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0. Introduction. These investigations aim to provide a characterization of
computations by machines that is as general and convincing as that of computations by
human computors given by Turing. The groundwork was laid by Gandy in his thought-
provoking 1980 paper Church’s Thesis and Principles for Mechanisms -- a rich and difficult,
but sometimes unnecessarily (and maddeningly) complex paper. The structure of
Turing’s argument actually guided Gandy’s analysis. If Gandy had been concerned with
just sequential computations, his analysis would have joined Turing’s perfectly with
exactly one difference: physical restrictions for a machine, instead of sensory limitations
of a human computor, would have motivated crucial boundedness and locality
conditions. However, Gandy realized through conversations with J. C. Shepherdson that
the analysis “must take parallel working into account”.!

In a comprehensive survey article, published ten years after Gandy’s paper,
Leslie Lamport and Nancy Lynch argued that the theory of sequential computing “rests
on fundamental concepts of computability that are independent of any particular
computational model”. They emphasized that, in contrast, the “fundamental formal
concepts underlying distributed computing”, if there were any, had not yet been
developed. “Nevertheless”, they wrote, “one can make some informal observations that
seem to be important”:
Underlying almost all models of concurrent systems is the assumption that an execution consists of a set of
discrete events, each affecting only part of the sfystem's state. Events are grou}i)ed into processes, each process
being a more or less completely sequenced set of events sharing some common locality in terms of what part of

the state they affect. For a collection of autonomous processes to act as a coherent system, the processes must
be synchronized. (p. 1166)

Gandy’s analysis of parallel computations is conceptually convincing and provides a
sharp mathematical form of the informal assumption(s) “undetlying almost all models
of concurrent systems”. Gandy takes as the paradigmatic parallel computation the
evolution of the Game of Life or of other cellular automata.

The definitional preliminaries in Gandy's paper are rather lengthy; Shepherdson
wrote in 1988: “Although Gandy's principles were obtained by a very natural analysis
of Turing's argument they turned out to be rather complicated, involving many
subsidiary definitions in their statement. In following Gandy's argument, however, one is
led to the conclusion that that is in the nature of the situation.” The “nature of the
situation” is actually not as complex. The presentation can be simplified by choosing
definitions appropriately and focusing sharply on the central informal ideas. Steps in
clarifying and streamlining Gandy’s mathematical development were taken in earlier
work by John Byrnes and me” In early 1999, I succeeded in simplifying further the
mathematical apparatus, but my investigations took also a methodological turn that is
articulated in (Sieg 2000). The conceptual analysis of calculations by man and machine
given there, is complemented here by a systematic mathematical presentation.

Having learned Turing’s lesson, that we have to take into account the computing
agent or device (when analyzing a notion of computability), we have to ask “Parallel
computations by whom or what?”. Gandy focused on discrete mechanical devices possibly
excluding other physical devices, for example, analogue machines. The only physical
presuppositions about such devices are a lower bound on the size of atomic components
and an upper bound on the speed of signal propagation’ Calculations proceed in
discrete steps; thus such mechanical devices are “in a loose sense” digital computers.
Finally, the behavior of these devices is uniquely determined, once a full description of
their initial state is given, i.e., they are deterministic. After setting up in section 1 the
basic mathematical frame and defining Turing Computors, 1 give in section 2 a
straightforward, but re-oriented definition of Gandy Machines.

I view the definition of a Gandy machine as an abstract definition of the same
character as that of a group or topological space, with many interestingly different
models. The only axiomatic principle characterizing these machines is a restricted
version of Gandy’s principle of local causation. The proof of the central theorem®,



needed for the reduction of Gandy to Turing machines, is corrected and presented in
section 3. It is the crucial step to obtain a suitable representation theorem: any process
carried out by a model of the axioms, i.e., by a particular Gandy machine, can be
simulated by a Turing machine. My concluding remarks in section 4 contain that
formulation and some further observations.

1. Turing’s computor. The crucial step, taken by Post and Turing in their analysis
of calculability, was this: they moved away from directly characterizing calculable
number theoretic functions (as proposed, for example, by Church using Goédel’s
equational calculus) and turned attention to the underlying mechanical operations on
finite syntactic configurations; the story of this development is told in my (1994) and
also, briefly, in (Sieg 2000). The computation models proposed by Turing and Post in
1936 were almost identical, but only Turing argued for the adequacy of his model; for
Post it was a “working hypothesis”. The real systematic confluence of Turing’s and
Post’s work occurred in 1947, when Post gave a most elegant way of decribing Turing
machines via his production systems (on the way to solving, negatively, the word-
problem for semi-groups).” The configurations of a Turing machine are given by
instantaneous descriptions (or ids) of the form aqs,f, where o and f are possibly empty
strings of symbols in the machines’s alphabet; more precisely, an id contains exactly one
state symbol q,, and to the right of it there must be at least one symbol s,. Such ids
express that the current tape content is as,f3, the machine is in state g, and it scans a
square with symbol s,. Quadruples qs,cq,, of the machine’s program express that the
machine, when observing symbol s, in internal state g, is to carry out operation ¢, and
change its internal state to q,,. Such quadruples are incorporated into rules operating on
ids; for example, if the operation ¢,is the machine’s command print 0, the corresponding
rule is:
oqsi = 0g,0B.

Such rules can be formulated, obviously, for all the different operations of a Turing
machine. One just has to append 0 to a (B) in case ¢, is the operation move to the left
(right) and o (B) is the empty string; this reflects the expansion of the finite, but
potentially infinite tape by a blank square.’

Coming back to Turing’s conceptual analysis: it attempts to arrive at the most
basic, local operations on a bounded number of configurations. If one combines this
with the Post presentation of Turing machines, restrictive conditions can be stated in
great generality as follows:

(B) (Boundedness) There is a fixed bound on the number of configurations a computor can
immediately recognize.

(L) (Locality) A computor can change only immediately recognizable (sub-) configurations.
Computors proceed deterministically; consequently, the computing process has to
satisfy:

(D) (Determinacy) The immediately recognizable (sub-)configuration determines uniquely the
next computation step (and id).

Discrete dynamical systems provide an elegant way of formulating these considerations
mathematically. Let D be a class of states (ids or syntactic configurations), and let F be
a function from D to D transforming a given state into the next one, i.e., describing the
evolution of the system (the computation of the machine). Using already Gandy’s
framework, states are presented as non-empty hereditarily finite sets over an infinite set
U of atoms. Such sets reflect states of physical devices just as mathematical structures
represent states of nature. Thus, any isomorphic structure will do as well; one should
notice that this reflection is done somewhat indirectly, as only the e-relation is
available.

A class S of states is called structural, if S is closed under €-isomorphisms; if D
is a class of states, I denote by S, the corresponding structural class. The lawlike
connections between states are given by structural operations G from S to S. Structural



operations satisfy the following condition:” for all permutations = on U and all xe$§,
G(x") is e-isomorphic over x" to G(x)"; for any state z, z* stands for n*(z), where nt* is
the uniquely determined €-isomorphism on the hereditarily finite sets extending ©. “x
is e-isomorphic over z to y” means that the e-isomorphism between x and y is the
identity on the atoms in the transitive closure of z, i.e., in the support of z (briefly:
Sup(z)). Iwill use the abbreviation “x=y”; if a special underlying permutation ¢ is to be
pointed out, I write “x=,y via 6”.

If x is a given state, regions of the next state are locally determined. Thus it is
important to describe suitable substructures of x on which the computor can operate.
Proper subtrees y of the e-tree for x are called parts for x, briefly y<*x, if they are
specified as follows®: y#x and y is a non-empty subset of

{vl(3z)(v<*z & ze x)} U {rirex}.

If the non-empty subset in this e —recursive definition consists at each stage of exactly
one element, y is a path through x. Paths through x are of the form {r}", for a natural
number n and some atom r. A collection C of parts for x is a cover for x just in case for
every path y through x there is a ze C, such that y is a path through z. These last two
definitions are not needed for the definition of a Turing computor; also the following
definitions will be given in greater generality than needed for that purpose. (I just want
to avoid duplicating matters for Gandy machines in the next section.)

The local operations are given by a structural operation G that works on certain
parts y for x. Each y lies in one of a finite number of isomorphism classes (or
stereotypes). So let T be a fixed, finite class of stereotypes: a part for x that is a member
of a stereotype of T is called, naturally enough, a T-part for x. A T-part y for x is a
causal neighborhood for x given by T, briefly ye Cn(x), if there is no T-part y* for x such
thaty is €e-embeddable into y*. G operates on such causal neighborhoods. The values
of G, however, are in general not exactly what is needed for assembling the next state.
For that purpose, we introduce determined regions of a state z obtained from causal
neighborhoods for x: ve Dr(z,x) if and only if v<*z and there is a yeCn(x), such that
G(y)=,v and Sup(v)nSup(x)cSup(y). The last condition for Dr guarantees that new
atoms in G(y) correspond to new atoms in v, and that the new atoms in v are new for x.
If one requires G to satisfy similarly Sup(G(y))nSup(x)cSup(y), then the condition
“G(y)z,v” can be strengthened to “G(y)=,v”. The new atoms are thus always taken
from U\Sup(x).” One final definition: for given states z and x let A(z,x) stand for
Sup(z)\Sup(x). Note that the number of new atoms introduced by G is bounded, i.e.,
| A(G(y), Sup(x)) | <n for some natural number n (any xe S and any causal neighborhood
y for x). Now we define, finally, a Turing computor, keeping the Post-description and
the general boundedness and locality conditions firmly in mind.

Definition: M = <S; T, G> is a Turing computor on S, where S is a structural class, T a
finite set of stereotypes, and G a structural operation on T, if and only if, for every xe S
there is a ze S, such that

(LC.0) (3!'y) yeCn(x)

(LC.1) (A v <*z) v=,G(en(x));

(GA.1) z = (x\en(x)) U dr(z,x).

cn(x) and dr(z,x) denote the sole causal neighborhood of x, respectively the determined
region of z. - It is easily seen that Turing machines are Turing computors under an
appropriate set theoretic representation; I indicate one such representation in the
Appendix. Notice that the next state z is determined uniquely up to e-isomorphism. I
denote it by M(x) and define what it means for a dynamical system to be (Turing)
computable. (Recall that S, is the structural class corresponding to D.)

Definition. Let <D, F> be a discrete dynamical system; F is called (Turing) computable if
and only if there is a Turing computor M on S, such that for each xe D: F(x) =, M(x).



2. Parallel computing. Can we generalize, in a suitable way, these considerations from
sequential to parallel computations? Keeping in mind the considerations reviewed in the
Introduction, we want to have a computational device that determines the evolution of
dynamical systems in parallel. In analogy to the definition of Turing computability
above, assuming that the next state z of a Gandy machine is also determined uniquely
up to e—isomorphism over x, we set tentatively:

Definition. Let <D, F> be a discrete dynamical system; F is called computable in parallel
if and only if there is a Gandy machine M on S, such that for each xe D: F(x) =, M(x).

Thus, in contrast to (Gandy 1980) and (Sieg & Byrnes 1999B), Gandy machines are no
longer viewed as discrete dynamical systems satisfying certain restrictive principles, but
rather as restricted devices to compute in parallel (the evolution of) such systems up to
€-isomorphism over x. In addition to the stereotypes and structural operation working
on causal neighborhoods, we have here a second set of stereotypes and a second
structural operation: the latter allow us to “assemble” the determined regions.

Definition: M = <S; T,, G,, T,, G,> is a Gandy Machine on S, where S is a structural
class, T, a finite set of stereotypes, G; a structural operation on T, if and only if, for
every xe S there is a ze S, such that
(LC.1) (V yeCny(x)) (3! ve Dry(z,x)) v=,G,(y);
(LC2) (¥ yeCn,(x)) (3 ve Dr(z,x) v=,Gy(y);
(GA.1) (VC)[CcDr(zx) & n{Sup(v)nA(zx)| veC} 2T —

(3 we Dry(z,x)) (V veC) v<*w [
(GA.2) z = U Dr,(z,x).

LC stands for Local Causation, whereas GA abbreviates Global Assembly. -- The central
fact for Gandy machines (z is determined uniquely up to e —isomorphism over x) follows
easily from the next theorem™:

Theorem. Let M be <S; T,, G,, T,, G,> as above and xe S; if there are z and z’ in S
satisfying principles (LC.1-2), (GA.1), and if Dr,(z,x) and Dr,(z’,x) cover z and z’, then
Dry(z,x) =, Dry(z’,x).

In the following Dr,, Dry’, A, and A’ will abbreviate Dr,(z,x), Dr,(z’,x), A(z,x), and
A(z’,x) respectively. Note that Dr, and Dr,’ are finite. Using (LC.1) and (LC.2) one can
observe that there is a natural number m and there are sequences v, and v/, i<m, such
that Dr, = {v;| i<m}, Dr,’ = {v/| i<m)}, and v/ is the unique part of z’ with vzv’ via
permutations , (for all i<m). Here is a picture of the situation:




To establish the Theorem, we have to find a single permutation T that extends to an
€-isomorphism over x for all v, and v simultaneously. Such a © must obviously satisfy
for all i<m:

(i) vEv, viam
and, consequently,

(i)  w[Sup(v)]=Sup(v/);
As T is an € -isomorphism over x, we have:

(iii) =w[A]=A"
Condition (ii) implies for all ixm and all re A the equivalence between re Sup(v;,) and
r'eSup(v)’). This can be also expressed by

(ii*)  u()=p'(r"), for all re A,
where [(r) = {i | reSup(v))} and p’(r) = {i | reSup(v,)}; these are the signatures of r with
respect to z and z’.

To obtain such a permutation, the considerations are roughly as follows: (i) if the

v; do not overlap, then the =, will do; (ii) if there is overlap, then an equivalence relation
= (=) on A (A’) is defined by r=r, iff p(r,)=pu(r,), and analogously for =’; (iii) then we
prove that the “corresponding” equivalence classes [r]. and [s].. (the signatures of their
elements are identical) have the same cardinality. [r]. can be characterized as Nf
Sup(vy))nA | ie u(r) }; similar for [s].. This characterization is clearly independent of the
choice of representative by the very definition of the equivalence relation(s). With this in
place, a global €-isomorphism can be defined. These considerations are made precise
through the proofs of the combinatorial lemma and two corollaries in the next section.

3. Global assembly. All considerations in this section are carried out under the
assumptions of the Theorem: M=<S; T,, G,, T,, G,> is an arbitrary Gandy machine and
xe S an arbitrary state; we assume furthermore that z and z’ are in S, the principles
(LC.1-2) and (GA.1) are satisfied, and Dr, and Dr,’ cover z and z’. We want to show
that Dr,=Dr,’, knowing already that there are sequences v, and v, of length m, such that
Dr, = {v;| i<xm}, Dr,’ = {v/| i<m}, and v/ is the unique part of z’ with vzyv/ via
permutations T, (for all i<m). Istart out with the formulation of a key lemma concerning
overlaps.

Overlap Lemma. Let r,e A and p(r,)#J; then there is a permutation p on U with vzv/’
via p for all ie p(r,).
Proof. We have {v,| ieu(r,))} c Dry; as 1, is in A and in Sup(v;) for each ie W(r,)=J, we
have also that N{Sup(v))nA | ieu(ry)} # &. The antecedent of (GA.1) is satisfied, and
we conclude that there is a we Dr, such that v,<*w<*z, for all ie u(r,). Using (LC.2) we
obtain a w’e Dr,” with w=w’. This e-isomorphism over x is induced by a permutation p
and yields for all ie p(r,)

vi<tw’ = wi<*z'.
So we have, vz, v and v/<*z’, thus — using (LC.2) - v’=v/; that holds for all ie u(r,).
Q.E.D.

Note that the condition u(r)=d is satisfied in our considerations for any re A, as Dr;, is a
cover of z; so we have for any such r an appropiate overlap permutation p* for r. The
crucial combinatorial lemma we have to establish is this:

Combinatorial Lemma. For re A: |{re A | u(ry)cp(r)}! = I{se A" | u(r)cu’(s)}!.
Proof. Consider r,e A. I establish first the claim
plire A | n(x) cu(m)}] c{se A’ | w(r) c p'(s)},

where p is an overlap permutation for r,. The claim follows easily from

re A & u(r) cur) - ) c W),
by observing that r° is in A’. Assume, to establish this conditional indirectly, for
arbitrary re A that p(r)cu(r) and —(u(r,)cp'(r’)). The first assumption implies that
re Sup(v;) for all ie u(r,), and the construction of p yields then:



(v) r’eSup(v)) for all ie p(r,).
The second assumption implies that there is a k in pu(r,)\ p'(x?). Obviously, ke p(r,) and
ke ' (r). The first conjunct ke(r,) and (v) imply that r’eSup(v,’); as the second
conjunct ke p’(r’) means that r’¢ Sup(v,’), we have obtained a contradiction.

Now I'll show that p[{re A | u(r,)cu(r)}] cannot be a proper subset of {se A’ |
W(ry)cu’(s)}. Assume, to obtain a contradiction, that it is; then there is s*c A’ that
satisfies l(r,)cp’(s*) and is not a member of p[{re A | u(r))cu(r)}]. As u(r,) < w'(s*), s* is
in Sup(v/’) for all ie W(r,); the analogous fact holds for all re A satisfying w(r,)cli(r), i.e.,
all such r must be in Sup(v) for all ie u(r;)). As vz,v/ via p for all ieu(r,), s* must be
obtained as a p-image of some r* in Sup(x) or in A (and, in the latter case, violating
W(ry)cu(r*)). However, in either case we have a contradiction. The assertion of the
Lemma is now immediate. Q.E.D.

Next I establish two consequences of the Combinatorial Lemma, the second of which is
basic for the definition of the global isomorphism .

Corollary 1. Forany I c {0, 1, ..., m-1} with Icu(r,) for some r, in A,
~ Hre Al Icu(r)}! = H{se A’l Icu'(s)}! .
Proof. Consider an arbitrary Icu(r,) for some r, in A. If I=u(r,), then the claim follows
directly from the Combinatorial Lemma. If Icju(r,), let 1°, ..., ' be elements r of A with
Icu(r) and require that p(r)=u(r’), for all j, j’<k and j#j’, and for every re A with Icu(r)
there is a unique j<k with p(r)=p(r). The Combinatorial Lemma implies, for all j<k,
Hre Al wr)cp()}l = Hse A’l w(r)cp'(s)}!.
Now it is easy to verify the claim of Corollary 1:
lire Al Tcp(}l =
lire A1 Gj<k) p(e) cp(n)} | =
i{se A”1 (Jj<k) p(r) cp’(s)} | =
[H{se A’ 1 Icu'(s)} 1.
This completes the proof of Corollary 1. Q.E.D.

The second important consequence of the Combinatorial Lemma can be obtained now by
an inductive argument.

Corollary 2. Forany Ic {0, 1, ..., m-1} with Icu(r,) for some r, in A
Hre Al I=sp(r)} | = I{se A’| I=p'(s)}] .
Proof (by downward induction onlIl). Abbreviating |{re Al I=u(r)}| by v, and
I{se A’| I=p'(s)}! by V', the argument is as follows:
Base case (111=m): In this case there are no proper extensions I* of I, and we have

vi= l{re A | I=u(r)}!
= [{re A | Ic W)}l , as there is no proper extension of I,
= {se A" | Ic u'(s)}! , by Corollary 1,
= [{se A" | T=p'(s)}| , again, as there is no proper extension,
= V,I

Induction step (111)<m): Assume that the claim holds for all I* with n+1 < II*¥] < m and
show that it holds for I with |I1=n. Using the induction hypothesis we have, summing
up over all proper extensions I* of I
(%) Zpve=Z V0.

Now we argue as before:

vi=l{reA | IT=p(r)}l
HreA |l Icu@}! -Zuve
[{se A" | I (s)}! -Z.v , by Corollary 1 and (),
[{se A" | I=p/(s)} !

v
This completes the proof of Corollary 2. Q.E.D.

—



Finally, we can define an appropriate global permutation ©. Given an atom re A, there
are only finitely many different overlap permutations, i.e., different on U{Sup(v,) |
ie(r)}. Let us select one of them and call it p’. That permutation can be restricted to
[r].= N{Sup(v)nA | ieu(r)}; let p* denote this restriction. Because of Corollary 2, p* is
a bijection between [r]. and [p*(r)].. - The desired global permutation is now defined as
follows for any atom re U{Sup(v;) | i<m }:

r) = {p*(r) if re N{Sup(v)nA | ieu(r)}

r otherwise

7 is a well-defined bijection with ©[A]=A" and w(r)=u'(r"). It remains to establish the
Claim: For all i<m, vz via n. For the Proof consider an arbitrary i<m. By the basic
set-up of our considerations, we have n,(v)=v;". If v; does not contain in its support an
element of A, then n and =; coincide; if v,’s support contains an element of A that is
possibly even in an overlap, the argument proceeds as follows. Notice that all elements
of [r]_ are in Sup(v;) as soon as one re A is in Sup(v,). Taking this fact into account and
using the pruning operation” T we have, by the definition of m and of
vT[rl: w(v, [r]j)zp*(viT[r].;). The definition of p* and the fact that p*(v,)=v, allow us to
infer that p*(v,T[r])=v/T[p*()].. As wWp*(r))=w'(m(r)) [=u(r)] we can extend this
se%uence of identities by vi’T[p*(r)]=,=vi’T[1ti(r)]='. Consequently, as m(v,)=v,, we have
v/ T[r (1) =m(v,T[r]).

These considerations hold for all re Sup(v,)NA; we can conclude n(v,)=m,(v,) and,
with m(v,)=v;, we have n(v;)=v,. Q.E.D. (of claim)

i

This concludes, finally, the argument for the Theorem that was formulated already in
section 2.

4. Concluding remarks. If the operation F of a dynamical system is computable
in parallel by a Gandy machine M, then it is also Turing computable. It follows from the
Theorem and (GA.2) that M(x) is uniquely determined, up to isomorphism, for any M
and any M-state x: we are dealing only with (finitely many) finite objects, and the
axiomatic conditions for a Gandy machine are decidable. Thus, a search will allow us to
find M(x). This fact is best understood, it seems to me, as a representation theorem in
the given axiomatic setting.

Let me reiterate, what I emphasized in (Sieg 2000). It may be that Gandy
machines can be simplified further, for example, by a graph theoretic presentation or a
category theoretic description.13 But what is needed most, in my view, is their further
mathematical investigation, e.g., for issues of complexity and speed-up, and their use in
significant applications, e.g., for the analysis of DNA computations or of parallel
distributed processes. The latter was done by De Pisapia in his (2000) for many
important kinds of artificial neural nets.” The consequence is that artificial neural nets
of these varieties can be simulated by Turing machines. Analogous results are obtained,
using quite different techniques, by Siegelmann in (1999).

However, the most difficult and subtle aspect of Gandy machines, namely the
addition of new atoms, is not used at all for these neural nets, as they have a fixed
number of nodes. So there are two obvious questions: “Is there a natural subclass of
Turing computable functions in which these neural nets lie?”, and “Are there mental
processes for whose representation this aspect of Gandy machines might be crucial?”.
These are important and most appealing questions.



APPENDIX
In this appendix I sketch a set theoretic presentation of a Turing machine as a Turing
computor, but also — even more briefly — that of the Game of Life as a Gandy machine.
Consider a Turing machine with symbols s,, ..., s, and internal states q,, ..., g its
program is given as a finite list of quadruples of the form gsc,q, expressing that the
machine is going to perform action ¢, and change into internal state g, when scanning
symbol s; in state q,. The tape is identified with a set of overlapping pairs
Tp :={ <bb>, <b,c>, ..., <d,e>, <e,e> }

where b, ¢, d, e are distinct atoms; c is the leftmost square of the tape (with a possibly
non-blank symbol on it), d its rightmost one. The symbols and states are represented by
5,:= {r}""”, 0<j<k; the internal states are given by g, = {r}**"*0*), 0<j<]. The tape content
is given by

Ct:={<spc>, ..., <s,d>}
and, finally, the id is represented as the union of Tp, Ct, and { <g, > }. So the
structural set S of states is obtained as the set of all ids closed under €-isomorphisms.
Stereotypes (for each program line given by q;s)) consist of parts like

{ <gur>, <g,r>, <tr>, <r,u> };
these are the causal neighborhoods on which G is to operate. Consider the program line
qs8q (print s); applied to the above causal neighborhood G is to yield

{ <qur>, <gr>, <t,r>, <r,u> }.
For the program line q;5Rq, (move Right) two cases have to be distinguished. In the first
case, when r is not the rightmost square, G yields

{ <qyu>, <s,r>, <t,r>, <r,u> };
in the second case, when r is the rightmost square, G yields

{ <qu*>, <gjr>, < 50,%>, <tr>, <r*>, <x,u> J;

where * is a new atom. The program line g;5,Lq, (move Left) is treated similarly. - It is
easy to verify that a Turing machine presented in this way is a Turing Computor.

Gandy considered playing Conway’s Game of Life as a paradigmatic case of
parallel computing. It is being played on subsets of the plane, more precisely, subsets
that are constituted by finitely many connected squares. For reasons that will be
obvious in a moment, the squares are also called internal cells; they can be in two states,
dead or alive. In my presentation the internal cells are surrounded by one layer of border
cells, the latter in turn by an additional layer of virtual cells. Border and virtual cells are
dead by convention. Internal cells and border cells are jointly called real. The layering
ensures that each real cell is surrounded by a full set of eight neighboring cells. For real
cells the game is played according to the rules:

(1) living cells with 0 or 1 (living) neighbor die (from isolation);
(2) living cells with 4 or more (living) neighbors die (from overcrowding);
(3) dead cells with exactly 3 (living) neighbors become alive.
In all other cases the cell’s state is unchanged.
A real cell a with neighbors a,, ..., a; and state s(a) is given by
{a s(a), <a,..,a>}.

(The neighbors are given in “canonical” order starting with the square in the leftmost top
corner and proceeding clockwise; s(a) is {a} in case a is alive, otherwise {{a}}.) The T, -
causal neighborhoods of real cells are of the form

{ { a, S(a)/ < Ay, eeey ag >}/ {all S(al)}/ ety { ag, S(as)} }
It is obvious, how to define the structural operation G, on the causal neighborhoods of
internal cells; the case of border cells requires attention. There is a big number of
stereotypes that have to be treated, so I will discuss only one simple case that should,
nevertheless, bring out the principled considerations. In the following diagram we start
out with the cells that have letters assigned to them; the diagram should be thought of
extending at the left and at the bottom. The v’s indicate virtual cells, the b’s border
cells, the {a}’s internal cells that are alive, and the *’s new atoms that are added in the
next step of the computation. Let’s see how that comes about.



Consider the darkly shaded square b, with its neighbors, i.e., its presentation
{ b3/ {{b3}}r <V2/ ety b2> }/

applying G, to its causal neighborhood yields

{ { b3/ {bB}/ < Vor eevy b2> }1 {V3l {{Va}}/ < >:<2/ *3/ >:<4/ Vy, b4/ b3/ b2/ Vs >} }/
where *,, *;, and *, are new atoms (and v, has been turned from a virtual cell into a real
one, namely a border cell). Here the second set of stereotypes and the second structural
operation come in to ensure that the new squares introduced by applying G, to
“adjacent” border cells (whose neighborhoods overlap with the neighborhood of b,) are
properly identified in the next state. Consider as the appropriate T,-causal
neighborhood the set consisting of the T,-causal neighborhoods of b,, b,, and b,; G,
applied to it yields the set with presentations of the cells v,, v,, and v,.

" During the International Congress I had fruitful and engaging discussions with Yuri Gurevich, mostly, on
the conceptual issues underlying this paper. - A comparative study of Gurevich’s ASMs, but also of standard
models of parallel computations (as in Brassard and Bratley’s” book) is the topic of a third paper on
“Calculations by man & machine” with the subtitle “Comparisons and applications”.

NOTES
! (Gandy 1980), p. 125.
? (Sieg 1990), (Byrnes 1993), and (Sieg & Byrnes 1999B).
° That is emphasized on p. 126, but also on pp. 135-6 of (Gandy 1980). — How the purely physical
considerations lead to boundedness and locality conditions is discussed at great length in (Mundici & Sieg).
! That is Lemma 5.5 on p. 144 of (Gandy 1980).
® Post’s way of looking at Turing machines underlies also the presentation of (Davis 1958); for a more
detailed discussion the reader is referred to that classical text.
¢ Turing recognized the significance of Post’s presentation for achieving mathematical results, but also for the
conceptual analysis of calculability: as to the former, Turing extended in his (1950) Post’s and Markov’s
result concerning the unsolvability of the word problem for semi—froups to semi-groups with cancellation; as
to the latter, the reader should consult the semi-popular and wonderfully informative presentation of Solvable
and Unsolvable Problems (1953).
” For motivation of this particular condition see p. 154 of (Sieg & Byrnes 1999B) and p. 128 of (Gandy 1980).
® 1 am deviating quite consciously from Gandy’s terrm'no%o ; my “part” (is more general than, but)
corresponds roughly to “located subassembly” in (Gandy 1980) and to “subassembly” in (Sieg & Byrnes

1999B). The reader should also compare it to Gandy’s ¥, p. 136. Gandy remarks: “If one considers y as a
tree of its €-chains, then uc*y implies that u is a subtree with the same vertex as y.” The relation is defined by

the condition (FscTc(y)) u=yTs.

* This operation is an operation on x and y, as it introduces, possibly, new atoms — new for x. It has in this
very weak sense a ”Flo al” aspect; however, as it is a structural operation, the precise choice of the atoms
does not matter at all.

' In Gandy’s set-up the finiteness of the C has to be explicitly required; here it is a trivial consequence of the
finiteness of Dr,. Furthermore, principle (GA.1) implies a fixed upper bound on the number of determined
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regions that have new atoms in common, as there is clearly an upper bound on the number of distinct parts of
elements Dr,(z,x).

"' In (Gandy 1980) this uniqueness up to e—isomorphism over x is achieved in a much more complex way,
mainly, because parts of a state are proper subtrees, in general non-located. Given an afgropriate definition
of cover, a collection C is called an assembly for x, if C is a cover for x and the elements of C are maximal. The
fact that C is an assembly for exactly one x, if indeed it is, is expressed by saying that C uniquely assembles to
x; for details see (Sieg & Byrnes 1999B), p. 157. In my setting, axiom (GA.2) is equivalent to the claim that
Dr,(z,x) uniquely assembles to z.

' The pruning operation applies to an element x of HF and a subset Y of its support: xTY is the subtree of x

that is built up exclusively from atoms in Y. The e-recursive definition is: (xnY) U [ {yT(YNTc(y)) | yex } \
1@} ]. Cf. (Sieg and Byrnes 1999b), pp. 155-6.

* A graph theoretic presentation was pr(zf;osed in (Byrnes & Sieg 1996). On the topic of a category theoretic
definition Gandy wrote in his (1980), p. 147: “The heavy use made of restrictions ... suggests that a treatment
using concepts analogous to those of sheaf theory or topos theory might be worth developing. However, it
seems to me that the concepts from category theory which would be necessary would be too abstract to allow
one to use them (as we have used the more concrete notions of set theory) as a justification for the main thesis

of this paper.” Perhaps this issue should be revisited twenty years affer its original formulation. A starting-

Point can be found in (Herron 1995).
* Here is a possibility for rich interaction with classical and contemporay work in the foundations of
mathematics, namely, the formalization of analysis in very weak formal frameworks.
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