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THE COALGEBRAIC DUAL OF BIRKHOFF’S VARIETY
THEOREM

STEVE AWODEY AND JESSE HUGHES

ABSTRACT. We prove an abstract dual of Birkhoff’s variety theorem for cate-
gories &r of coalgebras, given suitable assumptions on the underlying category
&€ and suitable I':£——=>&. We also discuss covarieties closed under bisim-
ulations and show that they are definable by a trivial kind of coequation —
namely, over one “color”. We end with an example of a covariety which is not
closed under bisimulations.

This research is part of the Logic of Types and Computation project at
Carnegie Mellon University under the direction of Dana Scott.

1. INTRODUCTION

One of the earliest theorems in universal algebra is Garrett Birkhoff’s Variety
Theorem [Bir35]. It states that a class V of algebras is closed under homomorphic
images, subalgebras and products just in case V is the collection of all algebras
satisfying some set of equations.

The classical definition of X-algebras for a signature ¥ generalizes to the category
theoretic notion of I'-algebras for an endofunctor I'. This, in turn, leads to the dual
notion of I'-coalgebras. Coalgebras have proven useful in modeling processes and
objects in computer science [JR97]. It is natural to ask whether such a basic
theorem as Birkhoff’s variety theorem can be dualized to a “Co-Birkhoff Covariety
Theorem” for coalgebras.

In order to dualize the Birkhoff Variety Theorem, we first prove a general variety
theorem in an abstract setting, showing that it holds for a wide range of categories.
This theorem also yields the Birkhoff theorem in the classical setting.

The principle of categorical duality then yields two covariety theorems. On
the one hand, the abstract version of the classical theorem leads to an abstract
covariety theorem that applies to all categories that satisfy some basic factorization
properties. On the other hand, this abstract version specializes to the following

theorem for certain categories of coalgebras:
1
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Theorem. A full subcategory V of a category of coalgebras is closed under im-
ages, subcoalgebras and coproducts iff V is the class of all coalgebras that satisfy a

collection of coequations.

The notion of a “coequation” is determined by duality, and can be regarded as
a condition on the possible “colorings” of a coalgebra.

The covarieties over Set which are closed under bisimulations (here called be-
havioral covarieties) are studied in [GS98]. We generalize this work and provide a
natural example of a covariety which is not behavioral.

A dual to Birkhoff’s variety theorem for coalgebras over Set was first mentioned
in [Rut96]. This result was further developed in [GS98], where behavioral covarieties
were first studied (under the name complete covarieties). Behavioral covarieties also
arise (under the name sinks) in [Rog00]. We take a more general approach, which
yields a covariety theorem for coalgebras over a wide class of categories. The basic
approach was first developed for varieties in {[BH76], which we discovered after
proving the results herein. Alexander Kurz simultaneously and independently took
the same approach for covarieties and proved similar results in [Kur00].

This work forms part of the second author’s doctoral dissertation, written under
the supervision of Professor Dana S. Scott. We both thank him for suggesting
we consider the dual of Birkhoff’s theorem, and for his other contributions to this
work. We also benefited from conversations with JiffAddmek, who pointed us to

the Banaschewski article, and Peter Gumm.

2. THE CLASSICAL THEOREM FROM A CATEGORICAL PERSPECTIVE

Birkhoff’s theorem considers ¥-algebras satisfying a set of equations. We take the
perspective here that a X-algebra is an algebra for a polynomial endofunctor, and
equational definability is a special kind of orthogonality condition. Alternatively,
in the terminology of [AR94], a class of algebras is equationally definable just in
case it is an injectivity class for an appropriate collection of morphisms.

In more details, given a signature I, the category of X-algebras is isomorphic to

the category Set? of P-algebras

(4, a:PA——A)
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for some polynomial functor P:Set——Set,
PA=Co+Ci xA+...+C, x A™.

As is well known, the forgetful functor

U:SetP——=Set
has a left adjoint

F:Set——=Set”
taking a set A to the free P-algebra over A. This algebra is the term algebra over A
and is described categorically as the initial A+ P(—)-algebra (viewed as a P algebra

by forgetting part of the structure map).

An equation 7, = 75 over variables in the set X is just a pair of elements of FX,
T, Fl—=FX.
An algebra (A, o) satisfies 7, = 7» iff, for every assignment of the variables
c: X——A,

the unique homomorphic extension o: FX——(A, a) coequalizes 7, and 5. Let
(1) Fl—=2FX -1 3Q
T2

be a coequalizer diagram!. Then, we have that (4, o) = 71 = 7 iff every homo-

morphism FX—-—(A, o) factors (necessarily uniquely) through q.

2.1. Orthégonality. In general, a map f:A——=B is said to be orthogonal to
an object C' (written f L C) if, for every map a: A——C, there is a unique
map b: B——C such that a = bo f, i.e.,, Hom(f,C) is an isomorphism (see, for
example, [Bor94, Volume 1, Section 5.4]). Thus, we see that an algebra (4, a)
satisfies 7y = 73 just in case ¢ L (A, a), where g is the coequalizer of 7; and 73, as
in (1). Furthermore, for any regular epi p with domain FX, there is clearly a set
of equations E over X such that (4, o) = Eiff p L (4, a). Thus, orthogonality
is a generalization of satisfaction of equations. We intend to understand Birkhoff’s
variety theorem as a theorem that relates certain closure conditions to orthogonality.

If S is a collection of arrows of C, we write S L C if f L C for all f € S.

Similarly, if V is a collection of objects of C (regarded as a full subcategory), we

1We use e——>e to denote a regular epimorphism and e[>—-se to denote a regular
monomorphism.
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write f L Vif f 1 C for each C € V. Finally, we define the notation S L V in
the obvious way. S+ is the collection of all objects C such that $ L C. Similarly,
V+ is the collection of all arrows f such that f L V.

The class Sub(Cy) of all collections of maps of C is partially ordered under in-
clusion. Similarly, the class Sub(Co) of all full subcategories of C is also a partial
order under inclusion. Since S C T implies S+ D T+ for sets of arrows, and for

subcategories V. C W implies W+ C V1, we have contravariant functors:
Sub(Cy)=—=(Sub Cy)°r.

Moreover, it is easy to see that, given a collection of maps S and a full subcategory
V, S+ C Viff $ D V4. Thus, the two L functors form a Galois correspondence,
and L1 is a closure operation (see [Bor94, Volume 1, Example 3.1.6.m)).

In terms of orthogonality, then, we can state Birkhoff’s variety theorem thus:

Theorem 2.1. Let P be a polynomial functor and V a full subcategory of Set®. Let
X be an infinite set. Then V is closed under quotients, subalgebras and products

iff V.= {q}* for some regular epi q with domain FX.

2.2. An abstract variety theorem. We begin by proving an abstract variety
theorem which entails the classical Birkhoff variety theorem.

Recall that a category C is regularly co-well-powered if, for each object C in C,
the collection of (isomorphism classes of) regular epis with domain C is a set. A
category has enough projectives if, for each C, there is a projective® object A and
a regular epi A——>C. In the abstract theorem, the projective objects will play

the role of F.X, the free algebra over a set of variables.

Definition 2.1. A quasi-Birkhoff category is a category that is complete, regularly
co-well-powered and has regular epi-mono factorizations. A Birkhoff category is a

quasi-Birkhoff category with enough projectives.

Ezample 2.1. Let C be a category with finite limits and C in C. Then regular epis
q:C——>e give rise to subobjects of C'x C (take the kernel pair of ¢ and regard it as
a subobject of C' x C'). Hence, if C is complete, has regular-epi mono factorizations

and is well-powered, then C is a quasi-Birkhoff category.

ZThroughout, we are interested in objects that are projective for regular epis, rather than for
every epi. These are sometimes called “regular projective” objects.
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Ezample 2.2. The category of algebras for a monad on Set is always Birkhoff.

Let C be a complete category. Given a full subcategory V of C, we say that
V is closed under subobjects if, whenever there is a monic A>—B and B € V,
then A € V. We say that V is closed under quotients if, whenever A—B is a
regular epi and A € V, then B € V. We say that V is closed under products if the

inclusion functor, UY :V——C, creates products.

Remark 2.3. Let 'V be a full subcategory of C, closed under subobjects. Then UY

creates limits iff V is closed under products.

Definition 2.2. Let C be quasi-Birkhoff. A Birkhoff quasi-variety of C is a full
subcategory of C closed under subobjects and products. If C is a Birkhoff category,

a Birkhoff variety is a Birkhoff quasi-variety closed under quotients.

Theorem 2.2. Let C be a quasi-Birkhoff category and V a full subcategory of C.

The following are equivalent.

1. 'V is closed under products and subobjects (i.e., V is a quasi-variety).

2. 'V s a regular epi-reflective subcategory of C. That is, a subcategory whose
inclusion UY :V——C has a left adjoint FV such that each component of
the unit n¥ :UVFY——1¢ is a reqular epi.

3. V. =8 for some collection S of regular epis.

Proof. 1 = 2: By the adjoint functor theorem (see, for example, [Bor94, Volume
1,Theorem 3.3.3]). The solution set condition is satisfied by the (set-many)
quotients of each object. Because V is closed under subobjects, the reflection
is a regular epireflection ([Bor94, Volume 1, Proposition 3.6.4]).

2 = 3: One shows that (np¥)*+ = V.
3= 1: Easy.
O

Corollary 2.3. Let C be a quasi-Birkhoff category and V a quasi-variety of C.
Then

1. The inclusion UY :V——=C has a left adjoint FV .

2. The counite¥ :FVUV ——idy is an isomorphism.



6 STEVE AWODEY AND JESSE HUGHES

3. Foreach C € C, C € V iff n¥ L C, where nY is the unit of the adjunction
FVHUV.
4. The corresponding monad, TV = UV FV, is idempotent.

5. The monad TV preserves reqular epis.

Ezample 2.4. Set is quasi-Birkhoff. However, the only quasi-varieties of Set are
trivial. Indeed, let V be a quasi-variety. If 2 € V, then 22 is in V for every ordinal
a. Since V is closed under subobjects, we have that V = Set. If 2 ¢ V, then V

must consist of just 0 and 1.

Ezample 2.5. The category Mon of monoids is complete, regular and well-powered,
hence, a quasi-Birkhoff category. Let V be the subcategory of Mon consisting of

those monoids satisfying
2 _ —
T =e—>xr=e.

Then V is clearly closed under subalgebras and products. Thus, by Theorem 2.2,

V is a regular epi-reflective subcategory of Mon.

Theorem 2.4. If C is a Birkhoff category, then a full subcategory V is a variety

iff V.= 5 for some collection S of regular epis with projective domains.

Proof. Let V be a variety. For each C in C, let A¢ be the projective that covers
C. Let S be the collection of all

na, Ac—=UVFY A,
where 1V is the unit of the adjunction from Theorem 2.2. We will show that
V =S+,
If nXC L C, then there is a unique map pc making the diagram below commute.
AC —E——DC

D

UVFVC
Since P is a regular epi, C is a quotient of UY FY A¢ and so is in V. Theorem 2.2
ensures that V C S, andso V = S+,

It is easy to show that for collection S of regular epis with projective domains,

S+ is closed under quotients. O
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Birkhoff’s variety theorem in the classical setting is easily seen to be a direct

corollary of Theorem 2.4.

3. THE “Co-BIRKHOFF” THEOREM

Dualizing the previous definitions, we have the following.

Definition 3.1.' A category is a quasi-co-Birkhoff category if it is regularly well-
powered, cocomplete and has epi-regular mono factorizations. If, in addition, the
category has enough injectives, then it is a co-Birkhoff category.

A full subcategory of a quasi-co-Birkhoff category is a quasi-covariety iff it is
closed under coproducts and codomains of epis. A quasi-covariety of a co-Birkhoff

category is a covariety iff it is also closed under regular subobjects.

The property that a category has enough injectives is the dual of having enough
projectives ~ i.e., every object is a regular subobject of an injective object (where

injective objects, for our purposes, are injective for regular monos).
Ezample 3.1. Any Grothendieck topos is co-Birkhoff.

In order to consider covarieties of coalgebras, one would like to know when
a category of coalgebras is co-Birkhoff. The following theorem gives a sufficient

condition (which can be dualized easily for the algebraic case).

Theorem 3.1. Let £ be co-Birkhoff and I':E——=& preserve regular monos. Fur-
ther, suppose that U:E&r——E& has a right adjoint, H:E——&p (so that U is
comonadic). Then the category Er of T'-coalgebras is also co-Birkhoff.

Proof. 1t is well known that the coalgebraic forgetful functor has a right adjoint iff
it is comonadic. See, for instance, [Tur96] for details.

One shows directly that U reflects regular monos and so inherits the epi-regular
mono factorizations from £. This implies that & is regularly well-powered. Because
HA is injective if A is injective, and U reflects regular monos, & has enough

injectives. O

Hereafter, we assume the conditions of Theorem 3.1 — namely, that £ is co-
Birkhoff, I preserves regular monos and U is comonadic (equivalently, has a right

adjoint). It can easily be shown that, under these assumptions, U preserves and
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reflects epis, regular monos and coproducts. In other words, U creates the defining
structure for covarieties.

As a consequence of Theorem 3.1, the dual of Theorem 2.4 applies to &r. Namely,
a collection V of coalgebras is a covariety iff V = S, for some collection S of reg--
ular monos with injective codomain, where S| denotes the collection of coalgebras
(A, a) such that (4, @) L 4 for all i € S. From this result, we obtain the follow-
ing natural definition of “coequation” (equivalent to those found in [Rut96] and
[GS98]). A coequation® over an object C of “colors” is a regular subobject of the
cofree coalgebra HC (see, for instance, [Rut96] for an overview of cofree coalgebras).
A coalgebra (A, a) satisfies a coequation ¢:(E, e)>—HC just in case (4, a) is
co-orthogonal to 1,

(A,a) Eie (4, 0) L.

Explicitly, for every “coloring” f: A——C, the unique homomorphism

74, a)—>=HC

factors (necessarily uniquely) through 4, as shown below.

7

A c

(4, 0) L~ HC
(E, €)
In yet other terms, (4, a) |= ¢ just in case every generalized element of HC based
at (4, a) is in the subobject i:(E, e)b—=HC. In this sense, a coequation is a
“predicate”.

Each coequation i:(E, e)——HC determines a covariety, denoted {i},, of all
coalgebras satisfying it. Also, any collection of coequations S (allowing the cofree
codomain to vary) determines a covariety, namely S;. Call a full subcategory V
of &1 a coequational covariety just in case V = S for some collection S of regular
subcoalgebras of cofree coalgebras. Then the dual of Theorem 2.4 immediately
yields:

3In the algebraic case, there is a clear distinction between a single equation and a set of
equations. We have found no simple distinction in the dual situation.
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Theorem 3.2. Let V be a full subcategory of Er. Then V is a Birkhoff covariety

iff V is a coequational covariety.

In particular, if we take £ to be Set and T to be a k-bounded functor, as defined
in [GS98], then each covariety is of the form {i}, for i a regular mono into Hk, as

was shown in ibid.

4. BEHAVIORAL COVARIETIES AND MONOCHROMATIC COEQUATIONS

In typical applications of coalgebras in computer science, one is concerned with
behavior “up to bisimulation”. That is, if two coalgebras behave the same (accord-
ing to bisimulation equivalence), then one does not distinguish the two, regardless
of differences in “internal structure”. Thus, one is often concerned with covarieties
which are closed under total bisimulations, leading to the following definitions.

For present purposes, a bisimulation may be taken to be a relation in the category
&r. That is, a bisimulation over (4, o) and (B, ) is a triple ((R, p), r1, r2) such
that the maps ‘

T1: (Ra p>—_><A> Ot),
r2:(R7 p)_—_)(Ba ﬂ)

are jointly monic. For a more traditional definition suitable for coalgebras over
co-Birkhoff categories, see [Hug01].

In [GS98], a complete covariety is defined as one closed under total bisimulations;
we adopt the term behavioral covariety instead. A total bisimulation is one such
that each projection is epi (in £r). A covariety V is closed under total bisimulations
if, whenever (4, @) € V and there is a total bisimulation relating (4, @) to (B, ),
then (B, f) is also in V. It is shown, in ibid., that behavioral covarieties over Set
are definable by coequations over 1. We generalize this result to our setting.

The following shows that the behavioral covarieties are exactly the covarieties

which are sinks, in the terminology of Grigore Rosu {[Ros00]).

Theorem 4.1. Let £ be co-Birkhoff and T' preserve reqular monos. Let V be a

covariety of Er. The following are equivalent.

1. V is closed under total bisimu_lations.
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2. If (A, @) € V and there is a bisimulation (R, p) on (A, a) and (B, B) such
that the projection to (B, ) is epi, then (B, B) is in V.
3. 'V is closed under domains of epis.

4. V is closed under domains of homomorphisms.

Proof. 1<2: Let (4, o) € V and (R, p) be given as in 2, with projections r,
r2. Then Im(r;) € V (as a regular subcoalgebra of (A, a)) and (R, p) is a
total bisimulation between Im(ry) and (B, B).

2 = 3: The graph of epis are total bisimulations.
3=>4: Let f:(A, a)——(B, B) begiven, (B, B) € V, and take the epi-regular
mono factorization, f = fop. The domain of i is in V as a regular subcoalgebra
of (B, B). Hence (4, a) € V.
4=> 1: Let (A, a) and (B, ) be given and let (R, p) be a total bisimulation on
(4, a)' and (B, ). Suppose, further, that (4, a) € V. Then, (R, p) € V,

since it is the domain of the projection
(R, p)—(4, a).

Since V is closed under codomains of epi homomorphisms, (B, 8) € V.
O

The following theorem is a generalization of ([GS98, Proposition 4.6]) and offers

one last equivalent definition of behavioral covariety.

Theorem 4.2. Let £ and T' be as in Theorem 4.1. A full subcategory V of Ep is
a behavioral covariety iff it is definable by a coequation over one color (i.e., by a

regular subcoalgebra of the final coalgebra, H1).

Proof. Let V be a behavioral covariety and let UV 4 HV be the associated regular
mono coreflection, with unit ¢¥. We will show that V = {e}},;}.. Since “C” is
clear, it suffices to show V 2 {e}},} ..

Let (A, o) be given and suppose that (A, a) L €)},. Then !:(4, a)—>H1
factors through €}};, and so (4, @) is the domain of an arrow into UYHVH]I,
which is in V.

For the converse, let V = {3}, where i is a regular mono into H1. Let

p:(A, @)—=(B, ) be given and suppose (B, 8) € V. Then !g:(B, f)—>H]1
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factors through i, say, ! = i o f. Consequently, !, =40 f o p. Since !, is the only
map from (A4, o) to H1, it follows that (4, o) L i. O

It is instructive to compare this theorem to its dual, which says that a variety of
algebras is closed under codomains of monos iff it is definable by a set of equations
with no variables. Since variable-free equations identify terms built up out of con-
stants (only), it is clear that, if a subalgebra satisfies a variable free-equation, so
does the algebra? (because all of the constants for the signature must be interpreted
in the subalgebra). We don’t know of any simpler way of seeing the converse than
chasing through the proof above, reversing the arrows.

One can also consider a covariety closure operation, taking a covariety to the

least behavioral covariety containing it. Specifically, we define an operator
CoVar(&r)—— CoVar(ér)

taking a covariety V to the collection V, where (4, a) € V iff there is some map
f:({A, a)—(B, B) with (B, B) € V.

It is easy to show that this closure produces another covariety. Hence,
Theorem 4.3. If V is a covariety, then V is a behavioral covariety.

The next theorem states in coequational terms how to obtain V. We know that
V is defined by a collection of coequations, in the sense that V is exactly the class
of coalgebras co-orthogonal to a collection of regular monos with cofree codomains.
In fact, we can say more about the collection of regular monos — namely, that they
are the components of the counit of a regular mono co-reflection (Corollary 2.3),
we show that this counit also gives a defining coequation for V. Of course, since
V is a behavioral covariety, the only cofree coalgebra one needs to consider is the

final coalgebra.

Theorem 4.4. Let V be a covariety and eV :UVHY —=1g. be the counit of the

associated adjunction

— AL
Ve L &
HY

Then V = {e¥,}..

“Moreover, if f:(A, a)——(B, ) is any algebra homomorphism and (A, a) = E, where E
is a set of variable-free equations, then (B, 8) &= E.
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Proof. Let (A, o) € V. Then there is an f:(A, a)—>(B, ) such that (B, B) €
V. Since (B, B) € V, (B, B) L e}};. Consequently, (A, a) L e},.
On the other hand, if (4, &) L €Y;, then the factorization of (4, a)—>H1

through &Y}, is a homomorphism into a coalgebra in V. Hence (A, a0y e V. |

Note that behavioral covarieties are defined by a single coequation, regardless of

any boundedness conditions on T

4.1. An example of covariety which is not behavioral. As the work of the
preceding section indicates, behavioral covarieties are relatively well-understood
classes of coalgebras. Inasmuch as coalgebras are distinguished in computer science
only “up to behavioral equivalence”, one may ask whether non-behavioral covari-
eties offer any particular interest. We offer here an example of a covariety which is

_not behavioral, but which can be described by a coequation over two colors. This
covariety arises in a natural way and, we hope, gives some indication of the added
expressive power that “multi-colored” coequations offer.

Consider the functors N x — and 1 + N x — on the category Set. As usual, we
think of coalgebras for these functors as collections of streams over N (see [JR97],
for instance). In particular, a coalgebra for N x — can be thought of as a collection
of infinite streams, closed under the tail destructor. A coalgebra for 1 + N x — can
be understood as a collection of finite or infinite streams over N, again closed under
the tail destructor (when defined).

It is clear that the category Setny_ is a full subcategory of Setynx—. What is
less obvious is that one can regard Set;  nx_ as a full subcategory of Setyx_, and

it is this perspective on which we will focus. Define a functor
I: Set1+Nx_——>S€tNx_

as follows. If (4, @) is a 1+ N x — coalgebra, then I({4, o)) = (4, o)’ will be a
N x — coalgebra. Specifically, let @' be defined by
o'(a) = {(0, a) if afa) = *
(ha(a) + 1, to(a)) else
Intuitively, I takes infinite lists to the list one gets by applying successor in each
position. For finite lists, I again applies successor in each position and then tacks
on 0’s at the end. However, the 0’s are tacked on in a particular manner — once

we hit 0 in the list, the “state” never changes. We stay at the same element of A
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and continue outputting 0’s. This description should lend plausibility to the claim
that 'V is not behavioral, which we will later prove. The property that a coalgebra
stabilizes at a particular state is not a property closed under total bisimulation.

It is routine to check that I defines a functor and, furthermore, that I is full,
faithful and injective on objects. Let V be the image of Set; yx— under I. One
could check directly that V is a covariety, but we prefer to explicitly give a defining
coequation instead.

Let Q= {7, L}. We will define a pair of maps
H2—=HQ

such that their equalizer is a defining coequation for V. Since defining a map
H2——HQ is the same as defining a map UH2——§, we do that instead®.
Let (h, t) be the structure map on UH?2 and let £ be the counit of the adjunction
U - H. For each 0 € H2, let

T ifh(e) #0
po) =< T ifexo) = ez 0t(0)
1 else

Let true:UH2——>Q be the map taking each o to T. Let :(E, e)—>H2 be
the equalizer of the adjoint transposes true and . We will show that V = {i} L.

Suppose that (4, ) € V. We would like to show that (4, a) L i. We will write
hq and t, for the compositions m; o @ and s o a, respectively. We have, then, for
every a € A, if h(a) = 0, then t(a) = a. Let c:A—2 be a coloring of A. If, for
each a € A, poU¢(a) = T, then it follows that (A, o) L i, as desired. This follows
readily from the definition of u.

On the other hand, suppose that (4, @) L i. We would like to show that
(A, a) € V. It suffices to show that, for each a € A, if ha(a) = 0, then t,(a) = a.
So, suppose that hq(a) = 0 and define c: A——2 by

o=y w”

Then, poU¢(a) = T, so it follows that c o t(a) = ¢(a) and hence t(a) = a.

Remark 4.1. While this coequation defines the covariety V, it is worth noting that
E is not itself in the covariety. Instead, there is a proper regular subcoalgebra E’

5This also corresponds to our intuition that coequations are “really” predicates on the carriers
of cofree coalgebras
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of E which is in the covariety, and whose inclusion is also a defining coequation for

V. This coequation is given by altering the definition of u above, so that

T it h(o) #£0
P (o) =T ifexs) =e20t(0) and hot(o) =0
L else

We then take E' to be the equalizer of the adjoint transposes of x' and true, as
before.

Algebraically, this situation occurs as well. Let E be a set of equations over X
and take the quotient FX/E. Then, FX/FE need not be in the variety defined by E.
In fact, FX/E satisfies E iff E is deductively complete, in the sense of containing

all of the equations deducible from those in E.
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