those of an informal theory of functions and sets; the latter
he calls “systems”. On their basis he proceeds to introduce various general
conditions, or concepts, that such systems may satisfy. The central concept,

!!(Dedekind 1888).

12(Dedekind 1890), pp. 99-100. We are grateful to George Weaver for drawing this
passage to our attention.

'3(Dedekind 1963), p. 31. In general, we use standard English translations of German
texts in this paper, but occasionally we amend them.



is that of a “simply infinite system”. In current terminology, its definition
is this:14

Definition 7. A set S is said to be simply infinite if there exists a function
fon S and an element a € § such that the following hold:

1. f(S) C S, ie., f maps S into itself.
2. a ¢ f(S),ie., ais not in the image of S under f.

3. f(z) = f(y) implies z = y, i.e., f is a 1-1 function [Dedekind: f is
similar].

4. S is the smallest set containing @ and closed under f, i.e., it is the
intersection of all such sets [Dedekind: S is the chain under f with
base point a].

It is not hard to recognize what are now called the “Peano Axioms” (or
“Dedekind-Peano Axioms”) for the natural numbers in Dedekind’s defi-
nition. A contemporary logical formulation—not much different from the
original one in Giuseppe Peano’s Arithmetices Principia, Nova Methodo Ex-
posita of 188915—is as follows: Taking N to be a set, s a function defined
on N,and 1 € N,

1. Vz (z € N = s(z) € N)

2. Yz (z € N — 1 # s(z))

3. Ve Vy (s(z) = s(y) = z =1y)

4 VX [(LeXAVy (ye X =+ s(y) € X)) = N C X]

Note that this formulation uses second-order logic insofar as the induction
axiom 4 uses a quantifier VX over all sets. This corresponds to Dedekind’s
informal version which involves quantification over sets implicitly, but cru-
cially in his clause 4.

Unlike Peano, Dedekind does not talk about “axioms” in his essay. In-
stead, he simply works with the concept of being a “simply infinite system”
as defined above. He then introduces (as the result of a process of “abstrac-
tion”) a particular simply infinite system N, with “base element” 1 and “set

Y Ibid., Definition 71. In the following passage we have not only amended the transla-
tion, but also updated the terminology and changed the order of Dedekind’s four clauses.
1%(Peano 1889), translated as (Peano 1973). Besides minor variations in the notation,
Peano’s version differs essentially only insofar as he includes axioms for equality as well.




in order” by ¢, which he calls “the natural numbers”'¢ After that, he proves
a number of corresponding results, including the following two:

Theorem 132: All simply infinite systems are similar [i.e., iso-
morphic] to the number series N and consequently [...] also to
one another.

Theorem 133: Every system which is similar to a simply infi-
nite system and therefore [...] to the number series NV is simply
infinite.1?

Dedekind does not yet work with a completely general notion of isomor-
phism, nor does he use the term “categorical”. Nevertheless, these two the-
orems (and their proofs) show that he basically knows his characterization
to be categorical. He then adds:

Remark 134: [It is clear that] every theorem regarding numbers,

L.e., regarding the elements n of the simply infinite system N set
in order by the mapping ¢, and indeed every theorem in which
we leave entirely out of consideration the special character of
the elements n and discuss only such notions as arise from the
arrangement of ¢, possesses perfectly general validity for every
other simply infinite system S set in order by a mapping % and
its elements s [...].18

The following related aspects of this remark are crucial for our purposes:
First, Dedekind also realizes the semantic completeness of his axiomati-
zation, essentially in the sense of our Definition 3.1 above. Moreover, he
apparently infers this completeness directly from categoricity. At the same
time, he presents these insights merely in the form of a “remark”, not a
“theorem”, and he does not provide a proof. Indeed, giving such a proof
would have required a more developed theory of logical syntax than he had
at his disposal. Strictly speaking, Dedekind does not even work with the no-
tion of a formal, uninterpreted language and corresponding interpretations

18 Ibid., Definition 73. For cur purposes it does not matter how exactly Dedekind thinks
about N, only that it is a particular simply infinite system. Compare (Tait 1997) for an
interesting discussion of Dedekind’s approach, especially of his notion of “abstraction”.

'7(Dedekind 1963), pp. 92 and 93, respectively.

18 Ibid., p. 95.
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for it. Instead he talks about “translating” between the language for N and
those for other simple infinities Q.19

After having essentially established both categoricity and semantic com-
pleteness, in the rest of his essay Dedekind goes on to establish and pro-
vide the following: the general possibility of giving inductive definitions and
proofs in arithmetic; specific inductive definitions for addition, multiplica-
tion, and exponentiation; proofs of the corresponding commutative, associa-
tive, and distributive laws; and a clarification of how to apply the natural
numbers, as defined by him, to measure the cardinality of finite sets. What
he establishes thereby, implicitly, is the relative completeness of his axioms
in the sense of our Definition 5, here with respect to the usual, basic results
in the arithmetic of natural numbers.

Finally, the overall structure of “Was sind und was sollen die Zahlen?”
shows that Dedekind considers both the categoricity (derivatively also the
semantic completeness) and the relative completeness of his characterization
as conditions of adequacy for a systematic approach such as his. It is in these
respects, or to that extent, that his work on the natural numbers should
be counted as an early example of formal axiomatics. In other respects,
however, his approach may be seen to be more “conceptual” than “formal”,
in particular insofar as he still lacks the notion of a formal language in
the strict sense. And he is certainly a long way from a system of formal
deduction that would allow the consideration of deductive completeness in
the sense of our Definition 4.20

2.2 Hilbert on Euclidean space

Probably the most influential early example of formal axiomatics was David
Hilbert’s Grundlagen der Geometrie, first published in 1899.2! In fact, it
was this text that established the fruitfulness of such an approach in the
mathematical community at large. Grundlagen starts as follows:

Geometry, like arithmetic, requires only a few and simple princi-

®This last point is emphasized in (Corcoran 1981). At the same time, Dedekind clearly
intends various different systems to fall under the concept “simply infinite system”. He
even considers systems that satisfy only some of the four clauses in it but not others; see,
e.g., (Dedekind 1890), pp. 100-1.

0Frege’s Begriffsschrift from 1879 could have provided some of the required notions
and technical tools for Dedekind. But by his own account, Dedekind was unfamiliar with
Frege’s work at the time of writing “Was sind und was sollen die Zahlen?”; compare the
prefaces to the first and second edition of (Dedekind 1963).

2'We will use (Hilbert 1971), with corrections, but we will alsc have occasion to go back
to (Hilbert 1903), (Hilbert 1902), and even (Hilbert 1899).

11



ples for its logical development. These principles are called the
azioms of geometry.??

Of course, geometry had been axiomatized since the time of Euclid, as Hil-
bert immediately acknowledges. What is distinctive about his own approach
is that it is self-consciously more abstract and “formal” than earlier ones.
This does not mean that Hilbert has no intended interpretation or model
for it in mind; in particular, he indicates that his choice of axioms is guided
by a “logical analysis of our perception of space” (ibid.). What it means,
instead, is that a central new method used by him is to consider a broad
range of different interpretations, not only for his axiomatic system as a
whole, but also for various parts of it (primarily to establish independence
results). That is to say, Hilbert in effect treats the language of geometry as
a formal language.?> Along these lines, chapter one of Grundlagen starts
with the following abstract description of its subject matter:

Definition: Consider three distinct sets of objects. Let the ob-
jects of the first set be called points and denoted 4, B,C,...;
let the objects of the second set be called #nes and be denoted
a,b,c,...; let the objects of the third set be called planes and be
denoted @, 3,7,... . [...] The points, lines, and planes are con-
sidered to have certain mutual relations, denoted by words like
“lie”, “between”, “congruent”. The precise and mathematically
complete description of these relations follows from the azioms
of geometry.?*

Besides setting the stage for Hilbert’s more “formal” approach, what is of
greatest interest for us in the passage just quoted is his phrase “complete
description”. This phrase is, in fact, an echo of what Hilbert writes already
in the Introduction of the work, where he states his goals as follows:

This present investigation is a new attempt to establish for ge-
ometry a complete, and as simple as possible, set of axioms and

% (Hilbert 1971), p.2.

#We say “in effect” because Hilbert still doesn’t have an explicit, mathematically precise
notion of interpretation d la Tarski at his disposal; moreover, compare the next footnote.

 Ibid., p. 3, original emphasis. It is, we should note, still possible to read this definition
as introducing an interpreted language, in such a way that it allows for various “reinter-
pretations”, along the lines of Dedekind’s “translations” of the language of the natural
numbers. Hilbert will be considerably more definite about using formal languages in his
later work.
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to deduce from them the most important geometric theorems in
such a way that the meaning of the various groups of axioms,
as well as the significance of the conclusions that can be drawn
from the individual axioms, come to light.?5

Throughout Grundlagen, Hilbert does not elaborate much on what he means
by “completeness” in passages such as these. It is clear from the above, how-
ever, that he takes to be one of his primary goals what we have called relative
completeness, namely with respect to “the most important geometric theo-
rems” recognized by the mathematicians of his time.

To determine further what Hilbert could have meant by “completeness”
in Grundlagen, we need to look more closely at his axioms and the roles they
play in the work. These axioms are divided into five groups: (I) Axioms of
Incidence, (II) Axioms of Order, (III) Axioms of Congruence, (IV) Axiom
of Parallels, and (V) Axioms of Continuity. The two crucial ones for present
purposes form group (V):

V.1 (Archimedes’ Axiom) If AB and CD are any segments, then
there exists a number n such that n segments C'D constructed
successively from A on, along the ray from A through B, will
pass beyond the point B.

V.2 (Axiom of Line Completeness) It not possible to extend the
system of points on a line with its order and congruence rela-
tions in such a way that the relations holding among the original
elements as well as the fundamental properties of line order and
congruence following from Axioms I-III and from V.1 are pre-
served.%6

Later Hilbert add some explanations about the respective roles of these two
axioms and about their relation to each other:

The {line] completeness axiom is not a consequence of Archi-
medes’ Axiom. In fact, in order to show with the aid of Ax-
ioms [-IV that this geometry is identical to the ordinary ana-
lytic “Cartesian” geometry Archimedes’ Axiom by itself is not
sufficient (cf. Sections 9 and 12). On the other hand, by invok-
ing the [line] completeness axiom [...] it is possible to prove the
existence of a limit that corresponds to a Dedekind cut as well

% Ibid., p. 2, original emphasis.
26 Ibid., p. 26.

13



as the Bolzano—Weierstrass theorem concerning the existence of
condensation points; hence this geometry turns out to be iden-
tical to Cartesian geometry.?”

And shortly thereafter:

By the above treatment the requirement of continuity has been
decomposed into two essentially different parts, namely into Ar-
chimedes’ Axiom, whose role is to prepare the requirement of
continuity, and the [line] completeness axiom which forms the
cornerstone of the entire system of azioms. The subsequent in-
vestigations rest essentially only on Archimedes’ Axiom and the
completeness axiom is in general not assumed.?®

Again later on in the text:

[If in a geometry only the validity of the Archimedean Axiom is
assumed, then it is possible to extend the set of points, lines, and
planes by “irrational” elements so that in the resulting geometry
on every line a point corresponds, without exception, to every
set of three real numbers that satisfy its equation. By suitable
interpretations it is possible to infer at the same time that all
Axioms I-V are valid in the extended geometry. This extended
geometry (by the adjunction of irrational elements) is thus none
other than the ordinary space Cartesian geometry in which the
[line] completeness axiom V.2 also holds.??

Several aspects in these remarks deserve comment: First, note that Hilbert
is again explicit that his axioms allow for different interpretations or mod-
els. Thus, a “Cartesian” geometric space just based on the set of rational
numbers and certain algebraic numbers fulfills all his axioms for Euclidean
geometry besides the Axiom of Line Completeness.®® Second, what that
axiom adds is to insure that any system of objects satisfying all of the
axioms is essentially the same as—in Hilbert’s own words, “s none other
than”—ordinary Cartesian space, as based on the set of real numbers. That

27 Ibid., p. 28.

28 Ibid., original emphasis.

2 Ibid., p. 59, original emphasis.

%0 As Hilbert points out, it suffices to consider the field of algebraic numbers that arise
from the number 1 and the iterated application of five operations: addition, subtraction,
multiplication, division, and the drawing of roots of the form /1 + a2 (#bid., p. 29).
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fact is presumably the sense in which for him it “forms the cornerstone of
the entire system of axioms”. In fact, what this last axiom does, against
the background of the others, is to make Hilbert’s whole system of axioms
categorical.

At the same time, asserting simply and unequivocally that Hilbert un-
derstands his axioms to be categorical would be too strong. Note that,
like Dedekind, he does not yet work with an explicit, general notion of
isomorphism in Grundlagen. Moreover, he does not state a theorem that
. establishes, even implicitly, that his axioms are categorical; he leaves it at
the short remarks above, without proofs. He also fails to observe that the
semantic completeness of his axioms is a consequence. In the latter two
respects his discussion actually falls behind Dedekind’s. Finally, while rel-
ative completeness and (partial insights into) categoricity play some role in
Hilbert’s work, it never becomes entirely clear whether he means one or the
other by the intended “completeness” of his system of axioms.

In fact, if we go slightly beyond Grundlagen it appears that what is
meant by “completeness” in Hilbert’s works from this period might be some-
thing else instead. In his article “Uber den Zahlbegriff”, published in 1900
and obviously written not long after Grundlagen, he comments again about
the case of geometry:

[In geometry] one begins by assuming the existence of all the
elements [...] and then [...] brings these elements into relation-
ship with one another by means of certain axioms [...]. The
necessary task then arises of showing the consistency and the
completeness of these axioms, i.e., it must be proved that the
application of the given axioms can never lead to a contradiction
and, further, that the system of axioms is adequate to prove all
geometrical propositions. [...]3!

According to the last phrase in this passage, the axioms of geometry are
supposed to allow for proofs of “all geometrical propositions”, not just “the
most important geometric theorems” as Hilbert wrote in Grundlagen. This
opens up the possibility that what Hilbert really means by ¢ ‘completeness”,
both in “Uber den Zahlbegriff” and in Grundlagen, is what we have called
logical completeness: the (informal) provability of all truths of geometry
from his axioms.

Overall it seems fair to say, however, that Hilbert is just not entirely clear
on the notion of “completeness” at the time of writing Grundlagen and “Uber

3! (Hilbert 1900), we use the translation (Hilbert 1996), pp. 1092-93, original emphasis.
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den Zahlbegriff”. Some passages in them perhaps point to categoricity (our
Definition 2), others to relative completeness (Definition 5), and still others
to logical completeness (Definition 6). In fact, the unclarity is furthered
by Hilbert’s use of the word “completeness” also in the “Axiom of Line
Completeness”, as well as by his practice of dropping the qualifier “line” in
“line completeness” later on in the text.3?

In connection with this additional use of “completeness” by Hilbert, two
further clarifications should be made, one historical and one conceptual.
First, the Axiom of Line Completeness is actually not present in the original
German edition of Grundlagen from 1899. It can be found for the first time
in the French translation of the text from 1900 (the year in which “Uber
den Zahlbegriff” appeared), after that also in the English translation from
1902, and then in the second German and all subsequent editions. Moreover,
the initial version of the axiom is not that quoted above, but the following
variant:

Aziom of Completeness. It not possible to add new elements to
a system of points, straight lines, and planes in such a way that
the system thus generalized will form a new geometry obeying
all of the five groups of axioms. In other words, the elements of
geometry form a system which is incapable of being extended,
provided that we regard the five groups of axioms as valid.33

That is to say, the Axiom of Completeness is initially formulated as a max-
imality condition for the whole space. It is only later that Hilbert refor-
mulates it as a maximality condition just for lines in the space. (In later
editions of Grundlagen the initial version of the Axiom of Completeness for
the whole space becomes a theorem, i.e., is proved based on the axiom just
for lines.®%)

The conceptual point of clarification is this: Hilbert’s Axiom of Com-
pleteness asserts that (the whole space or) each line in space cannot be ex-
tended further—by adding additional points—while maintaining all of the
other axioms. It is worth being very precise and explicit here so as to pre-
vent a common misinterpretation. Namely, the axiom does not say anything
about the semantic, deductive, or logical completeness of the system of ax-
ioms; nor does it say anything about categoricity, e.g., explicitly requiring

%2The German word used in both cases is Vollstandigket.
33 (Hilbert 1902), p. 25.
%41n a footnote Hilbert attributes this result to Paul Bernays; see (Hilbert 1971), p. 27.
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the system of axioms to be categorical.®® It is true, of course, that the Axiom
of Line Completeness together with the other axioms has as a consequence
the categoricity of the whole system of axioms; and such categoricity has, in
turn, as a consequence the semantic completeness of this system of axioms.
~ Still, what the Axiom of Line Completeness itself mentions is points in ge-
ometric space, not formulas in the corresponding language. In other words,
what it asserts is the “completeness” (better: maximality) of the geometric
space, not the completeness of the axiomatic system. This aspect comes
out clearly if we reformulate Hilbert’s axioms in formal logical terms. The
Axiom of Line Completeness then shows itself to involve quantification over
models of the axioms, not over sentences.3®
Two final, related observations about Grundlagen: Like the Peano Ax-
ioms for the natural numbers, Hilbert’s axioms for geometry can be formu-
lated naturally and directly in higher-order logic. Indeed, except for Line
Completeness, which is essentially higher-order, the axioms require only
first-order logic. But Hilbert himself, like Dedekind before him, just works
with an informal background theory of functions and sets. Second, at this
point in time Hilbert, again like Dedekind, does not have a precise enough
notion of formal deduction at his disposal to be able to conceptualize the
notion of deductive completeness, as opposed to categoricity, semantic com-
pleteness, or informal logical completeness.?”

2.3 Dedekind and Hilbert on the real numbers

Besides the natural numbers and geometric space, what called most urgently
for an axiomatic treatment in 19th and early 20th century mathematics was
the theory of the real numbers, and with it the Calculus. The contribu-
tions of three mathematicians are particularly interesting in this connection:

351t has been taken to do one or the other by various commentators, from (Veblen 1904),
PP. 346-47 (see section 2.5 below), to (Zach 1999), p. 353. Compare Fraenkel (section 3.2
below) and (Corcoran 1972), p. 108, for clarifications concerning this issue.

°For interesting further discussions of Hilbert’s Axiom of Line Completeness in the
light of more general mathematical developments see (Ehrlich 1995) and (Ehrlich 1997);
for more historical and philosophical background, in particular involving Hilbert’s relation
to Husserl in this connection, compare also (Majer 1997) and (DaSilva 2000).

37 Strictly speaking, categoricity and semantic completeness involve the notion of seman-
tic consequence, and that notion was also not given a fully explicit, mathematically precise
articulation until the work of Tarski in the 1930s and 40s, perhaps even as late as the 50s;
see (Hodges 1986). Nevertheless, an adequate informal understanding of the notion of
semantic consequence can be seen to be implicit already in the writings by Dedekind and
Hilbert considered so far, especially in connection with their treatment of independence
questions.
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Dedekind, Hilbert, and the American postulate theorist Edward V. Hunt-
ington.>® We consider Dedekind’s and Hilbert’s contributions briefly in this
section, and Huntington’s in the next.

Today it is common to base the theory of the real numbers on the axioms
for a complete ordered field. The first explicit version of these axioms can be
found in Hilbert’s “Uber den Zahlbegriff” from 1900. However, considera-
tions of the crucial component in them—a precise formulation of the axiom
of line completeness or continuity—go back at least as far as Dedekind’s
“Stetigkeit und Irrationale Zahlen” from 1872.3° What Hilbert did in “Uber
den Zahlbegriff” was not only to formulate his own version of that axiom,
but to complement it with explicit axioms for an ordered field. Hilbert’s
axioms are divided into four groups, in analogy with his treatment of geom-
etry: (I) Axioms of Composition (assuring the existence of sums, products,
inverses, etc. for all numbers), (II) Axioms of Calculating (commutativity,
associativity, etc.), (III) Axioms of Ordering (connecting addition and mul-
tiplication to the ordering, in the usual way); and finally, (IV) Axioms of
Continuity.

Before examining the two axioms in Hilbert’s group (IV), let us first re-
mind ourselves of Dedekind’s characterization of line completeness, as well as
of some standard variants of it. Dedekind’s main contribution in “Stetigkeit
und Irrationale Zahlen” was to consider the following condition for a set of
numbers R:

Dedekind continuity: For all cuts (A, B) of R there is an element
cin Rsuchthat a<c<bforalla e A and all b ¢ B.

Given the axioms for an ordered field, this condition is equivalent to the
following:

Least upper bound property: For all subsets S C R, if S is
bounded from above, then there is a least upper bound for S
in R.

Several additional variants have also played an important role historically:

Bolzano continuity: Every bounded, infinite subset of R has a
condensation point in E.

38For general background on the “American postulate theorists”, including Huntington,
compare (Scanlan 1991).
%9(Dedekind 1872).
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Weierstrass continuity: Every bounded, infinite, and increasing
sequence of elements in R has a least upper bound in R.

Cauchy continuity: Every infinite Cauchy sequence of elements
in R converges to an element in R.

Cantor continuity: Every infinite nested sequence of intervals in
R has a non-empty intersection.

Each of these conditions captures, in a slightly different, but equivalent form,
what it means for the real line to be “line-complete” or “continuous”. An
explicit logical formulation of any one of them requires second-order logic.

Hilbert, clearly aware of several of these alternatives, chooses none of
them for his axiomatization of the reals. Instead, he uses the same proce-
dure as in Grundlagen, taking as Axiom IV.1 the Archimedean Axiom and
complementing it with the following:

IV.2 (Axiom of Completeness): It is not possible to add to the
system of numbers another system of things so that the axioms
I, II, I1I, and IV.1 are also all satisfied in the combined system;
in short the numbers form a system of things which is incapable
of being extended while continuing to satisfy all the axioms.40

This condition might be abbreviated as follows:

Hilbert continuity: There is no ordered Archimedean field of
which R is a proper ordered subfield.

Hilbert is aware, again, that adding these two axioms rules out all un-
intended models. That is to say, he notes that any system of numbers
satisfying all of his axioms is essentially the same as the familiar system of
real numbers:

Axioms IV.1 and IV.2 [...] imply (as one can show) Bolzano’s
theorem about the existence of a point of condensation. We
therefore recognize the agreement of our number system with
the usual system of real numbers.*!

“C(Hilbert 1996), p. 1094
1 Ibid., p. 1095.
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It is tempting, once more, to attribute a clear understanding of the cate-
goricity of his axioms for the real numbers to Hilbert. However, as in the
case of geometry there are reasons to be more circumspect and moderate
in that respect. In particular, Hilbert does again not formulate a corre-
sponding theorem, much less does he prove one; he only hints at the issue in
the remark above. More basically, he still does not have a precise, general
‘notion of isomorphism at his disposal. He also does not infer the semantic
completeness of his axioms from the above.

Finally, Hilbert still has little to say about what he means by “complete-
ness” in this case, except for the following brief, but pregnant remark at the
very end of “Uber den Zahlbegriff”:

Under the conception described above, the doubts which have
been raised against the existence of the totality of all real num-
bers [...] lose all justification; for by the set of real numbers
we do not have to imagine, say, the totality of all possible laws
according to which the elements of a fundamental sequence can
proceed, but rather—as just described—a system of things whose
mutual relations are given by the finite and closed system of ax-
ioms I-IV, and about which new statements are valid only if one
can derive them from the axioms by means of a finite number of
logical inferences.*?

Note the phrase “a finite number of logical inferences” at the end. This
might be taken to point in the direction of formal deduction and the de-
ductive consequence relation, although Hilbert still has no system of logical
deduction at his disposal to give that notion a real bite. He also still shows
no suspicion that there might be a difference between deductive and seman-
tic consequence in general. Thus by “a finite number of logical inferences”
he may also just mean an ordinary, informal mathematical proof.

2.4 Huntington on the positive real numbers

The next step in clarifying the notion of completeness, and in particular
the relation between categoricity and semantic completeness, was taken by
Edward V. Huntington in a series of papers from shortly after the turn of the
century. The earliest and most relevant is his “A Complete Set of Postulates
for the Theory of Absolute Continuous Magnitude” from 1902.43

2 Ibhid., p. 1095.
" **(Huntington 1902); compare also (Huntington 1903). Besides these two, a number
of other articles on related topics (axioms for the complex numbers, groups, fields, etc.)
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In this article, Huntington does not try to give axioms—or “postulates”
as he prefers to call them—for the system of all real numbers, but only for
the positive real numbers, which he calls “absolute continuous magnitudes”.
Besides relatively standard requirements for the algebraic and the ordering
properties of the positive real numbers, this involves again an “axiom of
continuity”. Here is Huntington’s version of it:

Postulate 5: If S is any infinite sequence of elements ay, such
that ax < agpy1, ax < ¢ (k= 1,2,3,...) (where ¢ is some fixed
element), then there is one and only one element A having the
following two properties:

1. ar < A whenever a;, belongs to S;

2. if y and A’ are such that y + A4’ = A, then there is at least
one element of S, say a,, for which 4’ < a,.%4

He adds in a footnote: “This postulate 5 is essentially the same as the

principle employed by Welerstrass, in his lectures, for the definition of an ir-

rational number.” Thus Huntington does not use a Hilbert-style maximality

condition, although he draws on Hilbert’s work in some other ways.45
Early on in his essay Huntington writes about his goals:

Introduction: The following paper presents a complete set of pos-
tulates or primitive propositions from which the mathematical
theory of absolute continuous magnitude can be deduced. [...]
The object [...] is to show that [the following six postulates]
form a complete set; that is, they are (I) consistent, (I1) suffi-
cient, (III) independent (or irreducible). By these three terms
we mean: (I) there is at least one assemblage in which the chosen
rule of combination satisfies all the six requirements; (II) there
is essentially only one such assemblage possible; (IIT) none of
the six postulates is a consequence of the other five. [...] [T]he
propositions 1-6 form a complete logical basis for a deductive
mathematical theory.*®

were published by Huntington in the Transactions of the American Mathematical Society
during the following years. For summaries of the corresponding results see (Huntington
1911) and (Huntington 1917).

44 (Huntington 1902), p. 267. Both here and below we have changed Huntington’s no-
tation slightly.

*Huntington’s paper contains a generous, interesting list of historical references, in-
cluding to (Hilbert 1900); see (Huntington 1902), pp. 265-66.

8 Ibid., p. 266, original emphasis.
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The second of Huntington’s three conditions of adequacy for an axiomatic
system—what he calls “sufficiency”—is clearly the one most relevant to the
current discussion.

Like Dedekind in the case of the natural numbers, Huntington devotes
several lemmas and theorems to his condition of “sufficiency” in the rest of
his paper. The most important of them is the following:

Theorem II: Any two assemblages M and M’ which satisfy the
postulates 1-6 are equivalent; that is they can be brought into
one-to-one correspondence in such a way that a + b will corre-
spond with @’ + b’ whenever a and b in M correspond with o'
and &' in M’ respectively.?”

That is to say, what Huntington provides is this: a careful formulation of the
notion of isomorphism; an explicit definition of categoricity (“sufficiency™)
based on it; and a separate theorem, with proof, to the effect that his system
of postulates is categorical.

At the same time, what Huntington means by “completeness” in the
passage from his Introduction above still remains somewhat unclear. Much
depends on what is meant by his cryptic phrase “a complete logical basis
for a deductive mathematical theory”. There is no question that he makes
categoricity central to his paper, which suggests that that is what he means
by “completeness”. However, the phrase “deductive mathematical theory”
points to either deductive or logical completeness (in a formal or informal
sense). Furthermore, any awareness that these notions might be significantly
different from categoricity or semantic completeness is still missing in the
paper. »

Nevertheless, Huntington combines, in an explicit and careful way, sev-
eral of Dedekind’s and Hilbert’s insights. He also coins—apparently for the
first time—a special name for categoricity, namely “sufficiency”. In those
respects formal axiomatics is consolidated on a high level in his work, at
least with respect to its semantic side.®®

¥ Ibid., p. 277.

48 As John Corcoran has pointed out to us, a particularly interesting, systematic treat-
ment of these issues can be found in (Huntington 1917), parts of which were published
already in 1905-6. It would be worth analyzing Huntington’s contributions in this and
related works further.
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2.5 Veblen on Euclidean and projective geometry

Hilbert’s axiomatic approach, especially as applied to geometry, was also
adopted and developed further by Oswald Veblen, another of the so-called
American postulate theorists.*® Veblen started his mathematical career with
a detailed study of Hilbert’s Grundlagen. As a result he proposed a modified
set of axioms, first published in his “A system of axioms for geometry” from
1904.50

Several of the notions discussed so far come up in Veblen’s paper. To
begin with, in describing his goals he writes:

It is part of our purpose to show that there is essentially only one
class of which the twelve axioms are valid. [...] Consequently
any proposition which can be made in terms of points and order
either is in contradiction with our axioms or is equally true of all
classes that verify the axioms. The validity of any possible state-
ment in these terms is therefore completely determined by the
axioms; and so any further axioms would have to be considered
redundant. [...] A system of axioms such as we have described
is called categorical, whereas one to which it is possible to add
independent axioms (and which therefore leaves more than one
possibility open) is called disjunctive.5?

Regarding his terms “categorical” and “disjunctive” Veblen adds in a foot-
note: “These terms were suggested by Professor John Dewey.” In the main
text he continues:

The categorical property of a system of propositions is referred
to by Hilbert in his “Axiom der Vollstindigkeit”, which is trans-
lated by Townsend [the translator of Grundlagen] into “Axiom of
Completeness”. E.V. Huntington, in his article on the postulates
of the real number system, expresses this conception by saying
that his postulates are sufficient for the complete definition of
essentially a single assemblage. It would probably be better to

*9For more on Veblen’s contributions to logic and the foundations of mathematics see
(Aspray 1991); compare also again (Scanlan 1991).

5%(Veblen 1904}, compare also (Veblen 1902). What Veblen tried to do, in particular,
was to reduce the number of primitive notions in geometry to two: “point” and “order”.
However, this reduction didn’t quite work, as one needs “congruent” in addition. Compare
(Tarski and Lindenbaum 1926) and (Tarski 1983), pp. 306-07, for later clarifications about
this issue. We are grateful to Michael Scanlan for clarifying this detail for us.

51(Veblen 1904), p. 346, original emphasis.
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reserve the word definition for the substitution of one symbol for
another, and to say that a system of axioms is categorical if it is
sufficient for the complete determination of a class of objects or
elements.5?

A number of points in these two passages deserve our attention.

First, Veblen is obviously quite clear about what categoricity amounts
~ to, referring back to Huntington in that connection. At the same time,
when he writes that “the categorical property of a system of propositions
is referred to by Hilbert in his ‘Aziom der Vollstindigkeit’” he apparently
misinterprets Hilbert’s axiom, or at least describes it in a misleading way.

Second, Veblen, like Dedekind before him and again without proof, re-
marks explicitly that semantic completeness is a direct consequence of cat-
egoricity. Yet, note that his main formulation of semantic completeness—
“any proposition either is in contradiction with our axioms or is equally
true of all classes that verify the axioms”—does not amount to our Defini-
tion 3.1, as in Dedekind’s case, but to Definition 3.3. (We are interpreting
“in contradiction with our axioms” here as “not satisfiable together”, i.e.,
as involving semantic inconsistency. We will provide further justification
for that interpretations shortly.) In addition, Veblen’s subsequent remark
that “the validity of any possible statement in these terms is therefore com-
pletely determined by the axioms” agrees with Definition 3.2. And Veblen’s
definition of a system of axioms being “disjunctive”—%“one to which it is
possible to add independent axioms (and which therefore leaves more than
one possibility open)”—points to Definition 3.4. So three of our four ver-
sions of “semantic completeness” come up explicitly in Veblen’s remarks,
and he treats them as obviously equivalent.

Third and perhaps most interestingly, Veblen relates categoricity more
closely to semantic completeness than has been done previously. Note, e.g.,
how he introduces being disjunctive as a sort of complementary concept
to—the negation of 7—that of being categorical, and also as the negation of
semantic completeness in the form of Definition 3.4. Still, it remains unclear
what exactly the relation between these concepts is supposed to be.

In 1906 Veblen published another article on the same general topic, called
“The foundations of geometry: a historical sketch and a simple example”,
This article was written for the magazine Popular Science Monthly, as an
overview article for a broader audience. It contains several passages which
illuminate Veblen’s views further. In connection with the notion of cate-
goricity he now remarks:

52 Ibid., pp. 346-47.

24



If we have before us a categorical system of axioms, every propo-
sition which can be stated in terms of our fundamental (unde-
fined) symbols either is or is not true of the system of objects
satisfying the axioms. In this sense it either is a consequence of
the axioms or is contradictory with them.53

Let us suppose that what Veblen meant here was that “every proposition
either is or is not true of every system of objects satisfying the axioms”
(since, as he had emphasized earlier, a categorical system of axioms has
“essentially only one” model). Then we can see him again moving without
hesitation from categoricity to semantic completeness in this passage, the
latter now formulated in the form of Definition 3.3—assuming we take the
phrases “consequence of the axioms” and “contradictory” in the semantic
sense. .
That Veblen usually does mean “consequence” in the semantic sense
in the articles under discussion is confirmed by another brief remark from
his 1904 article. There he notes that in the case of a categorical, thus
semantically complete, system “[any new axiom is redundant] even were it
not deducible from the axioms by a finite number of syllogisms”.>* Note,
at this point, the following: what Veblen suggests here is that a potential
new axiom might be a semantic consequence of the old axioms without
being a deductive consequence of them, i.e., without being “deducible in
a finite number of syllogisms”. What that implies, of course, is that the
notion of semantic consequence might not coincide with that of deductive
consequence. This is a radically new suggestion.

In another brief aside from his 1906 article Veblen is more direct and ex-
plicit, even if still somewhat hesitant, on the same topic. Here he formulates
the following question:

But if [a proposition] is a consequence of the axioms, can it be
derived from them by a syllogistic process? Perhaps not.5®

Given that Veblen, like Dedekind, Hilbert, and Huntington before him, is
not using a precise notion of syntactic consequence, and only an implicit
notion of semantic consequence, this question is quite remarkable and in-
sightful. With it Veblen takes a significant step beyond all the other authors
considered so far.

53 (Veblen 1906), p. 28.

54(Veblen 1904), p. 346.
55(Veblen 1906), p. 28.
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A final word on Veblen: Soon after finishing his work on Hilbert and
Euclidean geometry, he turned his attention to projective geometry; and
within a few years he and his co-worker J.W. Young succeeded in, among
other things, formulating a categorical system of axioms for that geometry
as well.56

3 Logic and metatheory

Let us take stock briefly. By 1908 we have axiomatizations for several main
areas of then-contemporary mathematics: the theories of the natural num-
bers, the real numbers, and Euclidean and projective geometry. In each
case “completeness” is stated as an explicit goal, a criterion of adequacy
for the axiomatization. What “completeness” means, more or less explic-
itly, is primarily categoricity, secondarily semantic completeness (in various
equivalent forms), and in some cases even relative completeness or logical
completeness. Also, semantic completeness is repeatedly recognized to be
a direct consequence of categoricity, although no proof of that fact is ever
given; and sometimes the two notions are conflated, or apparently treated
as equivalent. Finally, it is only around 1904-6 that we have found the
first expression of a suspicion, in some asides of Veblen’s, that neither cat-
egoricity nor semantic completeness may need to coincide with deductive
or logical completeness, or more generally that the deductive consequence
relation may differ from its semantic counterpart.

3.1 Principia Mathematica and its descendants

From a contemporary point of view the main ingredient missing in the works
considered so far is a precise and purely formal notion of deductive conse-
quence. Without such a notion, it is hard to study the relation between se-
mantic and deduction consequence systematically, or even to formulate the
relevant questions in a precise and fruitful way. That situation only changed
gradually. Ignoring the work of Gottlob Frege, as was in effect done at the
time,?” the first major step forward in that connection was the publication

5¢Velben and Young’s axiom system for projective geometry was first published in (Ve-
blen and Young 1908) and discussed more systematically in (Veblen and Young 1910).

"Frege’s work on logic in (Frege 1879) and later writings failed to have a significant in-
fluence on the developments discussed so far, as already mentioned in the case of Dedekind.
This was, no doubt, partly due to his traditional, anti-formalist views about axiomatics.
For illuminating recent discussions of that aspect of Frege’s logic see (Blanchette 1996)
and (Goldfarb 2001). :
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of Whitehead and Russell’s Principia Mathematica in 1910-13.5% Although
the authors of Principia did not cast their logic into a formal axiomatic
mold in the spirit of Dedekind, Peano, Hilbert, Huntington, and Veblen,
they did convince several mathematicians and logicians of the value of their
new, more formal approach to logical deduction, notably Hilbert and Rudolf
Carnap.®®

The logic presented in Principia was essentially higher-order predicate
logic, together with a controversial “ramified” theory of types and axioms
of reducibility, infinity, and choice. From a later point of view, it contains
a number of philosophically-motivated complications that were mathemat-
ically inconvenient and unnecessary. This was recognized gradually in the
1920s, in connection with the following two discoveries: First, one can iso-
late the subsystems of propositional and first-order logic and study them
with good results. Second, one can simplify the higher-order part of the
logic to the “simple” theory of types, thus also eliminating the need for the
problematic axiom of reducibility, at least for mathematical purposes.

From today’s point of view it hardly seems necessary to motivate the sep-
arate attention given to propositional and first-order logic. We have come to
understand that these subsystems have interesting and mathematically sig-
- nificant properties. In particular, both propositional and first-order logic are
complete with respect to standard truth-value and set-theoretic semantics,
in the sense of Definition 1 above. For propositional logic this result was
established independently by Paul Bernays, in an unpublished work from
1918, and by Emil Post, who published it in 1921.%° For first-order logic
it was established by Kurt Gédel in 1929.51 Moreover, first-order logic was
early-on shown to have various related characteristics like compactness and
the Léwenheim-Skolem properties.

From the 1910s to the 1930s, most logicians working on axiomatics and
the foundations of mathematics—including Hilbert, Gédel, Carnap, and
Tarski—did not work with first-order logic, however, but with some ver-
sion of higher-order logic, along the lines of simple type theory. A main
historical source for that theory was Frank Ramsey’s article “Mathemati-

8See especially the first volume, (Whitehead and Russell 1910).

*9For Hilbert see (Sieg 1999); for Carnap see section 3.2 below.

®9See (Bernays 1918) and (Post 1921); compare also the historical discussion in (Sieg
1999) and (Zach 1999).

1See (Gddel 1929) and the published version in {Godel 1930); compare also (Henkin
1950). Around the same time as Gddel, and independently, Jacques Herbrand developed
similar ideas in his dissertation; compare the historical notes in (Church 1956), p. 291,
(Goldfarb 1971), p. 265fl., and (Dreben and Heijencort 1986).
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cal Logic” from 1926, in which various arguments for simplifying the logic
of Principia were given.®? Similar suggestions were also made by others
around that time, including the Polish logician Leon Chwistek.53 The first
general expositions of the theory were published in Hilbert and Ackermann’s
Grundziige der Theoretischen Logik from 1928 and, independently, in Rudolf
Carnap’s Abriff der Logistik from 1929. The theory reached its “canonical”
form in Alonzo Church’s “A formulation of the simple theory of types” from
1940.%4

Of course, we now know that neither higher-order logic nor the restricted
fragment called second-order logic are complete in the sense of Definition 1
with respect to their standard set-theoretic semantics, as was famously es-
‘tablished by Gédel in 1930.6% It should be kept in mind, however, that this
incompleteness is relative to a particular choice of semantics.%® Moreover,
owing to its greater expressive capacity higher-order logic has some im-
portant advantages for axiomatics. In particular, it permits the finite and
categorical axiomatization of the classical mathematical theories discussed
above.

3.2 TFraenkel, Carnap, and early metatheory

In addition to the emergence of both first-order logic and the simple theory
of types, the 1920s and 30s saw an increase of attention to metatheoretic
questions, now also including consideration of formal deduction, and espe-
cially in connection with the notions of completeness and categoricity.
Much of this work came out of, or was influenced by, the Hilbert school
of proof theory centered at Gottingen.®” At this point, Hilbert and his

62 (Ramsey 1926). Ramsey’s views were influenced by, among others, Ludwig Wittgen-
stein.

%3See (Chwistek 1925), also (Chwistek 1967), especially pp. 342-43; the latter was orig-
inally published as (Chwistek 1921). Compare also again the corresponding notes in
(Church 1956), p. 355.

®4See (Hilbert and Ackermann 1928), (Carnap 1929), and (Church 1940). Note that
(Godel 1931) is also based on a version of the simple theory of types. Moreover, it should
be emphasized that Frege’s Begriffsschrifi of 1879 already contained the essentials of
simple type theory.

%5The result was first published in {Gd&del 1931). For historical notes in this connection
see (Dreben and Heijenoort 1986).

8 In Part II of this paper we will indicate an alternate semantics relative to which
deductive higher-order logic is complete.

7See again (Sieg 1999). We also count Hermann Weyl as a member of Hilbert’s school
here; compare in this connection (Weyl 1926), chapter I, called “Mathematical Logic.
Axiomatics”.
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coworkers payed special attention to deductive issues, thus going far beyond
Hilbert’s Grundlagen der Geometrie and “Uber den Zahlbegriff” in that
respect. As a result, influential statements of the question whether first-
order logic is complete in the sense of our Definition 1 were published both
in Hilbert and Ackermann’s Grundzige der Theoretischen Logik from 1928
and in Hilbert’s “Probleme der Grundlegung der Mathematik” from 1929;
and the same is true for the question whether the then usual axiom systems
for the natural and real numbers are deductively or logically complete in the
sense of our Definitions 3 and 6, respectively.®® Answers to these questions,
as well as further results along similar lines, were primarily due to Kurt
Godel in Vienna and to Alfred Tarski and his coworkers in Warsaw.5?

Here we will focus on the contributions of two other figures: Abraham
Fraenkel and Rudolf Carnap. Their works are particularly relevant for sev-
eral reasons: First, many of their metatheoretic investigations actually pre-
date those of Godel and Tarski, and are largely independent of the Hilbert
school. - Second, there is a direct connection between their investigations
and the developments described earlier in this paper. Third, unlike most
metatheoretic studies from the 1930s and 40s on, theirs are not restricted to
first-order logic, thus providing us with a useful broader perspective. And
fourth, some of the questions raised in their writings—especially concerning
the relation between semantic completeness and categoricity in the specific
context of higher-order logic—are not only interesting, but also still unre-
solved. Overall, we believe that Fraenkel and Carnap deserve more attention
and credit in this connection than they have received so far.

Probably the first text to focus directly and systematically on the rela-
tion between categoricity and several different notions of completeness was
Fraenkel’s Einleitung in die Mengenlehre. This book was initially published
in 1919, enlarged to a second edition in 1923, and enlarged again to a third
edition in 1928.7 The first edition is still silent on this issue, but in the sec-
ond edition, Fraenkel adds a separate section on “the axiomatic method”.
In it he considers several general questions and conditions concerning ax-
iomatic theories of the kind we encountered above, i.e., finite sets of axioms.
Thus he writes:

%8 (Hilbert and Ackermann 1928) and (Hilbert 1929); the latter was presented as a lecture
in Bologna in 1928. For historical background compare here (Dreben and Heijenaort 1986)
and (Mancosu 1998), pp. 149-88.

%9For Godel see the works cited above; for Tarski see many of the articles in (Tarski
1983), especially (Lindenbaum and Tarski 1935).

"For the second and third editions see (Fraenkel 1923) and (Fraenkel 1928). Transla-
tions of passages from these works will be our own.
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Besides independence [of the axioms] a second, even more im-
portant property usually required, if possible, from a system of
axioms is the completeness of the system. This property has been
studied much less so far and, when studied at all, has not always
been understood in the same sense. What probably comes to
mind first is the conception according to which the completeness
of an axiomatic system demands that the axioms encompass and
govern the entire theory based on them, in such a way that ev-
ery relevant question can be answered, one way or the other,
by means of inferences from the axioms. Obviously assessing
completeness in this sense is closely connected with the prob-
lem of the decidability of mathematical questions discussed in
the previous paragraph (p. 169f.) [...] and is, thus, impeded by
considerable difficulties. [...]

More sharply circumscribed and easier to assess is another sense
of completeness for a system of axioms, a sense first character-
ized fully by O. Veblen, it seems.” According to it an axiomatic
system is called complete if it determines uniquely the mathe-
matical objects governed by it, including the basic relations be-
tween them, in such a way that between any two interpretations
of the basic concepts and relations one can effect a transition by
means of a 1-1 and isomorphic correlation. [...]™

Thus in 1923 Fraenkel distinguishes clearly between categoricity (the second
notion mentioned) and what looks very much like deductive completeness
(the first notion mentioned). However, no distinction is made between de-
ductive and semantic completeness, leaving a small doubt about what is
meant by the phrase “inferences from the axioms” above.

Fraenkel adds an explicit discussion of the latter distinction in the third
edition of his book. There the passage just quoted is modified and expanded
as follows:

[TThe completeness of a system of axioms demands that the ax-
ioms encompass and govern the entire theory based on them in
such a way that every question that belongs to and can be formu-
lated in terms of the basic notions of the theory can be answered,
one way or the other, in terms of deductive inferences from the

"In a footnote Fraenkel refers to (Veblen 1904) and (Huntington 1902) at this point,
as well as to earlier work of his own.
“2(Fraenkel 1923), pp. 226-27, original emphasis.
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axioms. Having this property would mean that one couldn’t add
any new axiom to the given system (without adding to the basic
notions) so that the system was “complete” in that sense; since
every relevant proposition that was not in contradiction with the
system of axioms would already be a consequence and, thus, not
independent, i.e., not an “axiom”. [...]

Closely related to this first sense of completeness, but by far not
as far reaching and easier to assess, is the following idea: [...]
In general, a number of propositions that are inconsistent with
each other and that can, thus, not be provable consequences of
the same system of axioms can nevertheless be compatible with
that system individually. Such a system of axioms leaves open
whether certain relevant questions are to be answered positively
or negatively; and it does so not just in the sense of deducibil-
ity by current or future mathematical means, but in an abso-
lute sense (representable by independence proofs). A system of
axioms of that kind is then, with good reason, to be called in-
complete. As a consequence, one can [...] pose the problem of
completeness also as follows: Let A be a proposition relevant
with respect to a given system of axioms. The system is to be
called complete if, no matter whether we in fact succeed to de-
duce the truth or falsity of A from the system or are able to
secure its deducibility theoretically, only either the truth or the
falsity of A—but not both possibilities—is compatible with the
system. [...]

Quite different, finally, is another sense of completeness, one
probably characterized explicitly for the first time by Veblen.”
[-..] According to it a system of axioms is to be called complete—
also “categorical” (Veblen) or “monomorph” (Feigl-Carnap)—if
it determines the mathematical objects falling under it uniquely
in the formal sense; i.e., such that between any two realizations
one can always effect a transition by means of a 1-1 and isomor-
phic correlation.™

Clearly at this point, in 1928, Fraenkel is able to characterize distinctly first
deductive completeness, then semantic completeness, and finally categoric-
ity, along lines quite close to our Definitions 4, 3, and 2, respectively. Also,

"®Here Fraenkel refers again, now in the text, not just in a footnote, to (Veblen 1904)

and (Huntington 1902).
4 (Fraenkel 1928), pp. 347-49, original emphasis.
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with respect to both deductive and semantic completeness he mentions sev-
eral of the variants distinguished by us and, like Veblen, recognizes their
equivalence.

An further step forward in the 1928 edition of Fraenkel’s book is his
recognition and clarification of the difference between completeness in any of
his three senses, on the one hand, and completeness in the sense of Hilbert’s
“Axiom of Completeness”, on the other. Thus in a footnote, attached to
the second paragraph quoted above, Fraenkel writes:

So as to avoid misunderstandings let me emphasize that this
kind of completeness [deductive completeness] has conceptually
nothing to do with that involved in [Hilbert’s] “Axiom of Com-
pleteness” [...]. In the latter it is the objects governed by the
axioms, in the former the axioms themselves, that are not ca-
pable of extension. Of course, there is still a close connection
between what is expressed in the Axiom of Completeness and
the notions of completeness to be discussed below. This connec-
tion awaits clarification in detail. [...]"™®

Fraenkel is obviously more careful and precise here than Veblen was several
years earlier.

In the main text, Fraenkel continues with a further clarification of the
relation between deductive and semantic completeness:

If one compares the three different (and, incidentally, by no
means exhaustive) notions of completeness above, completeness
in the first sense has obviously a special status; it has, cor-
respondingly, also been called “FEntscheidungsdefinitheit”. We
could assess it only by “the establishment of a fixed method of
proof that leads, provably, to the solution of any relevant prob-
lem” As such it is to be left aside as unrealizable if the area
in question is not trivial, e.g., of strictly finite structure (Weyl
[7], p. 20).7 The situation is quite different with respect to the
second notion. In that case there is, as we should note, a dif-
ference between a decision “being-determinate-in-itself” and the
general establishment of what that decision is, e.g., in the form of
a method of proof. Put in a more mathematical way: A system
of axioms could actually determine an area insofar as never to

7 Ibid., p. 347.
"SThe reference is to (Weyl 1926).
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allow that besides a well known axiom A its contradictory op-
posite —A is also compatible with the axioms, while at the same
time a decision was impossible about whether A or =4 holds,
e.g., because such a decision could not be forced in a finite num-
ber of steps! Moreover, the establishment of a general method
to make such decisions could be impossible. In many cases the
[semantic] completeness of a system of axioms may, then, be a
fact. But the question of how to establish that fact—as a char-
acteristic property of a system of axioms—is still open. That
question is obviously of considerable interest, as is the question
of how to connect it to completeness in the third sense above
[categoricity].””

Two aspects of this last passage are particularly noteworthy: First, Fraenkel
is much more clear and definite than Veblen—not to mention Dedekind, Hil-
bert, and Huntington—about the difference between deductive and semantic
completeness. He is also strikingly pessimistic about the possibility of hav-
ing a “non-trivial” system of axioms that is deductively complete (partly
because, following Weyl, he still thinks it is not possible to come up with a
logical calculus that is complete in the sense of our Definition 1). Second,
at the end of the passage he explicitly poses the question of how semantic
completeness and categoricity are related (in conjunction with the question
of how to establish that a system is semantically complete in the first place).
As we saw, several earlier writers had stated, without proof, that categoric-
ity implies semantic completeness; but crucially, Fraenkel’s question also
concerns the converse: Is it the case that semantic completeness implies
categoricity?

This is the point at which to turn to Rudolf Carnap, in particular to a
neglected work on logic and axiomatics from the second half of the 1920s
entitled Untersuchungen zur Allgemeinen Aziomatik.”® In it Carnap ex-
tends Fraenkel’s considerations in the following three ways: He makes seri-
ous attempts to answer Fraenkel’s questions about the precise connections
between categoricity, deductive completeness, and semantic completeness.
Unlike Fraenkel, he puts the corresponding investigations into a formal, log-
ical framework, namely that of the simple theory of types. And he picks up
on Fraenkel’s question concerning the relation between his three notions of

™ Ibid., p. 352, original emphasis.

“2This work has only recently been edited and published, based on manuscripts found
in Carnap’s Nachlaf}; see (Carnap 2000). In what follows we draw heavily on the study
of it (Awodey and Carus 2001).
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completeness, on the one hand, and completeness in the sense of Hilbert’s
“Axiom of Completeness”, on the other.

Before considering Carnap’s investigations further, some basic ideas and
results need to be clarified from the point of view of a contemporary reader
S0 as to prevent some possible confusions. To begin with, it is well-known
today, and not hard to prove given the proper setup, that the categoricity of
an axiomatic theory implies its semantic completeness. This is not only true
in the case of first-order logic, but also for axiomatic theories in higher-order
logic.” On the other hand, the question of whether the converse holds has
not been answered completely even today, in spite of the fact that it is, to
use Fraenkel’s words, “obviously of considerable interest”. In addition, this
inference, from semantic completeness to categoricity, depends crucially on
two background conditions: First, it depends on the logical language used,
in particular on what sorts of sentences ¢ are supposed to occur in the
definition of semantic completeness. Clearly the inference fails, e.g., if we
restrict attention to just first-order sentences.®? But what about the case of
higher-order logic? Here, secondly, it is crucial to be precise about what is
meant by “axiomatic theory”. Indeed, it is not hard to see that the inference
from semantic completeness to categoricity fails again if we consider general
“theories” in the sense of arbitrary sets of sentences in some given language
(by an argument from the bounded cardinality of such sets) . However, in the
historical examples above we were concerned with the specific case of finite
sets of axioms. The remaining question—arguably the one Fraenkel had
in mind—is then this: For a theory T with finitely many axioms in higher-
order logic, does the semantic completeness of T (in the sense of Definition 3
above) imply its categoricity (in the sense of Definition 2 above)?8!

Answering this and some related questions was exactly the task that
Carnap—who had not only studied the 1923 edition of Fraenkel’s book
carefully, but also contributed to its 1928 edition®2—set himself during

7 See (Lindenbaum and Tarski 1935), p. 390, for an early statement of this result;
compare also section 4.4 below.

8 As the Léwenheim-Skolem theorems imply, a first-order theory may have only one
elementary equivalence class of models and yet not be categorical.

81 Cutting to the chase, the answer to this question is still unknown. We will consider
a few special cases for which we know the answer to be positive in sectlon 4.4; compare
also (Lindenbaum and Tarski 1935) in this connection.

82Carnap communicated his own research to Fraenkel between the second and third
edition of Fraenkel’s book, including Part I of (Carnap 1928). Besides Fraenkel’s reference
to Carnap’s (and Feigl’s) notion of “Monomorphie”, see here the preface to (Fraenkel 1928)
in which he thanks Carnap for his help, refers to (Carnap 1927), and mentions “deeper
still unpublished work by the same author”. Compare also the corresponding discussion
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the second half of the 1920s. That is to say, within a systematic logical
framework of simple type theory, influenced by Whitehead and Russell’s
Principia, he set out to investigate the relationships between the three
different notions of completeness suggested by Fraenkel. Carnap’s own
terms for these notions were “Entscheidungsdefinitheit” (deductive com-
pleteness), “Nicht-Gabelbarkeit” (semantic completeness, Veblen’s notion of
“non-disjunctive”), and “Monomorphie” (categoricity).®®

The cornerstone of Carnap’s work, as reflected in his Aziomatik, is a
theorem called the “Gabelbarkeitssatz”. It essentially states that being
“nicht-gabelbar” (semantically complete) implies being “monomorph” (cat-
egorical).®* Unfortunately, Carnap’s proof of this theorem is faulty, as he
eventually came to realize himself. This realization led him to abandon his
entire metatheoretic project around 1930. In particular, he decided not to
publish the Aziomatik, in spite of having already completed a substantial
manuscript.®® Nevertheless, the work was not without immediate influence;
for it seems to have served as a catalyst for the thoughts of Carnap’s then-
student Kurt Gédel, who was one of the few people to have read Carnap’s
manuscript.

There are several aspects of Carnap’s failure in trying to prove the “Ga-
belbarkeitssatz”. In particular, he in effect assumed that any consistent
theory has a model that is definable within simple type theory, which is
false.® More generally, he tried to combine a formal axiomatic approach
with a genetic logicist standpoint, with the result that he was less than fully
clear about the relations among various syntactic and semantic facts and
properties. And fundamentally, the work lacks the subsequent sharp dis-
tinction between syntax and semantics, between object-language and meta-
language. Despite these flaws, we should recognize as one of Carnap’s main
contributions in the Aziomatik to have explicitly conjectured the “Gabelbar-
keitssatz”, i.e., the claim that semantic completeness of a finite system of
axioms implies its categoricity in the context of the simple theory of types.

Another issue that Carnap considered in his investigation—one that was
central to the planned, but less finished second part of the Aziomatik—

in (Awodey and Carus 2001).

83(Carnap 2000), pp. 1274.

84Carnap states the theorem in the contrapositive form: being polymorph (non-
monomorph) implies being gabelbar; ibid., p. 133. Note that the result is mentioned
in print already in (Carnap 1927).

#°Some brief remarks were published in (Carnap 1930a) and (Carnap 1930b).

36]f this were true, Carnap’s proof of the Gabelbarkeitssatz would essentially go through.
See (Lindenbaum and Tarski 1935), p. 391, Theorem 10.
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was, again, the connection between Hilbert’s “Aziom der Vollstindigkest”
and the other three notions of completeness. In this connection, Carnap’s
central contribution was to note that Hilbert’s axiom can be seen as a “ex-
tremal axiom”, more specifically a “maximality axiom”, in that it says that
no model can be extended without violating one of the other axioms. As
Carnap also noted, the induction axiom of Peano arithmetic can be seen as
an analogous “minimality axiom”; it implies that no model can be restricted
to a proper subset without violating one of the other axioms. Furthermore,
both of these “extremal” axioms lead to categorical, and thus semantically
complete, theories. Based on these observations, Carnap raised the further
question of how this phenomenon generalizes, and he again arrived at some
interesting partial results.3”

Despite its various shortcomings, Carnap’s logical and metatheoretic
work from the 1920s—building on that of Fraenkel—remains one of the most
systematic treatments of higher-order axiomatics and the relation between
categoricity, the various notions of completeness, and line-completeness,
specifically in the framework of the simple theory of types. Admittedly, this
status is due less to its scope and depth, which is rather limited, than to the
subsequent historical shift away from higher-order logic. Influenced by the
results of Hilbert, G&del, and Tarski, much subsequent work has focussed
instead on the model theory of first-order logic.®® Fruitful and important as
this has turned out to be, from the perspective of this paper it appears that
research into formal axiomatics has been truncated and somewhat disrupted
in its progress by the ensuing neglect of higher-order axiomatics.

In Part II below we will now try to suggest how such investigations might
proceed, picking up some of the historical threads that have been identified
in Part I, and making use of some new methods and results that were not
available at the time when these inquiries were dropped.

87 These were published later in the 1936 paper ¢ Uber Extremalam’ome”,'co-written with
his student F'. Bachmann (see (Carnap and Bachmann 1936), translated as (Carnap and
Bachmann 1981)). Compare (Fraenkel and Bar-Hillel 1956), pp. 86-90, for one of the few
discussions of the results in that paper.

88Cf. (Corcoran 1991): “By the 1930s finite, categorical axiom systems were known for
various non-elementary (higher-order) geometrical theories. [ ... ] As certain logicians,
including Tarski, came to doubt the foundational significance of higher-order logic, these
results seemed to lose some of their importance and to be seen more as challenges to
attempt a construction of adequate elementary (first-order) foundations of geometry”.
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Part II
Recent Developments and Results

4 Higher-order axiomatics

4.1 Limitations of first-order logic

In this part of the paper we are interested in, among other things, the use of
logic as a tool in formal axiomatics as discussed in Part I. We occasionally
find fault with the standard framework of first-order logic and set-theoretic
semantics, and we consider several alternatives. To avoid any misunder-
standing, we want to stress here that we are not proposing adopting new
foundations for mathematics, and we firmly acknowledge that first-order
logic and set-theoretic semantics are important and useful tools in formal
axiomatics. Moreover, it is clear that use of second- and higher-order logic
involves presuppositions which go beyond those of first-order and that some
thinkers find questionable.??

That said, the evident difficulty involved in using first-order logic (here-
after FOL) in formal axiomatics is its inability to fully characterize struc-
tures with infinite models. The Lowenheim-Skolem theorems show that it
is impossible to fully axiomatize an infinite mathematical structure, even
up to isomorphism, using only FOL. It follows that FOL is not suitable for
characterizing the basic objects of mathematics, like the natural, real, and
complex numbers, and the Euclidean spaces.??

Moreover, many objects of mathematical study today are described gen-
erally by axioms that are not intended to be categorical, but are not of first
order either. For example, rings with conditions on ideals, like Noetherian or
principal ideal domains; structures on manifolds like vector bundles or ten-
sor fields; the various kinds of spaces used in functional analysis like Hilbert
and Banach spaces, and even classical mathematical objects like Euclidean
and projective spaces are all determined axiomatically. It is hardly an exag-
geration to say that the axiomatic method has succeeded, since its modern
beginnings around 1900, in taking over mathematics. But, as the examples .
just mentioned illustrate, it is not just FOL that is being so widely used.

Of course, one can describe the models of such non-first-order axiomatic
notions in terms of set theory. But this does not alter the fact that the ax-
iomatic presentation is essentially higher-order. Nor will it do, in such cases,

89See (Corcoran 2001) and (Jané 1993) for discussion.
*°See (Tennant 2000) for ancther interesting weakness of FOL
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to treat higher-order logic as many-sorted first-order logic, as is occasion-
ally suggested. For in specifying structures such as those just mentioned
involving higher types of relations or functions, it is essential that these
types be interpreted as such, and not as additional first-order structure, if
the axjomatization is to serve its intended purpose. We thus believe that
higher-order axiomatic theories are best recognized and studied on their own
terms, rather than being converted into set theory or first-order logic.

4.2 Higher-order logic

We present here a simple and fairly standard extension of FOL which has
the expressive capacity to formulate many of the axiomatic treatments of
modern mathematics. Logical languages of this general kind, which are
descendant from the type theory mentioned in 3.1 above, are usually called
higher-order logic or simple type theory.®!

Higher-order systems of logic are those having variables and quantifi-
cation over “higher types” of relations or functions among the elements
of “lower type”. Thus, for example, one can extend the usual language
(R,+,-,0,1) of ring theory by adding also variables X,Y,... ranging over
subsets of the domain R. This allows one to axiomatize e.g. principal ideal
domains by adding to the theory of commutative rings the familiar condi-
tion:

VI C R(“I'is an ideal” — 3z(I = (z))) 1)

where “I is an ideal” and the principle ideal (z) are defined as usual. Of
course, one also adds some logical vocabulary to express subset formation
and membership.

We now give an informal description of a particular language of higher-
order logic that is sufficient for the purposes of our further discussion. More
details of related systems can be found e.g. in (Lambek and Scott 1986).

The language of HOL

The language of higher order logic (HOL) consists of type symbols, terms,
and formulas. We write 7 : X to indicate that the term 7 has type X.

%! Type theory is currently experiencing a sort of renaissance because of its applications
in computer science. There are literally hundreds of different logical systems that can be
called “higher-order logic” or “type theory”.
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Types In addition to basic type symbols A, B, ..., and a type P of formu-
las, further types are built up inductively by the type-forming opera-
tions:

X XY, X =Y, P(X)

Terms In addition to variables of each type z1,z9,...: X, and possibly
some basic, typed constant symbols, further terms are built up induc-
tively by the term-forming operations:

(0‘, T)a h (T)7 pg(’l’)
a(r), Az: X.o

{z:X |}

Formulas In addition to equations ¢ = 7 and atomic formulas 7 € o, fur-
ther formulas are built up inductively by the usual logical operations:

i, AY, @V Y, o=, Vo X(p), Iz : X(p)

The type of a term is determined in the expected way by the types of the
terms used in forming it, and these formations are subject to some obvious
conditions for significance; e.g. p1(7) : Aif 7 : A x B. We make use of the
usual conventions in writing formulas whenever convenient, such as writing
(z,y,2) for (z,(y,2)). Note that we have included the possibility of basic
type and constant symbols, to be used as the basic language of an axiomatic
theory. The theory of rings, for example, has one basic type symbol, say R,
and the following basic constant symbols indicated with their types:

6, 1:R
4+, :RXxR—=R

Generally, we define a theory to consist of a basic language of type sym-
bols and constants, together with a set of sentences in that language, called
the azioms. We shall assume here that a theory has finitely many basic sym-
bols and axioms, although there is no reason in principle why one cannot
consider infinite theories. In these terms, e.g. the theory of rings thus con-
sists of the language (R, +,+,0,1) and the usual handful of axioms for rings
(with unit); and the theory of principal ideal domains results by adding the
further axiom (1) above.

We emphasize that this use of HOL for presenting axiomatic theories,
while familiar enough from everyday mathematical practice, is quite different
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from the original use intended by logicists like Frege and Russell, and also
from that made of it by Carnap in his Aziomatik (Carnap 1928), mentioned
in 3.2 above. These pioneers had what has been called a “universal” con-
ception of logic ((van Heijenoort 1967),(Goldfarb 1979)), according to which
there is a single logical system with a single, fixed domain of quantification
(namely, “everything”), and with fixed higher types consisting of “all” func-
tions, concepts, propositional functions, etc. By contrast, the conception
in use here has (possibly several) basic types, which can be interpreted in
various ways, just as is common in the semantics of first-order logic. Indeed,
the clearest way to understand the language of HOL presented here is as an
extension of the usual language of FOL by adding higher types and their
associated terms, and then building FOL formulas as usual from the terms
and variables of those types. In particular, any conventional theory in FOL
is also a theory in HOL in the present sense.

When needed, a system of formal deduction can be specified in the usual
way, as a formal system with logical axioms and rules of inference. One such
system is outlined in the appendix below, but we emphasize that there are
many equivalent formulations.

4.3 Semantics

The semantics for HOL is essentially an extension of that for FOL, adjusted
to take advantage of the simplifications resulting from the presence of addi-
tional types (see e.g. remark 10 below). We shall assume given a “semantic
universe” with suitable structure for interpreting the language of HOL. Here
we use sets and functions, but later we will generalize to other “universes”
(suitable categories) with the required structure.

Rather than stating the formal definition of a model of a theory, we
shall give a particular case of it which should be sufficient for the reader to
infer the general notion.?? Suppose we have a theory of the form (A,¢,a),
with one basic type, one constant, and one axiom. For instance, it might
be the theory of semi-groups, with c being - : A x A — A and a being the
associativity law:

Ve,y,2: A z-(y-2)=(z-y)- 2.

An interpretation assigns to each type X a non-empty® set [X], in such
a way that:

92See (Lambek and Scott 1986), (MacLane and Moerdijk 1992), (Awodey and Butz
2000) for details.
93 This restriction merely simplifies the deductive calculus given in the appendix.
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[A x B] =[A] x [B] (the Cartesian product)
[A — B] =[B] (the set of functions)
[P(A)] = P([AD (the power set)
[P]={T,1} (any two-element set)

A term 7(z) : Y containing a free variable z : X is interpreted as a
function [7] : [X] — [Y], in such a way that:

[l € [X1 for a basic constant ¢: X
[=] = 1pxy : [X] - [X] (identity function)
for a variable 7 : X
[{o, 7] = ([o], [7]) (the ordered pair)
[pi(m)] = m:([~]) (the i-th projection)
[a(r)] = [al([]) (functional application)

[Az : X.0] = the function z + [o]
[{z : X | ¢}] = the subset {ze[X] | [¢] = T}
7 € o] =T iff [r]e[a]
[o A 9] = [e] A [¥] and similarly for -, v, =
[Vz : X¢] = T iff for all ze[X], [¢] = T
[3z : X¢] = T iff for some z¢[X], [¢] = T

Note that we use the boolean operations A, etc., on {T, L} to interpret the
corresponding logical operations.
An interpretation [-] satisfies a sentence o (“o is true under [-]”) just

if
[]=T

Of course, a model of a theory is an interpretation that satisfies the ax-
ioms. If M is a model, we also write [—]as when considering it as just an
interpretation, and we use the notation:

MEo for [olu=T
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Remark 8. Although it may look a bit unfamiliar at first sight, this definition
agrees with the usual one for models of a first-order theory. For instance,
in the example above of semi-groups, an interpretation in the present sense
consists of a set [A] equipped with a binary operation [] : [A] x [A] — [A].
A model is such a structure for which

([ALID EVYz,y,2: Az (y-2) = (2 -y) - 2),
which is easily seen to mean just that the operation is associative.

Remark 9. According to our definition, the higher types of functions and
relations are interpreted by the corresponding sets (in the conventional ter-
minology, the models are “standard models” rather than “Henkin models”).
Observe that such an interpretation is fully determined by the interpretation
of the basic language. Thus in particular, an interpretation in this sense of
a first-order language is just a first-order structure.

Remark 10. The “internal” notion of satisfaction used here may be unfa-
miliar; it differs from the more customary, “external” notion of elementary
model theory, in that ¢ruth is represented as an element of a set of truth
values {T, 1}, and a formula ¢(z) where z : X is represented as a function,

[e(@)] : [X] = {T, L}

Of course, [¢(z)] is just the characteristic function of the subset:

He : Xle(@)}] = {a € [X]| [X] | @(a)} C [X]

A sentence (closed formula) is therefore interpreted as one of the truth values
T or L, with the “true” sentences (= T) being exactly those that hold under
the interpretation. : :

The reason for internalizing truth in this way is that, while it is equivalent
to the external approach for set-theoretic semantics, this internal notion
can easily be generalized to other semantic universes in a way that external
semantics cannot. A similar procedure is sometimes used in connection with
boolean-valued models.

We now use the semantics to define the notion of semantic consequence
¢ |= v between sentences in the usual way:

¢ =1 if for every interpretation, [¢] < [«]

where the ordering of truth-values is the usual one, L < T. The notion
of semantic consequence with respect to a theory is defined in the expected
way, by considering only those interpretations that are models of the theory.
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Remark 11. One sometimes hears it said that HOL is “stronger” than FOL,
but this is only so with respect to its expressive capacity, not its semantic
consequences. More precisely, the realtion of higher-order semantic conse-
quence is conservative over first-order semantic consequence. For let T be
a first-order theory, regarded as a theory in HOL. The models of T in the
HOL sense are then exactly the models in the usual FOL sense. Thus if the
first-order sentence ¢ is true in every HOL model, then it is semantically
valid in the sense of FOL. '

Remark 12. Semantic consequence for HOL differs from that for FOL in
several important respects: it is not compact; the usual Léwenheim-Skolem
theorems do not hold; and its theorems are not recursively enumerable (see
(Shapiro 1991)).

4.4 Completeness and categoricity

We can now consider more precisely the question of how completeness and
categoricity for an axiomatic theory are related in the context of HOL. As
already mentioned in 3.2 above, the main early studies are notably (Fraenkel
1928), (Carnap 1928), and (Lindenbaum and Tarski 1983).°¢ Briefly, the
main positive results are that categoricity implies completeness generally, as
for theories in FOL, while in certain cases the converse also holds, which is
perhaps more surprising.

Proposition 18. If a theory T is categorical, then it is semantically com-
plete.

Proof. (sketch) Given categorical T, it suffices to show that if M = o for
some model M and sentence ¢, then also N = o for any other model N. But
since T is categorical, there is an isomorphism of T-models i : M 2 N, in the
usual sense. Now it is easy see that isomorphisms preserve satisfaction, just
as in the first-order case. In more detail, one shows by structural induction
that for any formula ¢, one has [¢]ar = [¢]n 0 ", as maps M™ — {T, 1},
where there are n free variables in ¢, and i* : M™ = N” is the induced
isomorphism on cartesian products. Thus in particular, if M = o for some
sentence o, then T = [o]ar = [¢]n, and so also N = o. O

The more interesting question in this connection is, under what condi-
tions does the converse of proposition 13 hold? As already noted above, our

®Some recent authors who have also called attention to this topic are (Awodey and
Carus 2001), (Read 1997), (Corcoran 1980), and {(Corcoran 1981). This section addresses
a question raised in the latter.
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restriction to finite sets of axioms is essential here. Indeed, it is not hard to
find non-isomorphic models that are logically equivalent (since the number
of sets of sentences is bounded). The (infinite) “theory” of such a model
would then be semantically complete but not categorical.

For the finite theories under consideration here, however, the situation
is rather different. As already mentioned in 3.2, in (Carnap 1928) the impli-
cation from semantic completeness to categoricity was conjectured and an
erroneous proof was offered. The following (correct) proof of a special case
is due to Dana Scott:%

Proposition 14. If a theory T has only one basic type and no basic constant
symbols, then T is categorical if it is semantically complete.

Proof. (sketch) Let o be the conjunction of the finitely many axioms, and
define the new sentence

oo =4 0 A (YU : P(X))(e¥ = U = X)
= “X is the least subset of X that satisfies o”

in which X is the basic type, U is a variable of type PX), U = X is
expressed by the usual definition of isomorphism, and o is a new sentence
derived from o by relativizing all types and quantifiers occurring in ¢ from
XtoU. :

If o is satisfied, then so is g (by the axiom of choice for sets). But if o is
also complete, then we claim that ¢ <> 0g. For if M |= o, then we can take
some M’ C M such that M’ |= oo; since then also M’ |= o, we also have
M |= oy, since o is complete. But og is evidently categorical, so o must also
be categorical. O

While it is not difficult to extend this result to a few other cases, we do
not know the extent to which it holds in general. Some easy sufficient condi-
tions for the categoricity of a finite theory, given its semantic completeness,
are having a definable model (Lindenbaum and Tarski 1983), having a model
with no proper submodels, and being categorical in some power. The latter
follows from the fact—easily inferred from the foregoing theorem—that all
models of a semantically complete theory must have the same cardinality.
We know of no counter-examples to the conjecture that semantic complete-
ness of a finite theory implies categoricity in general.

#53cott produced this proof in response to a talk on Carnap’s failed work by the first
author. See also (Awodey and Carus 2001).
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In sum, it seems that Carnap’s conjecture remains undecided, with little
indication as to which way it will go. This is surely to be counted as one of
the leading open questions in higher-order axiomatics

5 Topological semantics

In this section we consider an alternative to the usual set-theoretic seman-
tics for HOL.%® This is drawn from category theory, and is a special case of
so-called “topos semantics”, which we won’t consider in general (see (Lam-
bek and Scott 1986),(MacLane and Moerdijk 1992),and (Awodey and Butz
2000)). The topological semantics outlined here should however suffice to
give the reader a general impression of what is involved in interpreting HOL
in semantic “universes” other than that of sets.

We first briefly review the motivation for considering alternate seman-
tics for HOL. The first and most obvious reason is that the set-theoretic
semantic consequence relation is not deductively axiomatizable in any rea-
sonable sense. Specifically, given a conventional deductive consequence re-
lation ¢ I %), the G&del Incompleteness Theorem tells us that this relation
- cannot be complete in the sense of 2.1, Definition 1 with respect to set-
theoretic semantic consequence.

This does not necessarily mean that higher-order deduction is somehow
defective, however. It is at least sound for set-valued semantics, in the
sense that ¢ I ¢ implies ¢ = . Moreover, it is conservative over first-
order deduction, by a simple argument from the semantic conservativity
mentioned in section 4.3 above. And as we shall see below, it is in fact
complete with respect to the topological semantics to be considered here.

Another reason to broaden the scope of semantics for HOL is that, like
completeness, this also affects the notion of categoricity for axiomatic the-
ories, effectively making it a stronger condition. Indeed, since categoricity
is a semantic notion, restricting semantics to sets makes it dependent on
often nontrivial properties of sets, which can have peculiar, unwanted con-
sequences; in Example 15 below, for instance, we indicate a theory that is
categorical just in case the continuum hypothesis holds. The categoricity of
certain axiomatic theories like the natural and real numbers seems to provide
confirmation of their adequacy, independent of the more subtle properties of
sets. Generalizing the range of semantics conforms better to this intention,
as will be discussed further in section 6 below.

9€This section draws on {Awodey 2000), which the reader can consult for more detail.
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Finally, one simple reason for considering alternate semantics is that one
is interested in the semantic objects. The possibility of using logic to reason
about structures on objects other than sets (as happens with e.g. topological
groups) makes the systematic investigation of such objects useful in itself.
This is indeed the case with the topological semantics considered below; the
semantic objects employed (sheaves) are everyday mathematical objects.®”
This is not the case for the most familiar alternate semantics for HOL,
the so-called “Henkin models”. These are used only for proving deductive
completeness, and have no independent mathematical interest.

The objects used in topological semantics are “continuously varying
sets”, in a sense made precise in 5.2 below. We first motivate this idea in 5.1
by considering an analogy to the ring of continuous, real-valued functions
on a topological space. That example also shows how continuous variabil-
ity can be used to violate some properties of constants, which is essentially
what permits the completeness of higher-order deduction with respect to
topological semantics, discussed in 5.3.

5.1 Ring of continuous functions

The real numbers R form a topological space, an abelean group, a commu-
tative ring, a complete ordered field, and much more. Let us consider the
properties expressed in just the language of rings:

0,1,a+b,a-b,~a
and first-order logic. For example, R is a field:
REVz(z=0vViyz-y=1)
Now consider the product ring R x R, with elements of the form
r=(ri,rg)

and the product operations:

(0,0)

(1,1)

(z1 4+ y1, 72+ 12)
(

(

1

(5171,!1?2) (y17y2)
($1,$2) (y17y2)
_(mlv a;?)

Ty Y1,Z2 ¢ yz)

—T1, —%3)

%"See e.g. (Hartshorne 1977), (Iversen 1986).
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Since these operations are still associative, commutative, and distributive,
R x R is still a ring.

But the element (1,0) # 0 cannot have an inverse, since (1,0)™! would
have to be (171,07!). Therefore R x R is not a field.

In a similar way, one can form the more general product rings R x ... X
R = R”, or R for any index-set I.

While not in general fields, product rings R’ are always (von Neumann)
reqular:

RIEY:3y (z -y -z =2).
For, given x, we can take y = (y;) with:
et iz #0
o, ifz=0
One can produce rings that violate even more properties of R by passing
to “continuously varying reals”. But what is a “continuously varying real
number”?

Let X be a topological space. A “real number r, varying continuously
over X” is just a continuous function:

r: X R
We equip these functions with the pointwise operations:

(F+9)(=z) = f(z) + g(z), etc.

The set C(X) of all such functions then forms a subring of the product ring
over the index set | X| of points of the space X, C(X) € RX|. But unlike
the product ring, C(X) is not regular:

CX)EVfIg (f-9-F=1)
For take e.g. X =R and f(z) = z%, then we must have:
1 .
9(z) = 22! fz#0
but of course:
. 1
9(0) = lim g(z) = lim — = oo

so there can be no continuous g satisfying f-g- f = f.

Thus the “continuously varying reals” C(X) have even fewer properties
of the field of “constant” reals R than do the product rings RY. In this
way, passing from constants to continuous variation “abstracts away” some
properties of the constants.
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5.2 Continuously variable sets

Just as the real numbers could be generalized to the “continuously variable
reals” (continuous functions), we now generalize the notion of a set to that
of a “continuously variable set,” i.e. a sheaf.

As a first step, observe that the type-forming operations of product,
powerset, equality, etc. can be interpreted in other “universes” of sets. In-
deed, consider in the universe of “pairs of sets,” Sets x Sets. The objects
have the form:

A= (44, Ag)
and the operations are defined componentwise:

(Al,Ag) X (Bl,BQ) = (Al X Bl,Ag X Bz)
P(A1, Az) = (P(A1), P(A2))
P=(P,P)

Term-formation is similarly componentwise. Indeed, the logical operations
can also be defined componentwise:

(a1,a2) € (A1,A2) = (a1 € A1, 03 € Ap)

(1, @2) A (b1, %2) = (01 A 1,02 A )
etc.

This interpretation of the logical language models HOL in the sense that
the usual logical axioms and rules of inference (e.g. as given in the appendix)
are all validated. On the other hand, it does not satisfy all the properties
of Sets. For example:

Sefs}:AEOVszeA

But in SetsxSets we can take as A the object (1, 0), which is not isomorphic
to 0, and then a € (1,0) means a = (a1, a2) with a; € 1 and a3 € 0, which
is impossible.

Just as in the case of rings, we can also generalize to Sets X ...x Sets =
Sets”, and indeed to Sets! for any index set I, to get the “universe” of
I-indexed families of sets.

All such “product universes” have some things in common, e.g. they all
satisfy the axiom of choice (which, by the way, can be seen to be formally
analogous to regularity for rings). To find even more general “universes” we
consider even more general families of sets,

(Fx)xeX
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varying continuously over an arbitrary topological space X . But what should
a “continuously varying set” be? The problem is that we cannot simply take
a “continuous set-valued function”

F: X — Sets

as we did for rings of real-valued functions, since Sets is not a topological
space.

In modern mathematics, one often encounters continuously varying struc-
tures; let us recall how this is typically done, in order to find the notion we
seek. A “continuously varying space” (Y;)zex over a space X is called a fiber
bundle. It consists of a space Y = Y _+ Y. and a continuous “indexing”
projection m: Y — X, with n71{z} = Y,, as indicated below.

Y =) 1,

zeX

X

A “continuously varying group” (A;).cx is a sheaf of groups. It consists
essentially of a fiber bundle 7 : A =3+ A; — X satisfying the additional
requirements:

1. each A; is a group,
2. the operations in the fibers A, “fit together continuously”,

3. mis a local homeomorphism (see below).

We can answer the question of what a “continuously varying set” should
be: it is a sheaf of seis, i.e. a fiber bundle,

F=YF

z€X

X

such that 7 is a local homeomorphism, in the sense that each point y € F
- has some neighborhood U on which 7 is a homeomorphism U — (U).
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This ensures in particular that each fiber F, = n~1(z) is discrete, and that
the variation across the fibers is continuous, in a suitable sense.

To define the semantics of HOL in sheaves, one needs to specify the basic
type-forming and logical operations. Some of these can be defined pointwise,
(FXG)y 2 (FyXGy). Others, however, cannot; for instance, the exponential
G¥ of sheaves F,G is the “sheaf-valued hom” hom(F,G), defined in terms
of germs of continuous maps F — G, for which (GF), 2 GI=. This is what
makes topological semantics different from the product semantics of indexed
families.

Like the product universes, the universe sh(X) of all sheaves on a given
. space X models HOL in the sense that the axioms are all true and the
rules of inference are all sound. But in general sheaves violate the axiom of
choice. Indeed, one can find sheaf models of HOL that also violate many
other properties of sets.

5.3 Topological completeness

If we think of sheaves as sets varying continuously in a parameter, the con-
stant sets occur as the special case of no variation. The semantics given
in 4.3 above apply mutatis mutandis to yield topological semantics, with
standard set-theoretic semantics as a special case.

Some logical statements that are not true of variable sets in general are
true of all constant sets, as a result of their special properties. In this sense,
the logic of the constant sets is quite strong, while the logic of variable sets
is much weaker. That is, fewer things are true of all variable sets than are
true of constant ones. This is just like the difference between the field of
‘real numbers and the ring of real-valued functions. Now one can ask, what
is the logic of continuously varying sets? That is to say, which sentences
of HOL are true in all sheaf models? The answer is given by the following
theorem from (Awodey and Butz 2000).%8

Theorem. HOL is complete with respect to topological semantics.

The completeness referred to is deductive completeness in the sense of our
Definition 1.2.1, with respect to the standard, classical deductive conse-
quence relation, as specified in the appendix. Thus if a sentence is true in
all topological models, then it is provable.

The reader may wonder how this result is to be reconciled with the
Godel incompleteness of deductive higher-order logic. Roughly speaking,

%8 The proof uses recent results in topos theory (Butz and Moerdijk 1999) that are rooted
in geometry.
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the situation is this: the sense in which a sentence is “true but unprovable”
in Godel’s theorem involves only “true of all constant sets,” but not “true
of all variable sets.” Thus a “true but unprovable” Gédel-style sentence is
only true of the constant sets, but it is violated by some variable ones (else
it would be provable).

6 Notions of categoricity

Having now considered completeness and categoricity with respect to stan-
dard, set-theoretic semantics, and deductive completeness with respect to
alternate semantics, we turn to possible alternate notions of categoricity.
We have already mentioned that some axiomatic theories in higher-order
logic are categorical in the usual sense that any two (standard) models are
isomorphic just in case the sets used to model them are assumed to have
certain properties, such as satisfying the continuum hypothesis or the axiom
of choice. This is essentially because these properties of sets are expressible
in HOL. For example, the following simple theory is categorical just if the
continuum hypothesis holds.

Ezample 15. The theory Ty has one basic type symbol U, one relation sym-
bol R : PP(U), and two axioms expressing the conditions “U is countably
infinite” and “|U| < |R|”.

But the idea of categoricity as a basic criterion of adequacy for a system
of axioms seems to presume that it is not sensitive to such questions as
whether the continuum hypothesis holds. Indeed such issues seem irrelevant
to the categoricity of descriptions of at least some classical mathematical
notions, like the natural numbers. As was seen in part I above, some version
of categoricity was one of the main early conditions of adequacy for axiom
systems, quite independently of a precise specification of the theory of sets,
or any understanding of their more subtle properties.

In this section, we consider several strengthenings of the notion of cate-
goricity that are not sensitive in this way to special properties of the seman-
tics, although they do have their own peculiarities. The notions considered
are called unique, variable, and provable categoricity. Some of the classi-
cal theories of greatest interest do indeed have these stronger properties.
Finally, we consider the category-theoretic concept of universality and its
relation to axiomatic descriptions.
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6.1 Unique categoricity

This notion strengthens conventional categoricity by requiring that any two
models M and N be isomorphic via a unique isomorphism M =2 N. This
is clearly equivalent to saying that the theory at issue is categorical and,
furthermore, that its models have no non-trivial automorphisms.”®

The classical axiomatizations for the natural and real numbers do indeed
have this stronger property (the complex numbers do, too, if one eliminates
complex conjugation as an automorphism by adding a constant symbol for
i). As will become more clear below, axiomatizations are sometimes categor-
ical because there are some natural or canonical maps between models (as
opposed to ones gotten, say, by the axiom of choice), and the axioms then
suffice to make these canonical maps isomorphisms. The property of unique
categoricity also seems to accompany some of the other strengthenings to
be considered, and it is found in connection with the category theoretical
notion of universality.

6.2 Variable categoricity

We have already considered the notion of a continuously varying model M
over a space of parameters X, as made precise by the concept of a sheaf of
models, which is a model in the “universe” sh(X) of continuously variable
sets (cf. 5.2 above). The notion of variable categoricity is simply the obvious
generalization of categoricity to such variable models:

Definition 16. A theory T is called variably categorical if any two conti-
nuously variable models M, N over any space X are isomorphic.

Remarks. 1. This condition requires more than just that there is an iso-
morphism
hg : My, =3 N, for each z € X.

In addition, the A, must fit together to form a single, continuous iso-
morphism
h:M -5 N over X.

Thus, in effect, the h, must also vary continuously with the parame-
ter z.

%8 Cf. (Tarski 1983), p. 313.
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2. Note that this notion does generalize conventional categoricity, since
the conventional notion is the special case of variation over a one-
point parameter space. In this sense, conventional categoricity is the
limiting or trivial case of variable categoricity.

3. There is, of course, no sense to requiring that models over different
spaces be isomorphic, since there is no notion of a map between such
models (at least in the current situation).

4. There is an obvious unique version of this notion, obtained by requiring
unique isomorphisms between models.

5. The classical theories of N and R have this property — indeed they
are uniquely variably categorical. The contrived theory T above does
not have it, however (even assuming CH). The reason why is roughly
that, in a given model M, a variable subset Rys C P(Uar) might be
pointwise isomorphic to P(Ups), just for cardinality reasons, without
there being a continuous isomorphism Ra — P(Ups) over the space
of parameters X.

As suggested by the last remark above, the basic idea behind variable
categoricity is that the strong requirement that the isomorphisms must also
be continuously parametrized with the models tends to “break up” acci-
dental or arbitrary choices of maps, and restrict to those that are somehow
intrinsic to or canonically associated with the structure at issue. The follow-
ing notion provides another, rather different, way of restricting the possible
isomorphisms, namely by requiring them to be definable or provable.

6.3 Provable categoricity

We want to formulate the idea that the connecting isomorphism between
any two models of a categorical theory is definable from the language of the
theory, and is provably an isomorphism from the axioms of the theory.1%°
To specify this notion, suppose our theory T is of the form:

U, f:T@U), U, )

where U is a basic type symbol, f a basic constant symbol of type T(U),
and a(U, f) a sentence in the language U, f and higher-order logic. Here we
display U in the type symbol T'(U) to remind ourselves that the type of f
may contain U as a parameter, e.g. if f represents a binary operation on U,

190Cf. (Tarski 1983), p. 310.
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then T(U) is U x U — U. Similarly, the axiom (U, f) likely contains the
basic language U, f.

Now consider the new theory T?, which is essentially two copies of T
written side-by-side. It has:

e Dbasic types: Uy, U;
e basic terms: f1 : T(U1), fo:T(Us)
e axioms: o4 (U, f1), aa2(Uy, f2)

where T'(Uy) is built from Uy in the same way that T'(U) was built from U,
e.g.if f: UXU — U, then f; : Uy x Uy — Uy, and similarly for T(U,). The
axioms are similarly just the axiom « of T with the respective substitutions
of (Uy, f1) and (Us, f,) for (U, f).

Observe that a model of T? is just a pair of models of T,
Mod(T?) = Mod(T) x Mod(T).
Definition 17. T is called provably categorical if:
T?F 3h: Uy — Uy “h is a T-model isomorphism”

where the formula “h is a T-model isomorphism” is to be spelled out in
higher-order logic in the obvious way.

The idea behind provable categoricity is that the theory T has enough
“logical strength” on its own to ensure that any two T-models are isomor-
phic.

Remarks. 1. This notion is plainly dependent on the logical consequence
relation represented by -. Here we are assuming the classical, syntactic
consequence relation in higher-order logic (as given in the Appendix).
A different (weaker) notion results if we take instead e.g. semantic
consequence for classical Set-valued semantics. That notion is clearly
equivalent to conventional categoricity. Of course, any theory that is
provably categorical is also categorical.

2. A stronger condition results from a weaker notion of logical conse-
quence F. For example, using intuitionistic provability instead of clas-
sical by omitting the law of excluded middle makes it more difficult for
a theory to be provably categorical. It is not hard to make up theories
that are provably categorical classically, but not so intuitionistically.
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3. The familiar theories of natural and real numbers are provably categor-
ical (even intuitionistically). The contrived theory To which depends
on the continuum hypothesis is evidently not (else one could prove CH
in higher-order logic).

As these remarks make clear, there is a connection between provable
categoricity and semantic considerations like completeness. Indeed the com-
pleteness of the higher-order deductive consequence relation with respect to
topological semantics is used in the proof of the following:

Theorem 18. A theory is provably categorical if and only if it is variably
categorical.

The even stronger notion of intuitionistically provable categoricity is
equivalent to a certain semantic notion that is phrased in terms of arbi-
trary foposes, but we have chosen not to go into that here.

6.4 Universality

Category theory provides a notion of “unique specification” that is related
to categoricity in an interesting way, which remains to be clarified. Although
this is not the place for a thorough discussion, it seems at least worth men-
tioning the basic connection and a couple of examples.

The basic concept we have in mind is that of a universal mapping prop-
erty, which can be used to characterize a particular mathematical structure.
The connection with the present topic results from the fact that universal
mapping properties are unique characterizations up to isomorphism; any two
structures that satisfy a universal mapping property are necessarily isomor-
phic. Indeed, such structures are uniguely isomorphic; so universal mapping
properties may be compared with uniquely categorical theories.

The two notions do not seem to be equivalent, however. While some
concepts can be formulated both in terms of a categorical, axiomatic theory
and a universal mapping property, some concepts seem to be given most
naturally in one way or the other, as the following examples illustrate.

Ezamples. 1. The natural numbers are characterized by the universal
mapping property called “natural numbers object”, due to Lawvere
(Lawvere 1969). In any category with a terminal object 1, consider
arbitrary structures of the form:

4 Ly S
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(no conditions on f). A natural numbers object is a universal structure
of this type. That is, one (N, 0, s) such that given any such (U, a, f)
there is a unique homomorphism 4 : (N, 0,s) — (U, a, f), i.e. a map
h : N — U such that ho = a and hs = fh, as indicated in the
commutative diagram below.

o S

1 N N
i i
11— g1 .y

This characterization is equivalent to the familiar Peano axioms in
categories like Sets. It is worth mentioning that it also applies in
much more general categories than Sets, where the Peano axioms
cannot be interpreted.

2. A notion that can be given by a universal mapping property, but not
by any familiar axioms, is that of the free group on a set of generators.
Consider the case of two generators: the free group F (z,y) on the
elements z,y has the property that for any group G and elements
9,9’ € G, there is a unique homomorphism % : F(z,y) — G with
h(z) = g and h(y) = g’. The concept of a polynomial ring is defined
by a similar universal mapping property.

3. The real numbers provide an example of a (uniquely) categorical con-
cept that is not determined by any known universal mapping property.

Of course, it may be that one can find axioms for free groups, polyno-
mial rings, etc., or even for any particular universal mapping property, or
that the real numbers can be characterized by a suitable universal mapping
property.’®l We don’t know whether this is the case, but simply mention
the connection between categoricity and universality as a direction for pos-
sible further research. Indeed, this line of thought seems to be quite closely
related to Carnap’s work on extremal axioms and Hilbert’s Axiom of Line
Completeness, mentioned in section .3.2.

1018ee (Pavlovic and Pratt 1999), (Escardo and Simpson 2001) for some recent attempts.
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Appendix: Deduction for higher-order logic

The deductive consequence relation ¢ - 1) between formulas is specified by a
deductive calculus in the usual way. The following rules of inference could be
reduced considerably by defining some logical operations in terms of others.
See (Lambek and Scott 1986) for some alternatives.

1. Order

(@) ek o
(b) ¢ and Y+ I implies @k

() ek implies g[r/a]t p[r/z]

2. Equality
(@) Thkr=r
(b) 7=7"Fo[r/a] = olr'/2]

(c) 9Fe=>vand 9+ =¢ implies 9+ =1
(d) Ve.(a(z) =B(z)) Fa=p
3. Products
(@) TH{r,pr)="1
(b) Tkpir,m)=m, i=1,2
4. Ezponents

@) TFQz7)(e) =
(b) Tk Az.e(z) =« (z not free in o)

5. Elementary logic

Y IF - iff dApk L
() dFpand 9o iff dFpAw
) IVery iff 9Fyand ok
(g dhNpkov iff dFp=9
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(h) 9 p(z) iff 9FVzp(z) (z not freein o)
(i) Jzp(z)F9 iff @(z)b9 (2 not free in 9)

The 7’s are any terms; ¢, ¢, 9 are any formulas; o, 8 are any terms of the
same exponential type. Substitution ¢[r/y] must include a convention to
avoid binding free variables in 7. The type P(X )} and the associated terms
7 € @ and {z : X|p} are treated as alternate notation for X — P, a(r),
and Az : X.¢, respectively.
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