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WEAK THEORIES OF NONSTANDARD
ARITHMETIC AND ANALYSIS

JEREMY AVIGAD

Abstract. A general method of interpreting weak higher-type theories of nonstan-
dard arithmetic in their standard counterparts is presented. In particular, this provides
natural nonstandard conservative extensions of primitive recursive arithmetic, elemen-
tary recursive arithmetic, and polynomial-time computable arithmetic. A means of
formalizing basic real analysis in such theories is sketched.

§1. Introduction. Nonstandard analysis, as developed by Abraham Robin-
son, provides an elegant paradigm for the application of metamathematical
ideas in mathematics. The idea is simple: use model-theoretic methods to
build rich extensions of a mathematical structure, like second-order arithmetic
or a universe of sets; reason about what is true in these enriched structures;
and then transfer the results back to the ordinary mathematical universe.
Robinson showed that this allows one, for example, to provide a coherent and
consistent development of calculus based on the use of infinitesimals.

From a foundational point of view, it is natural to try to axiomatize such
nonstandard structures. By formalizing the model-theoretic arguments, one
can, in general, embed standard mathematical theories is conservative, non-
standard extensions. This was done e.g. by Kreisel, for second-order arithmetic
[29]; Friedman, for first-order Peano arithmetic (unpublished); Nelson, for set
theory [31]; and Moerdijk and Palmgren for intuitionistic first-order Heyting
arithmetic [30] (see also [7]).

In recent years there has also been an interest in formalizing parts of math-
ematics in weak theories, at the level of primitive recursive arithmetic (PRA),
or below. The underlying motivations vary. One may be drawn by the general
philosophical goal of minimizing ontological commitments, or, less ethereally,
by the sport of seeing how little one can get away with. Alternatively, one may
be interested in extracting additional mathematical information from standard
mathematical developments (e.g. [24, 25, 27, 28]), or narrowing the theoretical
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gap between abstract mathematics and concrete computation. In any event,
a number of appropriate formal frameworks have been developed, including
subsystems of first- and second-order arithmetic (e.g. [10, 35, 17, 18]), theories
of finite types (e.g. [26, 28]), and versions of Feferman’s theories of explicit
mathematics (e.g. [39]), to name just a few.

The present work lies at the intersection of the two traditions just described,
proposing the use of higher-type theories of nonstandard arithmetic as yet an-
other framework for formalizing mathematics in weak theories. This combina-
tion seems promising, on a number of fronts. Work by Chuaqui, Sommer, and
Suppes [14, 37, 38] suggests that a good deal of ordinary analysis can be car-
ried out in a theory of nonstandard analyis that is strictly weaker than PRA,
and Tanaka [40] shows that nonstandard analysis can be developed in the
theory WKLy, which is conservative over PRA. Nelson [32] develops measure-
theoretic probability using nonstandard arithmetic, though the presentation
is informal and no axiomatic system is presented. Nonstandard methods have
also been used in proof complexity and circuit complexity [1, 45, 46]; the the-
ories presented here may provide a natural framework for the metamathemat-
ical analysis of such arguments. Aspects of constructive nonstandard analysis,
described in [33], may carry over to weak theories as well.

In Section 2, I present a nonstandard higher-type extension of primitive
recursive arithmetic, state the sense in which it is conservative over PRA,
and provide a short model-theoretic proof. Section 3 provides another proof,
via an explicit interpretation of the nonstandard higher-type theory in its
standard counterpart. Both the model-theoretic proof and the interpretation
are quite general, and apply to a wide range of weak theories of arithmetic;
Section 4 explores variations, extensions, and applications of the central ideas.
In Section 5, I discuss ways in which one can develop parts of real analysis in
nonstandard theories like the ones considered here.

This paper constitutes a rough and exploratory proposal. In Section 6, 1
discuss directions for future research.

§2. A nonstandard extension of primitive recursive arithmetic. In
this section I will describe a finite-type version of PRA and a nonstandard
extension thereof. For a fuller treatment of theories of finite type, see, for
example, [6, 15, 16, 26, 28, 41, 42, 43, 44]. The theory called PRA“ below is
essentially a restriction of Gddel’s theory T with “predicative” recursors only,
and with type 0 equality taken as basic.!

The set of primitive recursive functions is the smallest set of functions of var-
ious arities from the natural numbers to the natural numbers, containing the
constant zero, projections, and the successor function, and closed under com-
position and primitive recursion. The language of PRA has a symbol for each

YThis theory is denoted T in [6], and is the predicative restriction of the theory denoted
Tp in [43].
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primitive recursive function, and the axioms of PRA consist of quantifier-free
defining equations for these functions and a schema of induction for quantifier-
free formulae.

Identifying relations with their characteristic functions, one can use prim-
itive recursion to define the relation x < y; or, equivalently, one can add a
relation symbol to the language of PRA with appropriate defining equations.
The schema of induction is equivalent to

vz ((0) AVy <z (p(y) = ¢y + 1)) = o(z))

where ¢ is quantifier-free, possibly with parameters other than the one shown.
Since the primitive recursive relations are closed under boolean operations and
bounded quantification, the formula above is equivalent, in PRA, to a universal
one. This fact can be used to show that PRA has a universal set of axioms.
By Herbrand’s theorem, it does not matter whether one takes the underlying
logic to be first-order logic, or just the quantifier-free fragment: if the first-
order version of PRA proves Vz 3y ¢(z,y) for ¢ quantifier-free, then there is
a function symbol f and a propositional proof of ¢(z, f(z)) from substitution
instances of the universal axioms and axioms of equality.

The finite types are generated inductively as follows: N is a finite type (de-
noting the natural numbers, in the intended interpretation); and if ¢ and 7
are types, so are ¢ X 7 and ¢ — 7 (denoting the cross product of ¢ and 7 and
the set of functions from o to 7, respectively, in the full set-theoretic inter-
pretation). I will take the simply-typed lambda calculus to have variables of
all finite types, and constants denoting pairing functions, (z,y), and projec-
tions, (2)o and (2)1, at all types. The set of lambda terms is further closed
under lambda abstraction, denoted Az ¢, and application, denoted t(s). I will
identify terms that differ up to a renaming of their free variables. If ¢t and s
are terms and z is a variable of the appropriate type, then ¢[s/z] denotes the
result of substituting s for z in ¢, renaming bound variables if necessary. If I
introduce a term as t[z], then t[s] abbreviates ¢[s/z]. I will write t(sy,... ,sk)
for ((t(s1))(s2)) ... (sk), and 0,7 — p instead of ¢ — (7 — p). N is sometimes
called type 0, and a function of type N,... ,N — N is said to be of type 1.

One obtains a higher-type extension of primitive recursive arithmetic as
follows. Start with a many sorted version of first-order predicate logic with a
sort for each finite type, and an equality relation = at type N only. The terms
are the terms of the simply-typed lambda calculus with the extra constants
described below. The theory includes equality axioms corresponding to (-
reduction; since we only have type N equality, these have to be expressed as
schemata: ‘

o r[(Az. t)(s)] = rlt[s/z]
o 7[((z,9))o] = r[z]
o 7[({z,y))1] = r[y]
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where in each case r[z] is a term of type N, with z is a variable of the appro-
priate type. Add a constant 0 of type N and a constant S of type N — N,
with axioms

e ~S(z)=0
* S@)=5@)+z=y

Then add a constant symbol R of type N, (N,N — N),N — N. The idea is
that R(a, f) is the function defined by primitive recursion from a and f; hence
we have the defining axioms

e R{a,f,0)=a
* R(a, f,S(z)) = f(z,R(a, f,z))

For each type o add a constant Cond, : N, 0,0 — o with defining axioms

o r[Cond(0,z,y)] = rlz]
¢ r[Cond(S(2),z,y)] = r[y]

for type N terms r[z] with z of type o. Finally, add a schema of quantifier-free
induction, similar to the one for PRA. Call the resulting theory PRAY.

Using the recursor, R, one can define all the primitive recursive functions.
If we identify function symbols of PRA with their definitions in PRA“, PRA
is included in PRA“. Conversely, we have the following:

THEOREM 2.1. PRA¥ is a Ils-conservative extension of PRA. In other
words, if PRAY proves Vz Jy @(z,y), where ¢ is a quantifier-free formula
of PRA, then PRA proves it as well.

A proof is sketched in [6, Section 5.1]; a similar proof, in the context of
polynomial-time computable arithmetic, is found in [15].

I will now describe a nonstandard version of PRA“, which I will denote
NPRA“. First, add a new predicate symbol si(z) to the language, with argu-
ment ranging over the natural numbers, and a new constant w of type N. The
predicate st is intended to denote the “standard” natural numbers, while w is
intended to denote a nonstandard natural number. Quantifiers ranging over
the standard numbers are obtained by defining V*!z ¢ to be Vz (st(z) — ¢)
and 3%z ¢ to be 3z (st(z) A ). A formula @ is said to be internal if it does
not involve st, and external otherwise.

To obtain NPRA¥, add the following axioms to PRAY:

o —ist(w)
o st(z) Ny <z — st(y)
o st(x1)A...Ast(zg) = st(f(z1,...,31)), for each type 1 term f with no

free variables and no occurence of w

In particular, the last axiom schema implies that the standard part of the
universe is closed under the primitive recursive functions. In addition, add the
following schema of V-transfer without parameters:

o VoL (T) — V7 0(2)
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where 1 is a quantifier-free internal formula that does not involve w, in which
the only free variables are the type N variables shown.

THEOREM 2.2. Suppose NPRAY provesVtz Jy o(z,y), where © is quantifier-
free in the language of PRA with the free variables shown. Then PRAY proves
Vz Jy o(z,y), and hence PRA proves it as well.

Since V**z 3y ¢(z,y) is implied by both Vz Jy (z,y) and Ytz 3%y ©(z,y),
we have:

COROLLARY 2.3. NPRAY is aIl, conservative extension of PRA. Also, if ¢
is quantifier-free in the language of PRA and NPRA® proves V¥z 3%ty o(z,vy),
then PRA proves Vz 3y p(z,y).

The second part of the corollary indicates a general pattern of reasoning
in nonstandard arithmetic, whereby one uses nonstandard numbers to prove
theorems about the standard ones.

Let NPRA be PRA together with the restriction of the axioms above to the
smaller language. Since NPRA is included in NPRA®, we have the following:

COROLLARY 2.4. NPRA is conservative over PRA, in the sense of Theo-
rem 2.2.

Corollary 2.4 has an easy model-theoretic proof, as follows. Suppose PRA
does not prove Vz 3y ¢(z,y). Let L be the language of PRA, and let ¢, d, and
w be new constants. Let T be the set of sentences containing all the following:

e The axioms of PRA '

* Vy —p(c,y)

e d>c
37 () = 3§ < d (), for each quantifier-free formula v of L with only
the free variables shown
o w > t, for each closed term £ of L + d

Every finite subset of T is consistent, since in any model of PRA satisfying
{3z Vy —p(z,y)} we can choose an interpretation of ¢ satisfying Vy —p(c,y),
an interpretation of d greater than finitely many witnesses for formulae of L
of the form 37 9(7), and an interpretation of w greater than the denotation
of finitely many terms ¢ involving only d. By compactness, let M be a model
of T. Let S be the set of elements of the universe of M bounded by a closed
term involving only the constant d, i.e.

S = {a € | M| | for some closed term ¢ of L +d, a <t }.

The reader can check that M becomes a model of NPRA satisfying st(c) and
Yy —p(c,y) when one uses S to interpret the predicate st.

A straightforward modification of this argument provides a proof of Theo-
rem 2.2. And, in fact, the argument is much more general, since it relies on
very few of the specific features of PRA. In the next section, I will present an-
other proof of Theorem 2.2, by giving an interpretation of NPRAY in PRAY.
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Such an interpretation is interesting in its own right, since it yields an ex-
plicit translation, with a polynomial bound on the increase in proof length.
In addition, it tells us that Theorem 2.2 can be proved in weak fragments of
arithmetic. We will see in Section 4 that the interpretation is almost as general
as the model-theoretic argument, and so both are widely applicable.

In comparison with other nonstandard theories, the nonstandard axioms
above are fairly weak. I will discuss strengthenings briefly in Sections 4 and 6.
But Section 5 suggests that the axioms above are already sufficient to formalize
an interesting portion of real analysis.

§3. The interpretation. The interpretation of NPRA¥ in PRAY uses a
forcing argument, described entirely in the language of PRA¥. For similar
forcing arguments, see [2, 3, 5, 7, 9].

Let L denote the (typed) language of PRA%, and L*' denote the language
of NPRA“, i.e. L together with an extra constant, w, and a new predicate,
st(z). Our first step is to translate terms of L* to terms of L. Choose a type
N variable, w, in the language of L, corresponding to the constant, w, of L.
Also, assign to each variable z of type ¢ in L® a variable # of type N — ¢ in
L. Finally, if t{z1,... ,z%] is a term of L with the free variables shown, let
denote the term t[Z;(w), ... ,Zx(w)] of L, where the constant w of L is also
replaced by the corresponding variable of L.

The idea is that we are taking elements of the universe of L to be named
by terms of L that depend on a “generic” element, w. It is not hard to check
that the axioms of S-reduction are preserved by the translation.

Conditions of the forcing relation are ternary relations, considered as ele-
ments of type N, N,N — N. Intuitively, a condition p is supposed to represent
the assertion V*!u Vv p(u,v,w), where w is the generic nonstandard element.
If p and g are conditions, define p < ¢ to be the formula Yu,v,w (p(u,v,w) —
q(u,v,w)), read “p is stronger than (or equivalent to) ¢.” Note that if p and ¢
are conditions, then their conjunction, p A g, satisfies pAg<pandpA g <gq.
Sometimes, if p is a condition and A is another ternary relation, I will write
p AV Vv A(u,v,w) instead of p A A. This is nothing more than a use-
ful convention that will keep us mindful of the informal interpretation of the
conditions.

We are now ready to define a relation p IF ¢ between conditions p and
formulae ¢ of L**. It will be convenient to take the logical connectives to be
V,A,—, L. With this choice of connectives, —¢ abbreviates ¢ — L, 3z ¢
abbreviates =Vz —p, and ¢ V ¢ abbreviates ~(—¢ A +). The forcing relation
is defined inductively, as follows:

L plk L =d2zVw -Vu < 2 Vo p(u,v,w).

2. pltty =ty =32 Vw (Yu < 2 Yo plu,v,w) = & =
3. plkty <ty =32 Vw (Vu < 2 Vo plu,v,w) = 8 <
4. plF st(t) = 3z Vw (Vu < 2 Yo p(u,v,w) = t < 2)
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5. plFo =Y =VYg<p(gltp—=ql-y).

6. plFp Ay =(plF ) Alplkd).

7. pl-Vz o =VZ (plF )
If ¢ is a formula in the language L** with free variables zy, ... , 2y, then pIF ¢
is a formula in the language L with free variables w, %1, ... , %, as well as p.
Notice that we are allowing that some conditions force L. In the definition of
p Ik ¢ — 1, the quantifier Vg < p ranges over conditions. It is not difficult to
show that p I ¢ — % is equivalent to Vg (¢ IF ¢ — p A g IF %); T will use both
formulations of p IF ¢ — 9 below. Define I ¢ to be Vp (p IF ), read “p is
forced.”

The following informal considerations may help explain the motivation be-
hind the definition of forcing at the atomic clauses. Think of a condition p as
representing an infinite set of sentences,

{Vv p(0,v,w), Vv p(1,v,w), Vv p(2,v,w),... }.
If we call this set S, then clause 2, for example, asserts that p forces t; =ty if
and only if ¢; = ¢ is a consequence of a finite subset of S,.

The proofs of the next five lemmata are routine and standard. (See, for
example, [3, 9] for a little more detail.)

LEMMA 3.1. Suppose t and s are terms of L*t, r[z] is a type N term of
PRAY, and z has the same type as t. Then PRA“ proves

r[flw 8/2]] = r[i[s/=]].

ProoF. By induction on ¢. Informally, in the base case where t is z, we
have

P 5/3] = #(w)[\w §/3] = (w 8)(w) = 3 = 1[s/z].
The other cases are easy. =

LEMMA 3.2 (substitution). For each formula ¢ and term s in the language
of L**, PRAY proves p I ¢[s/z] + (p IF ¢)[\w §/Z].

PROOF. By induction on . Lemma 3.1 takes care of the base cases. -

LEMMA 3.3 (monotonicity). For each formula ¢ of L%, PRAY proves p IF
pAg2p—ql-p.
Proor. Induction on ¢. -

LeMMA 3.4. For each formula ¢ in the language of L%, PRAY proves I+
(L = ).

Proor. Induction on ¢. !

LEMMA 3.5. For each formula ¢ in the language of L*t, if ¢ is provable in
intustionistic logic, then PRAY proves I .

Proor. Induction on proofs. .
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Since we are interpreting the connectives V and 3 in terms of their double-
negation translations, in order to extend Lemma 3.5 to classical logic we only
need to show that, under the forcing relation, each atomic formula is equiv-
alent to its double-negation. For that purpose, it will be helpful to have the
alternative characterizations of p I st(¢) provided by the following lemma.

To make sense of clause 2 below, some additional considerations are needed.
If ¢ is a quantifier-free formula of L involving u, v, and w, then, fixing the
other free variables, ¢ is provably equivalent to a ternary relation p(u,v,w).
In clause 2, the condition “V**u (¢ £ u)” should be interpreted as the ternary
relation corresponding to t £ u, which depends on u and w, but not v. T will
use similar conventions below without mentioning them explicitly.

LemMMA 3.6. PRAY proves that the following are pairwise equivalent:
1. plF st(t).
2. pAYSu (£ £ u) - L.
3. Jy (plFt < z)wy/7]).
Also, Votu (t £ u) I —st(t).

Regarding clause 3, remember that in p I+ t < z the free variable z is
replaced by Z(w). So 3 asserts that ¢ is standard (at p) if and only if it has a
bound that does not depend on w.

Proor. The equivalences follow almost immediately from the definition
of p Ik st(t), which is also easily seen to be equivalent to 32,y Vw (Vu <
z Vv p(u,v,w) — t < y). For the last claim, note that Vu (¢ £ u) IF —st(t) is
equivalent to the statement “for every p, 1 implies 2.” -

LEMMA 3.7. For each formula ¢ of L, PRA“ proves IF ——p — .

Proor. We will only verify this in the case that ¢ is atomic. The general
case follows by induction on formulae (working directly with the forcing defi-
nitions, or using intuitionistically valid inferences, which we already know are
sound for forcing).

To handle the case where ¢ is of the form ¢; = t5, we first have to observe
that PRA“ proves #1aIF —(t; = t3). To see this, remember that #; &+ 5 IF
—(t1 = ta) is equivalent to the assertion that whenever a condition p forces
t; =to, p Aty # &y forces L; but verifying this is just a matter of unwinding
definitions.

To see that PRAY proves IF ——(t; = t3) — ¢; = tg, argue (in PRA¥) as
follows: suppose p I+ ——(t; = t2). Then p A t # o Ik L. Checking the
definitions again, it is not hard to verify that this is equivalent to p IF ¢; = t5,
as required.

The same argument shows that PRAY proves [k =—t; <ty = t; < ta.

Finally, for the case that ¢ is st(t), argue in PRA¥, and suppose p I+ —~—st(t).
Then, by Lemma 3.6, p A V**u (£ £ w) IF L. By Lemma 3.6 again, p IF st(t),
as required. -
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LEMMA 3.8. For each formula ¢ in the language of L, if ¢ is provable
classically, then PRA® proves IF .

ProoFr. Follows from Lemmata 3.5 and 3.7. -

We are now ready to consider the axioms of NPRA“. We will soon see that
all of the axioms other than —st(w) are forced. But first, we will need the
following lemma. If ¢ is any quantifier-free internal formula in the language
of L%, let % denote the translation of ¢ to the language of L, derived from
the corresponding translation of terms. More explicitly, if ¢(z1,...,zx) has
the free variables shown, then ¢ is the formula ¢(Z; (w), ... ,#x(w)), with the
understanding that if the constant, w, occurs in ¢, it is replaced by the variable,
w, in @.

LEMMA 3.9. For each quantifier-free internal formula ¢ of L, PRAY proves

1. oIk .

2. plt @ is equivalent to 3z Vw (Vu < z Vv p(u,v,w) — ).

PRrROOF. The two claims are proved simultaneously by induction on ¢. If
® is atomic, then 2 holds by definition and 1 is handled as in the proof of
Lemma 3.7. Since the case where ¢ is of the form 6 A 7 is straightforward, we
only need to consider the case where ¢ is of the form 6 — 7.

For 1, we need to show g 718 — 1. So suppose p I+ 8; we need to show
pA (5—) %) Ik n. By the induction hypothesis, it suffices to show

(1) 3z Vw (Yu < 2 Yo p(u,v,w) A (B = 7) = 7),

since 8 — 7 does not depend on u or v. From the assumption p I+ 6 and the
inductive hypothesis we have

o~

Iz Vw Vu < 2z Vv p(u,v,w) — 8),

from which (1) follows.
For the forward direction of 2, Suppose p IF (6§ — 7). By the inductive

hypothesis, we know s 8, and so p A I 7. From the definition, it is easy to
show that this implies

32 Y (Vu < 2 Yo p(u, v,w) = (B = 7).

For the other direction, suppose the last displayed formula holds, ¢ < p, and
g I 8. By the inductive hypothesis we have

Az Vw (Vu < z Yo gq(u,v,w) — 5)
and hence
Jz Yw (Vu < 2 Vv g(u, v,w) — 7).
By the inductive hypothesis, this is equivalent to ¢ IF 7. -

LEMMA 3.10. If ¢ is an aziom of PRA“, then PRAY proves I .



10 JEREMY AVIGAD

Proor. All the axioms of PRAY are universal, which is to say, they are
of the form Vz1,... ,z; @(z1,... ,2r), where @ is quantifier-free and internal.
By Lemma 3.9, I VZ ¢ is equivalent to VZi,... , %, Yw ¢(Z1(w),...,Zx(w)).
The axioms corresponding to S-reduction are easy to verify, and otherwise, the
translation of each axiom follows immediately from the untranslated version.

_'

LEMMA 3.11. For each constant term f of type N* — N of L** not involving
w, PRA® proves Ik Vay,... ,zx (st{z1) A ... A st(ze) = flz1,...,2k))-

Proor. The key point is that if f is as in the hypothesis, it does not
depend on w. Argue in PRA“. Suppose p IF (st(z1) A ... A st(zy)), ie.
dz Yw (Vu < 2z Yo p(u,v,w) = (F1(w) < 2 A ... AE(w) < 2)). Let-
ting 2/ = maxy., f(vl,... ,0%), we have 3z,2' Yw (Vu < 2z Vv plu,v,w) —

o~

f(#1(w),... ,#x(w)) < 2/, which implies p I st(f(z1,... ,zx)). 5
LEMMA 3.12. PRAY proves I+ Vz,y (st(z) Ay < z — st(y)).

PRrOOF. Argue in PRA“. Suppose p I+ st(z) and p IF y < 2. Then
Jz Yw (Vu < 2z Vv p(u,v,w) = Z(w) < z) and 3z Yw (Vu < z Yo plu,v,w) =
§(w) < Z(w)). Picking z to be the maximum of any two witnesses to these
statements, we have dz Vw (Vu < z Vv p(u,v,w) — §(w) < 2), which is
p Ik st(y). =

We have dealt with all the axioms except for V-transfer and —st(w). The
next lemma deals with the former.

LeMMA 3.13. If (%) is any quantifier-free formula of L with only the type
N wvariables shown, PRA¥ proves IF VF o(ZT) — V& @(Z).

ProoOF. For notational simplicity, let us assume that 7 is a single variable.
Argue in PRA“. Suppose p IF V¥'z ¢(z). By Lemma 3.6, we have Yw ((p I+

o(z))[Aw w/&]). Since ¢(z)[Aw w/] is equivalent to p(w), by Lemma 3.9 we
have

Yw 3z Vw (Vu < 2 Yo p(u, v,w) — p(w)).
Since ¢ does not depend on w or z, this is equivalent to
3z Vw (Vu < 2z Yo p(u,v,w) = Yw p(w)),
which in turn implies
Vi 3z Vw (Vu < 2z Vv p(u,v,w) ~ p(Z(W))).
But the last formula is equivalent to p I Vz ¢(z), which is what we want.

LEMMA 3.14. Suppose ¢ is any formula of L**, and NPRAY proves . Then
PRA¥ proves V¥'u (w £ u) IF .

ProOOF. By Lemma 3.6, we have V*¢u (w ¢ u) IF —st(w), and we have shown
that all the other axioms of NPRAY are forced. -
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We are now only one lemma away from the proof of the main theorern.

LEMMA 3.15. Suppose o(y, 1, ... ,Zk) 18 a quantifier-free internal formula
of L® with the free variables shown, and y is of type N. Then PRAY proves
Vo (v, 81 (), . 85 () I Vy (g, a1, .. ,4).

Proor. Unwinding the definition and using Lemma 3.9, we see that we
need to show that PRAY proves

Vi 3z Vw (Yo o(v, £1(w), ... , Ex(w)) = ©(GWw), F1 (W), ... , Fx(W))).
But this is immediate. =

PROOF OF THEOREM 2.2. Suppose NPRAY proves V¢z Jy o(z,y) with ¢
quantifier-free in the language of L, and argue in PRA¥. By Lemma 3.14, we
have

Vel (w £ u) IF V¢ Ty o(z, y).
Let w be arbitrary. Since (p It st(z))[Aw w/Z], we have

(v'u (w £ u) IF 3y o(z,y)) M w/z].
Keep in mind that 3y ¢(z,y) abbreviates —=Vy —@(z,y). By the previous
lemma, Vv = (Z(w), v) IF Yy —p(z,y), so we have

(V*u (w £ u) A Vo =p(F(w), ) IF 1)[Aw w/E],
which expands to .
3z Vw (Vu < 2 Vv (w £ u A Vv —p(w,v)) = L1).
This is classically equivalent to
JzVw (Ju < z (w < w) V Iv p(w,v)).

Given a z witnessing this statement, choose w = z. Then we have Yu < z (w ¢
u), and hence v p(w,v). Since w was arbitrary, we have Yw Jv p(w,v), as
desired. =

§4. Weak theories of nonstandard arithmetic. In this section, I will
discuss variations of Theorem 2.2, and some applications. To start with, there
are a number of features of Theorem 2.2 and its proofs that are worth noting.

The first has to do with the treatment of equality. The theories PRA¥ and
NPRA® were presented with only equality at type N as a basic relation. Of
course, one can define equality at higher types extensionally; for example, if f
and g are of type N — N one can take f = g to be Vz (f(z) = g(z)). Doing
so does not guarantee that the usual equality axioms, f = g — ¢(f) = ©(g),
follow. But, using a method due to Luckhardt, one can interpret a fully
extensional version of NPRAY in our intensional version, by relativizing all
quantifiers and variables to the “hereditarily extensional objects.” This inter-
pretation preserves I, formulae (as well as V*'3° formulae, etc.). So Theo-
rem 2.2 extends to extensional versions of NPRA“ as well. For a discussion
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of some of the issues related to various treatments of equality, see [6, Section
3.1], [43, Section 3.1], and [15, Section 7].

Second, most of the higher types were not used by the intepretation in an
essential way. It suffices to have a theory in which the types are closed under
the operation o = (N — o), so, for example, the interpretation works just as
well for second-order versions of NPRA and PRA, associating k-ary function
variables of the first theory to (k + 1)-ary function variables of the second.

Finally, very little reference was made to the specifics of PRAY itself. In the
interpretation, only the following features came into play:

1. PRAY proves that < is transitive and anti-reflexive, and satisfies the
sentence Vz,y 3z (z < 2 Ay < 2).

2. PRAY has a universal set of axioms.

3. If o(z,y, #) is a quantifier-free formula, possibly with free variables shown,
PRAY proves

HR Vm,y’z ((P(m7 y7z) H R(w7y?z))7

where R ranges over a suitable representation of ternary relations.

4. PRAY proves that the ternary relations are closed under conjunction.

5. If f is a closed type 1 term, then PRAY proves Vz 3w VZ < z (f(Z) < w).
(This was used in the proof of Lemma 3.11).

In fact, most of the proofs in the previous section required only the intuition-
istic fragment of PRAY. The proof of Lemma 3.13, which showed that the
V-transfer schema without parameters is forced, used classical logic. But if
one is willing to give up transfer, then only the final proof of Theorem 2.2
requires an inference that is not strictly intuitionistic, in the form of Markov’s
principle for quantifier-free formulae; and a slight rewriting of the forcing re-
lation, along the lines of [3], can be used to render the argument entirely
intuitionistic.

In sum, both the model-theoretic argument sketched at the end of Section 2
and the syntactic interpretation of Section 3 generalize considerably. For ex-
ample, let PV be Cook’s theory of polynomial-time computable functions, and
let PV be a corresponding higher-type generalization (i.e. the theory called
PV in [15], but with induction restricted to quantifier-free formulae; see also
[6, Section 5.2]). Let NPV“ be the nonstandard version obtained by adding
the nonstandard axioms of Section 2. Then we have

THEOREM 4.1. NPV* is conservative over PVY and PV, in the sense of
Theorem 2.2.

Similarly, let ERA denote elementary recursive arithmetic, obtained by
adding +, x, and z¥ to PRA but restricting the recursions to those that can
be bounded by a term (see e.g. [4, 37, 38]). ERA is a conservative extension of
the theory alternatively known as EFA, for “elementary function arithmetic”,
or IAg(exp) (see [21]). Let ERA“ be the natural higher-type version of ERA
(similar to the theory G3A“ of [26, Section 2.2], but without the additional
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universal sentences in clause 9), and let NERA“ be the nonstandard version
of ERA“. Then we have

THEOREM 4.2. NERAY is conservative over ERA“ and ERA, in the sense
of Theorem 2.2.

Similar versions of Theorem 2.2 hold, for example, for the theory denoted
T + (p) in [6], and for the theories G, A¥ of [26].

The nonstandard axioms can have interesting consequences for the standard
numbers. Recall that a formula is bounded, or Ay, if all its quantifiers are
bounded, and ¥; if it is of the form 3% ¢, where ¢ is bounded. Consider the
collection principle, BY;:

Ve <z3ye(z,y) = 3wVe < z3y <wp(z,y)

where ¢ is %;. Let BY$® denote the relativization of BY; to the standard
numbers, where z is assumed to be standard. The following proposition still
holds even if ¢ has additional parameters that are not necessarily standard.

PROPOSITION 4.3. NERAY and NPRAY prove BEit.

PROOF. By pairing existential quantifiers, we may assume ¢ is Ag. Argue
in NERA“ or NPRA“. Suppose z is standard and Vz < z 3%y ¢(z,y). Then
for any nonstandard number w, we have Vz < z Jy < w ¢(z,y). Since, in
NERA® and NPRAY, every bounded formula is equivalent to a quantifier-free
(even atomic) one, by induction there is a least w such that this last formula
is satisfied. Since the nonstandard numbers are closed under predecessor, this
least w is standard. -

Another interesting fact is that we can interpret the theory WKL} of Simp-
son and Smith [35,36]. This theory is equivalent to a second-order version
of ERA with set variables, together with a recursive comprehension axiom,
(RCA), and a weak version of Konig’s lemma, (WKL), which asserts that
every infinite tree on {0, 1} has an infinite path. For details, see [35, 36].

THEOREM 4.4. WKL}, is conservative over ERA for Ils formulae.

PROOF. One can interpret WKL} in NERA, interpreting the first-order
universe as the standard numbers of NERA, and interpreting the second-order
universe as the standard parts of nonstandard finite sets of NERA. Here we
are using the fact that in NERA, one can code finite sets as natural numbers;
note that if M is a model of NERA and S is a set coded in M, then the
intersection of S with the standard numbers of M may be unbounded.

Lemma, IV.4.4 of [35] shows that (WKL) and (RCA) follow from a single
schema, of ¥, separation:

Vz ~(3y o(z,y) A2 ¢(z, 2)) =
3SVz ((Jy w(z,y) >z € S)A P2 9(z,2) = z ¢ 9)),
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where ¢ is Ag. To see that this holds in the interpretation, argue in NERA.
Suppose for every standard = we have —(3%%y @(z,y) A3z 9 (z, 2)). Let S be
the finite set

S={z<w]| Iy <w (p(z,y) A\Vz <y ~(z,2))}.
It is not hard check that for each standard z, we have
'y p(z,y) =+ z € S) A 29(x,2) 5z ¢ 9),

as required. -

The results of [36] are more general; for example, the first-order consequences
of WKL} are exactly those of ERA + BY;.

In Section 6, we will see that, at least for the case of ERAY, the transfer
principles and induction in the system are close to optimal. When it comes
to PRA, however, it seems worth mentioning another conservation result that
can be obtained by the entirely different methods. Let (I3%') denote the
relativization of the schema of ¥; induction to the standard numbers. (Here
too it does not hurt if we allow nonstandard parameters.) Let NPRA' consist
of NPRA without the V-transfer axiom, together with (I£$). Then we have
the following: ‘

THEOREM 4.5. If NPRA' proves V¥'z 3%ty o(z,y) with ¢ quantifier-free in
the language of PRA, then PRA proves Yz Jy o(z,y).

Proor. The corresponding theorem for an intuitionistic version of NPRA' is
proved in 7, Theorem 4.4]. By [7, Lemma 5.1], this intuitionstic theory proves
that Markov’s principle for primitive recursive relations holds on the standard
numbers. Our NPRA' can therefore be interpreted in the intuitionistic version,
using a double-negation translation. =

Section 6 raises the question as to whether or not there is a common refine-
ment of Theorems 2.2 and 4.5. Nonetheless, Theorem 4.5 is strong enough to
yield the following celebrated result of Friedman. Here WKL, is essentially
WKL}, together with the schema of ¥; induction.

THEOREM 4.6. WKLy is conservative over PRA for II; sentences.

Proor. Asin the proof of Theorem 4.4, WKL, is interpreted in NPRA'. -+

A further connection between Weak Kénig’s lemma and nonstandard anal-
ysis is discussed in [40].

One advantage to using an interpretation instead of a model-theoretic ar-
gument is that it becomes clear that the theorems can proved in weak the-
ories. For example, let S denote Buss’ theory of feasible arithmetic (see
(10, 13, 15, 18]). Let ERA* denote the extension of ERA with a function
symbol for iterated exponentiation (a conservative extension of the theory
sometimes denoted EFA*, IAg(superezp), or IS, + superezp; see [21]).
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THEOREM 4.7. 5§ proves that NERA® is conservative over ERA“, in the
sense of Theorem 2.2. ERA* proves that NERAY is conservative over ERA,
in the sense of Theorem 2.2, and hence that NERAY is consistent.

PROOF. S is strong enough to develop basic syntax, which is all that is
needed to prove that the interpretation is sound. ERA* is strong enough
to prove the cut-elimination and normalization theorems, which is enough to
prove that ERA“ is conservative over the quantifier-free version of ERA; and
it is strong enough to define a truth predicate for quantifier-free formulae of
ERA, which is enough to prove that ERA is consistent. -

The formal system ERNA of [37, 38] can be interpreted in NERA, taking
the variables of the former theory to range over the rational numbers of the
latter, as in Section 5 below. Therefore, Theorem 4.7 refines the results of
[14, 37, 38].

Finally, let me mention, in passing, that these methods can be extended to
stronger theories as well. With full Peano arithmetic, PA, one can take the
nonstandard version, NPA, to include the transfer schema,

st(@) A ... A st(zn) = (0 © @),

where ¢ is any formula in the language of PA with free variables z,... ,z,;
and the principle of standard induction,

¢(0) AVz (p(z) = p(z + 1)) = V2 p(z),

for arbitrary formulae ¢. By formalizing in PA the usual construction of a
nonstandard elementary extension of the natural numbers via compactness
(more precisely, the construction of X elementary extensions, for arbitrarily
large k), one can show that NPA is a conservative extension of PA. Another
proof, using definable ultrapowers, is presented in [34]. But since the transfer
principle above is equivalent to the assertion that the standard numbers are
closed under suitable Skolem functions, with some additional work the forcing
interpretation in Section 3 can be used to obtain yet another proof of this
conservation result.

§5. Nonstandard analysis in weak theories. In this section I will sketch
a way of developing parts of analysis in nonstandard theories of arithmetic
like the ones discussed above. All of the definitions and theorems which fol-
low should be thought of as taking place in NERA“. It is likely that similar
methods can be used to carry out parts of analysis in NPV¥, but the situation
there is more delicate; see the discussion in Section 6.

I will use the notation N* to denote the nonstandard natural numbers, and
- interpret the type N of our nonstandard theories as ranging over N*. Hence, a
quantifier of the form Vz € N* denotes nothing more than quantification over
the type N objects of the universe. On the other hand, I will let N denote
the standard numbers, so z € N means st(z), and a quantifier Vz € N ¢ is
understood as Vz (st(z) — ¢).
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The nonstandard integers, Z*, are defined to be ordered pairs (a, b) of non-
standard natural numbers, and the nonstandard rationals are defined to be
ordered pairs (a,b) of nonstandard integers, with b # 0. The usual relations
and arithmetic operations on integers and rationals, including =z, =q~, <z~
<q*; +z-, +q~, ... are defined in the usual way, and all are represented by
type 1 terms in the language of NERA“. Note that equality is a defined re-
lation on Z* and Q*. An integer (a,b) is standard, written (a,b) € Z, if it is
equal to an integer {(c,d), with c,d € N; or equivalently if |a — b| is standard.
Similarly, the standard rationals Q are those that are standard fractions when
reduced to lowest terms. Note that the relations z € Z and z € Q are external,
i.e. they are defined by formulae that involve the predicate st. As above, we
can interpret quantification over Z*, Z, Q*, and Q in the usual way; where
notationally convenient I may write, for example, Vq@ instead of Vg € Q. I
will omit subscripts on operations like + and x when they are implicit in the
context.

If g is an element of Q*, |g| denotes the result of rounding ¢ down to the
nearest integer and [q] denotes the result of rounding up. A nonstandard
rational ¢ is bounded if [¢] is standard and infinite otherwise. A nonstandard
rational q is infinitesimal if ¢ = 0 or 1/q is infinite. Nonstandard rationals ¢
and r are infinitely close, written ¢ ~ r, if ¢—r is infinitesimal. The properties
of being bounded and of being an infinitesimal, and the relation of being
infinitely close, are all external.

The standard real numbers, R, are defined to be the bounded nonstandard
rationals. If r and s are reals, r =g s means 7 ~ s. A function f from R to R
is simply a function f from Q* to Q* preserving equality on the reals, that is,
satisfying

Vr,s € R (r =g s = f(r) =r f(s)).

One has to be careful in defining the ordering: 7 <g s means r <g- s A7 % s;
r <R $ is equivalent to r <g« s Vr ~ s. If I have introduced r and s as real
numbers, r < s should be read as r <g s; I will use 7 <o+~ s when I want to
specify the order relation on nonstandard rationals. Note that unlike =@+ and
<@+, which are internal and, in fact, atomic relations, =g and <g are external.

The usual field operations on @Q* lift to make R an ordered field. Under this
lifting, division by 0 can have unusual properties; for example, if p is 1 Jw and
q is 2/w, then, as real numbers, p = ¢ = 0, but p/q = 1/2.

Let us pause for a moment to compare this to common developments of
nonstandard analysis (as in, say, [20]). In such developments, one typically
defines the nonstandard reals, R*, in which one can embed the standard ones;
and any standard function f from R to R has a nonstandard extension f*
from R* to R*. In our setup, nonstandard reals would have to be developed
as type 1 objects, e.g. as Cauchy sequences of nonstandard rationals; general
functions from R* — R* would then be type 2. Here I propose to ignore the
nonstandard reals entirely. We will see below that though this approach has
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some quirks, it suffices for the development of parts of real analysis, and it has
the advantage that real numbers are represented by type 0 objects.

The following lemma says that one can bound the size of the numerator and
denominator in the nonstandard representation of a real number.

LeMMA 5.1. Let z be an element of R. Then there are a € Z* and b € N*
such that |a| < w, b < w, and z =g a/b.

PROOF. If z =q- 0, take a = 0,b = 1. Otherwise, we can assume z >g- 0;
if £ <@« 0, apply the argument to —z.

Since 7 € R, z is bounded by a standard natural number ¢ = [z] > 0. So if
we let b = [(w —1)/c], b is nonstandard as well. We want to find a such that

1
% <¢r T <@ ar
so let a = [bz]. Then b < w and a <g~ bz < |(w —1)/cJce < w —1 < w. Since
z —a/b<g~ 1/b, we have z =g a/b, as needed. 4

The proof shows moreover that suitable values of ¢ and b can be computed
from z by a type 1 term of ERAY. The advantage bestowed by Lemma. 5.1 is
that certain quantifiers over the real numbers become equivalent to bounded
ones. For example, suppose ¢(z) is a formula which respects equality of reals.
Then Vz® ¢(z) is equivalent to VoV < w,bN" < w (b # 0 A st([a/b]) —
¢(xa/b)). This last formula is external, since it involves st. But if ¢ is
internal and one wants to quantify over a bounded range of real numbers, one
can replace st([a/b]) by an explicit bound, in which case the result is an
internal formula. So, for example, if R(z,y) is a relation (i.e. a type 1 term)
in NERA” that respects equality on the real numbers and r and s are reals,
then Vz € [r, s] R{z,y) is also equivalent to a relation in NERA“.

A function f from R to R is continuous if it satisfies the usual e-§ definition
of continuity:

VIR VeR > 0 3% > 0 VR (jz — y| < 6 = |F(z) — f(¥)] < &).
In NERA“ we have the following surprising fact:
PROPOSITION 5.2. Fvery function f € R — R is continuous.

PRrROOF. Suppose we are given f € R - R, z € R, and € € R with € > 0.
It suffices to find a § € R such that

(2) VER (Jh] < 6 — |f(z + h) — f(z)| < &).

Since f respects equality on R, we know that for each nonstandard natural
number m,

(3) VaZ" € (—w,w) Vb < w (la/b] <g- 1/m — |f(z + a/b) — f(z)| <q- £/2).

If (3) holds for all m > 1 let m = 0, and otherwise, by induction, let m be the
greatest number less than w such that (3) fails. Let § = 1/(m + 1). Since m
is standard, 6 >r 0.
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I claim that this d satisfies (2). Suppose |h| <g 6. By Lemma 5.1, h =g a/b
for some a € Z* and b € N* with |a|,b < w. Then |a/b|] <g« 1/(m + 1), and
so |f(z + a/b) — f(z)| <q- €/2. Since f is a function on R and h =g a/b, we
have |f(z + h) — f(z)| <r /2 <r €. -

The proof above used induction on a bounded formula, and so does not go
through in NPV¥. But in NPV* one can prove the converse, namely, that
every function f € @* — Q* satisfying the continuity condition is in fact a
function f e R — R

At first glance, Proposition 5.2 seems blatantly false. After all, what about
the function f € Q* — Q* defined by

f(x):{ 0 ifz <g- 0

1 otherwise,
which is represented by a term of NERA“? The problem is that this is not
a function from R to R: for example, 1/w =g 0 but f(1/w) #r F(0). On the
other hand, the function g € Q* — Q* defined by

{0 ifz<g0
g(z) = { 1 otherwise

is not represented by a term of NERAY, since £ <p 0 is external.

Thus, we have a development of analysis which, like Brouwer’s, has the
property that every well-defined function from R to R is continuous. This
feature may help illuminate the Brouwerian world-view. What is going on is
that in our framework, function variables f, g, ... range over internal functions;
and, in essence, Proposition 5.2 tells us that any function from R — R defined
from an internal function from @* — Q* is continuous. If one is loathe to
give up functions like g above, one can extend our theories with function
variables ranging over ezternal functions, which are not allowed to appear in
the induction axioms. Thus, in a sense, Proposition 5.2 is not incompatible
with classical mathematics; it only underscores the fact that, in the theory at
hand, we have chosen to ignore the additional functions. For many purposes
this restriction poses no great loss; for example, the function f above is well-
defined on any interval of R that does not contain 0.

The examples that follow provide evidence that our framework allows a
smooth development of elementary calculus.

THEOREM 5.3. If f €[0,1] = R, then f is uniformly continuous.
ProoF. The proof is similar to that of Proposition 5.2 above. -

THEOREM 5.4 (Intermediate value theorem). Suppose fe01l-R, f(0)=
~1, and f(1) = 1. Then there is an z € [0,1] such that f(z) = 0.

Proor. Considering f as a function on Q*, let

J=max{i <w]| f(i/w) <g~ 0}
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and let £ = j/w. Since j/w ~ (j + 1) /w, we have
FG+1)/w) =r f(i/w) <r 0 <r f(( +1)/w)
and so f(z) =g 0. -

THEOREM 5.5 (Extreme value theorem). If f € [0,1] — R, then f attains
a mazimum value.

PRrRoOOF. Again considering f as a function on Q*, let

y= max fi/w),

let © = j/w satisfy f(z) =¢+ y. That y is a maximum is guaranteed by the
fact that for any z' € [0, 1], there is an 4 such that 2’ ~ i/w. -
Turning to differentiation, if f € R — R and 2,y € R, say f'(z) = y if

IELE RN PR

VeR > 0 36R > 0 VAR (0¢R1h|<5-+ -

This is not the strongest condition one can imagine, since it says nothing about
the behavior of f at nonzero infinitesimals. For example, it is possible that
f'(0) = 0 while, as a function from Q* to Q*, f(z) oscillates between —z and
z on an infinitesimal neighborhood of 0. Say that f'(z) is strongly equal to y
if the formula above holds with #g replaced by #g.

ProprosiTION 5.6. Let f € R - R, z,y € R. Then the following are equiv-
alent:

1. f'(z) is strongly equal to y.

2. For every infinitesimal h #g« 0, -ﬁﬂh—ﬂﬂ ~y.

If f'(z) is strongly equal to y, then f'(z) = y.

PRrOOF. The last claim is obvious. For the implication 1 — 2, suppose f'(z)
is strongly equal to y and let h be a nonzero infinitesimal element of Q*. Then
for every 6® > 0, |h| <g . So for every standard n, |(f(z+h) — f(z))/h—y| <
1/n. This implies that (f(z + h) — f(z))/h — y is infinitesimal.

The proof that 2 — 1 is very similar to that of Proposition 5.2. -

COROLLARY 5.7. Suppose k is standard, and f(z) = z*. Then for every z,
fl(z) = ka* 1.

Proor. Suppose h is infinitesimal. Calculating, we have

()]

=2

(z + h)* — 2*

- =kz* 1+ h

Using the facts that k and [z] are standard, it is not hard to show that the
expression in brackets is standard, and so its product with h is infinitesimal. -
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One can continue, for example, by defining functions like e®, sinz, and
cos T using nonstandard finite segments of their Taylor series expansions, and
then deriving their basic properties. For another example, there is an easy
proof of the Cauchy-Peano theorem on the existence of solutions to differential
equations, as described in [40]. There does not seem to be any bar to developing
integral calculus in NERAY in a similar manner.

§6. Notes and questions. This paper is a modest contribution to the
study of weak theories of nonstandard arithmetic, and there are a number of
questions and issues that need to be further explored. The questions discussed
in this section fall into two groups: the first has to do with the metamathe-
matical properties of the formal theories under consideration, and the second
has to do with their utility with respect to the formal analysis of mathematics.

As far as the theories go, one would like to know the extent to which they are
optimal, and whether or not they can be strengthened with additional prin-
ciples of induction, transfer, and so on, while maintaining IT, conservativity.
For example, we might want to strengthen the V-transfer axiom of Section 2
by allowing standard parameters: V' (V¢Z (&, §) — VT (&, §)), where @
is an internal A¢ formula that does not involve w. The following shows that
we cannot even add this mild strengthening to NERA® without violating I,
conservativity:

PROPOSITION 6.1. Over NERAY, V-transfer with parameters implies £, in-
duction relative to the standard numbers, i.e. the schema

VG ((0,9) AV U (B(u, §) = (u+ 1,7)) = Vu Py, ),

for (u,q) of the form 3%z p(u, z,7), where ¢ is a Ag formula in the langauge
of ERAY.

PROOF. V-transfer with parameters implies that if o(u,z,¥) is as above
and u and ¥ are assumed to be standard, then 3%z ¢(u, z, ) is equivalent to
dz < w ¢(u,z,7). By induction for bounded formulae in NERAY, if 3z <
w (u,z, ) fails for some u, there is a least such u; and is least u has to be
nonstandard. -

This leaves open the question as to whether one can improve the conservation
result for NPRAY, using either the methods presented here or in [7]. How much
transfer can one add? Can one add the unrelativized version of ¥; induction
for formulae in the original language? In trying to strengthen the conservation
result, one might make use of the fact that one can add X; induction, and even
IT; collection, to PRA without destroying I conservativity. Formalized or
internalized versions of the various model-theoretic constructions presented in
[21, 22, 5] may also be useful in this regard.

Similarly, one can extend PV with ¥} induction, yielding, essentially, Buss’
theory 4 (for various formulations, see [10, 13, 15, 18]). And one can extend
S5 with either a weak form of collection for arbitrary bounded formulae (see
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[11], or [19] for a simpler model-theoretic proof) or a stronger form of collection
for £} formulae (see [13]). Can either of these results or the associated model-
theoretic constructions be used to strengthen the theory NPV“? In particular,
can one obtain a strengthening of NPV* that is strong enough to interpret the
second-order theories of [18], which include a form of weak Kénig’s lemma?

The interpretation of Section 3 provides efficient translations between second-
order and higher-order systems; and the Dialectica interpretation [6, 15, 25, 43)
can be used to interpret the higher type theories in their quantifier-free coun-
terparts. But the interpretation does not work at the first-order level. By
internalizing cut-elimination arguments, it seems that one should be able to
interpret NPRA and NERA efficiently in PRA and ERA. Is there an efficient
means of interpreting NPV in PV? Or can one find specific counterexamples
to show that this is not the case?

Is there a better way to treat equality in the theories presented here?

Are there interesting nonstandard versions of Feferman’s theories of explicit
mathematics?

There are more general questions, having to do with the formalization of
mathematics in theories like the ones presented here. For example, what is
required to formalize various parts of analysis? See [14, 17, 24, 25, 27, 28, 33,
35, 37, 38] for various approaches to answering this question. Do nonstandard
theories provide a useful approach?

Can nonstandard theories like the ones presented here provide a perspicuous
means of extracting polynomial bounds from proofs of theorems in analysis,
as done by Kohlenbach [24, 25, 26, 27, 28]?

At the level of feasible computation, one would like to be able to formalize
the study of feasible real analysis, as described in [23]. Fernandes and Ferreira
[17] provides an initial step in this direction. Can nonstandard theories be
used for this purpose as well?

What kind of theory of nonstandard arithmetic is sufficient to carry out the
development of measure-theoretic probability, along the lines of Nelson [32)7

What is required for carrying out the nonstandard combinatorial arguments
in proof complexity and circuit complexity in [1, 45, 467

Finally, some general methodological reflection is in order. As noted in the
introduction, the motivations for formalizing mathematics in weak theories
range from philosophical, to mathematical, to potential applications in com-
puter science; and a variety of formal frameworks have been explored. To what
extent to the various goals overlap, and are there general considerations that
can help us evaluate the various frameworks? Under such an analysis, how do
the nonstandard theories described here stack up?
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