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Abstract

We present a complete elementary axiomatization of local maps of
toposes.

1 Introduction

We recall the definition of a local map of toposes [9, 10, 7] (see in particular [7,
Proposition 1.4]).

Definition 1.1. Let £ and F be elementary toposes. A geometric morphism
F=(f*f): &€ > Fislocal if it is bounded and the direct image functor f,
has a right adjoint f' which is full and faithful.

There are many examples of local maps of toposes, the classical one being
(the structure map of sheaves on) the spec of a local ring (arising, e.g., from
localization at a point). See, e.g., [7] for many other topological and presheaf
examples. See [1] for an example of a (localic) local map between realizability
toposes; this example is the one that gave rise to this work.

Suppose (A, T): & — F is a local map of toposes. Then since the right
adjoint, call it V, of T is full and faithful, it follows easily that the inverse image
functor A is full and faithful. Moreover, 'A =2 1 =2 I'V. Further note that there
is therefore a geometric inclusion (I',V): F — £. Thus there is a Lawvere-
Tierney topology j on £ and an equivalence F =~ Sh;& such that (T, V), under
this equivalence, is identified with (a, ), the associated sheaf functor and the
inclusion of sheaves. Since I' has a left exact left adjoint A, it follows that a
has the same (namely AT'¢). Summarizing, a local map from £ is essentially a
sheaf subtopos with a left exact left adjoint to sheafification.

Next, recall that a sheaf subtopos Sh;& of £ can be characterized as the full
subcategory of objects orthogonal to all morphisms inverted by the associated
sheaf functor a [4, 6]. Dually, define an object D € £ to be discrete iff D
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is coorthogonal to all morphisms inverted by a. (Recall that an object X is
coorthogonal to a morphism f: A — B in a category C, written f T X, if, for
all b: X — B, there exists a unique a: X — A such that the diagram

A

a/1
s
7

X—?B

commutes.} We let D;€ denote the full subcategory of £ on the discrete objects.
By Theorem 2.4 of Kelly and Lawvere [8] it follows that D;& is equivalent to
Sh;£& just in case D;& is coreflective in £, making Sh;& an essential localization.
Hence to show that there is a local map from & to Sh;& it suffices to show that
the inclusion of D;EC——& of the discrete objects has a right adjoint and is
itself left exact. This, finally, is the approach we shall take to axiomatizing local
maps—we assume given a topos £ with a topology j and find conditions on &
and j such that the inclusion of D;£ into & is left exact and has a right adjoint.

The final section of the paper is devoted to analysing the “internal logic”
of a Jocal map of toposes. This is determined to be a modal logic with two
propositional operations, one of which is an S4 box operation and the other, its
right adjoint.
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2 Preliminaries

Throughout this section, let £ be an elementary topos with a Lawvere-Tierney
topology j, and write Sh;& for the subcategory of sheaves, with associated
sheaf functor a: £ — Sh;&. Write D;€ for the subcategory of discrete objects
as defined above.

Observe that since D; € is defined by coorthogonality conditions, the category
D; & is closed under colimitsin £ and the inclusion functor D;E——& preserves
them.

We write V + V for the j-closure operation on subobjects V — X.

Definition 2.1. We say j is principal if, for all X € &, the closure operation
(]
on Sub(X) has a left adjoint U + U, called interior; that is,

U<V <> U<V  inSub(X). (1)



Remark 2.2. The interior operation is not assumed to commute with pullback.
It follows that in general, unlike closure, the interior operation is not induced
by an internal map on the subobject classifier  in the topos &£.

Lemma 2.3. A topology j in a topos £ s principal off, for all X € &, there
exists a least dense subobject Ux of X.

()
Proof. Given a principal topology, the least dense subobject Ux of X is X.

Conversely, given least dense subobjects Ux, define V = Uy »» V »— X. The
condition (1) then follows easily. a

Observe that, if the topology j 1s principal, then for all X € £ and all V ¢
Sub(X), V =V and V V in Sub( ).

The interior operation X X extends to a functor on &£ as follows: given
f: X =Y, consider the diagram

o

;(——>-f*(—)l———>-

Nl

X —Y,

where the right hand square is a pullback. Since closure preserves dense sub-
objects, we have that f*( ) is dense in X; hence X < f*( ) as shown in the

diagram. Letting f be the composite morphism across the top of the diagram,
we clearly get a functor on £. We refer to this functor as the interior functor;
it clearly preserves monomorphisms.

For f: X =Y in £ we write J; for the left adjoint to the pullback functor
f*: Sub(Y) — Sub(X). Since closure commutes with pullback, by taking left

o 0
adjoints we see that, when j is principal, 3;(V) 2 (3;V), for all X,Y € &,
(]
V € Sub(X), and f: X — Y in & (this is why the interior V' C X does not
depend on the superobject X). Thus:

4]
Lemma 2.4. If j is principal, then the interior functor X — X: & — & pre-
serves epis.

Proof. If f: X - Y, then 3;(X) =Y, so Elf()O() = (I X) = }o’ Thus

X —=y—>Y

f

is the epi-mono factorization of

)0(>——>X —>Y.

f



o
Definition 2.5. An object X € £ is open if X = X
Lemma 2.6. Fvery discrete object C' € D;E€ is open.

Proof. Since Ux — X isinverted by a, if X is discrete, then idx : X — X must
factor through Ux. O

Lemma 2.7. Suppose j is principal. Then a quotient of an open object is open.

Proof. Suppose X is open and e: X —» Y. Then we have

Y & Im(e) = 3.X = 3.(X) = (3X) = (3.(X)),

o

50 J¢(X) is open, so Y is open. O

Suppose j is principal. We then define O;& to be the full subcategory of £ of
open objects. Note that O;& is a coreflective subcategory of £, the coreflector
being, of course, the interior functor.

To determine whether an object is a sheaf, one does not need to consider
orthogonality with respect to all morphisms inverted by a, but can restrict
attention to dense monos, as in the usual definition of a sheaf. We next show
that in the case of discrete objects, we need not require coorthogonality with
respect to all morphisms inverted by a, but just with respect to the smaller
class of what we shall call codense epis.

Definition 2.8. Suppose j is principal and let e: X — Y be an epi. Write
Ax — X x X for the diagonal and write K, for the kernel of e, viewed as a

[+ o
subobject of X x X. We say that e is codense if K, = Ax in Sub(X x X).

Lemma 2.9. Suppose j s principal and let e: X — Y be an epi. Then e is
codense iff a(e) is iso, iff e is bidense (the latter by [6]).

Proposition 2.10. Let j be principal. Then C is discrete if and only if C is
coorthogonal to all codense epis in £.

To prove the proposition we shall make use of the following lemma.

Lemma 2.11. Suppose j is principal and C € £ is coorthogonal to all codense
epts in £. Then C is coorthogonal to all dense monos.

Proof. Let C, m:Y — X, and f: C — X be as in the diagram:



Consider the following diagrams

Y aYy
7
fl// Im Iam o
c“—j,»x aX
W aW
P aP,

where u,v is the cokernel pair of m and e is the coequalizer of u,v. Since a
1s a left adjoint, it preserves cokernel pairs and coequalizers, so au,av is the
cokernel pair. of am, which is an iso by assumption that m is dense. Hence
au = av. Therefore ae is an iso and thus, by Lemma 2.9 e is codense. Since
euf = evf: C — P and since C' T e by assumption, we get that uf = vf by
uniqueness. Hence f factors uniquely through the equalizer of u,v. But m is
the equalizer of u,v as every mono in a topos is the equalizer of its cokernel
pair, so f factors uniquely through m via an f’ as shown in the diagram. O

Proof of Proposition 2.10. Suppose C' € £ and that C T e for all codense epis
e. Let h: X — Y such that a(h) is iso be given and let f: C — Y be arbitrary.
Consider the following diagrams

X aX
Ed
/ei aei
f” /
/
y 7[ h al jah,
’ //m
//// /f, am
C—f‘—‘>y ayY,

where me is the image factorization of h and the diagram on the right is a applied
to it. Since a preserves image factorizations and ah is iso by assumption, we
have that am and ae are iso. Hence m is dense and, by Lemma 2.9, e is codense.
Thus by Lemma 2.11, there exists a unique f': C — I such that mf’ = f. By
assumption C' T e, so there exists a unique f”’: C — X such that ef”’ = f'.
Thus C' T h, as required. (]

We now define an exterior operation on quotients, which one can think of as
dual to the closure operation on subobjects.

Definition 2.12. Suppose j is principal. For an epi e: X — Y, we define the

~ o
exterior of e, written €: X -» Y, to be the coequalizer of the interior K, of the



kernel pair K. of e as indicated in the following diagram:

K. \;: /?: CoEq(km, k'm)
€ |
m ]}X hi (2)
. //JZ R ¥
e

By the universal property of the coequalizer, since ekm = ek’m, there is a
unique map h: Y — Y such that h€ = e, as shown in the diagram. Since e is
epic, h is also epic.

Lemma 2.13. Referring to the diagram (2) above, the epi h is codense.

Proof. By Lemma 2.9 it suffices to show that ah is iso. Apply a to the dia-

o
gram (2): since m: K, — K, is dense, a(m) is iso. Hence, since a preserves
kernel pairs and coequalizers, a h is iso. O

3 Axioms for Local Maps

We can now state conditions under which the category of discrete objects is “lex
coreflective.” For simplicity, and because its an important special case, we first
consider the axioms for localic local maps. We then briefly mention how the
axioms can be relaxed for arbitrary (bounded) local maps.

Let £ an elementary topos with a topology j.

Axiom 1 j is principal.
Axiom 2 For all X € &, there exists a discrete object D and a diagram

S>—=D

i

X
in &, presenting X as a subquotient of D.
Axiom 3 For all discrete D € &, if X ~ D is open, then X is also discrete.
Axiom 4 For all discrete D, D’ € £, D x D’ is discrete. |
Note that Axiom 2 essentially says that & is localic over D;£.

Theorem 3.1 (Completeness). Let £ be a topos with a topology j satisfying
Azioms 1-4. Then there is a localic local map from & to D;E ~ Sh; €.

We break the proof down into two steps, designated Propositions 3.2 and 3.3
below.



Proposition 3.2. Let £ be a topos with a topology j satisfying Azioms 1-4.
Then the category of discrete objects D;& is coreflective in .

Proof. We show how to construct an associated discrete object for any object
X € £. By Axiom 2, we have a diagram

X

in &£ presenting X as a subquotient of a discrete object Dx. Now consider the
following diagram

I

= =

o

K,
e

iism

Mo

;

o] o]
Since interior preserves epimorphisms by Lemma 2.4, e: S — X is epic. The

i

<ol

exterior X of the interior X of X 1s obtained as in Definition 2.12, as the

coequalizer of the interior Ko of the kernel pair K, of €. By Axiom 3, S 18

o]

discrete and thus also Ko is discrete by Axioms 3 and 4. Hence X is obtained
as the coequalizer of a diagram of discrete objects, namely:

S — 0 5

Ag e ;(

’6’ . . - B’ ° . -

Thus X is also discrete. We claim that X — X ~ X is universal among
arrows from discrete objects into X, thus establishing the existence of a right

adjoint to the inclusion D;E———E. Indeed, let D be any discrete object and
let f: D — X be arbitrary. Consider the following diagram

g(——h—>5(>———-——>X
Ao, 7
fu] S /
f 7 !
/s
[
D.



Since D is open by Lemma 2.6 and the interior functor —: & — 0O;& is right
adjoint to the inclusion of open objects into &£, as already noted, there is a
unique morphism f’ making the right triangle commute. Then since A is a
codense epi by Lemma 2.13 and D is discrete, we have by Proposition 2.10 that
D is coorthogonal to h, so there exists a unique f” making the left triangle
commute. This shows the required universality. O

Proposition 3.3. Let £ be a topos with a topology j satisfying Azioms 1-4.
Then the inclusion D;EC———-& is left exact, and finite limits in D;& are com-
puted as in &.

Proof. 1t is useful to name the inclusion functor and the coreflector, say:

L
D;,£ L&,
<L

R
where

LR and RolL =id.

Recall that the associated discrete functor R is a known to have a right adjoint,
since by Proposition 3.2, D;&€ ~ Sh;€ and under this equivalence R is identified
with the associated sheaf functor, which has a right adjoint.

The proof now proceeds by a series of lemmas.

Lemma 3.4. The functor LR: £ — &£ preserves finite products, monomor-
phisms, and all colimits.

Proof. LR: & — & clearly preserves all colimits since both I and R are left
adjoints. To show that it preserves the terminal object 1, it clearly suffices to
show that 1 is discrete. By Axiom 2, we can present 1 as a subquotient of a
discrete object D,

S

1.

Since S5 — 1 is epic, it follows that the unique morphism from D to 1 is also
epic. Hence 1 is a quotient of a discrete object, and thus discrete by Lemma 2.7.
Binary products are preserved by Axiom 4.
It remains to show that LR preserves monos. Thus let m: M — N be a
monomorphism in £. For clarity, let us denote the composite functor LR by
d. We write ¢: d = id for the counit of the adjunction L 4 R. Consider the

> )



following diagram

N

(m*dN) ~

AN
\
a N\
A

m*dN >——> dN

le Jo

M>—m——>N’

where the inner square is a pullback. The outer {elongated) square commutes
by definition of dm. Hence there exists a unique morphism u: dM — m*dN
such that

bu = epg and cu = dm.

o] o
Since (m*dN) is an open subobject of a discrete object dN, (m*dN) is discrete
by Axiom 3. Hence by couniversality of e, there exists a unique morphism

(o]
v: (m*dN) — dM such that
epmv = ba.
One now shows without difficulty that:

vu =1 and uv = 1,

‘o
that is, that dM is isomorphic to (m*dN), from which it follows that dm is
monic, as required. O

Lemma 3.5. Let £ and F be toposes and suppose the functor F: £ — F pre-
serves finile products, monomorphisms, and pushouts. Then F is left exact.

Proof. Folklore, but see [3, 2.61] for a related argument. |

Corollary 3.6. The functor LR: € — & is left exact.

Returning to the proof of Proposition 3.3, we now show that L: D;€ — £ is left
exact:

L preserves finite products because the terminal object 1 in £ is discrete and
also terminal in D;& and the product (formed in &) of two discrete objects X
and Y is again discrete by Axiom 4.

To show that L preserves equalizers, we first show that it preserves monos.
Let

x>y



be a mono in D;&€. Apply L and form the image factorization of Lm in £ to get

X\7

Now apply R to get

Note that R preserves epis as a left adjoint and monos as a right adjoint. Hence
the indicated morphism RLX — RI is epic, but it also monic (since RLm is
monic), so iso. Thus RLX = RI.

Now apply L again to get

Lm

LX Ly
LRLX LELm LRLY
LRI

Since LR is left exact by Corollary 3.6, LRI is the image factorization of Lm, so
LRI — LRLY is monic, whence Lm is so. Thus L preserves monos, as claimed.
To show that L preserves equalizers, let

f
X>—" sy > 7z

g

be an equalizer in D;€. Apply L and form the equalizer E of Lf and Lg in &
as indicated in:

Lf
LX—2 s 1y —L T 1z
g

10



Apply the functor R to get the following:

X—7D"——>y

Since m: X — Y is an equalizer, there exists a unique arrow v: RE — X such
that Rn = mowu. Finally, apply L one more time to get

Lm Ls
LX>—" Yy ~LZ
P Lg
e o =3 o
/ l LRL l LRLY l
vi Lu{ LRLX > LRLY ~ LRLZ
\ LRLg
~
LRn
~\
LRE

Since LR is left exact by Corollary 3.6, LRn is the equalizer of Lf and Lg,
so there is a unique arrow v: LX — LRE, as shown in the diagram. Now
Lm and LRn are monic, by the fact just shown that I preserves monos, it is
now easy to show that voLu =1 and Luov = 1, whence LX & LRE and
thus Lm: LX — LY is an equalizer, as required. This completes the proof of
Proposition 3.3. ]

We leave it to the reader to show that Axioms 1-4 are sound, in the sense
that they are satisfied by every local map. (Hint: the least dense subobject Ux
of X € £ is the image of the counit of L - a.)

Remark 3.7. The axioms for bounded local maps are as for localic local
maps, except that Axiom 2 is replaced by the following two Axioms 2a and 2b.

Axiom 2a There is an object G € &€ such that, for all X € &£, there exists a
discrete object D and a diagram

S>> DxG

|

X
in &, presenting X as a subquotient of D x G.

Axiom 2b Given G as in 2a, there is a discrete object G’ and a diagram

G’—»&>—>G

11



in €.

The axioms for bounded local maps are also sound and complete, but we leave
this to the reader.

4 Logic of Local Maps

We now show how the logic of the discrete objects D;& relates to the logic of €.

We define OpenSub;(€) to be the full subcategory of Sub(€) on the open
subobjects, where Sub(€) is the total category of the subobject fibration over
&. The proof of the following proposition is a straightforward calculation.

Proposition 4.1. The codomain functor cod: OpenSub,(£) — £ is a fibration
[

with reindezing of X ~— J along u: I — J given by u*(X), the interior of the
pullback of X along u.

We let ClSub;(£) — &€ denote the fibration of closed subobjects over £. We
then have:

Proposition 4.2. The inierior operation and the closure operation establish a
fibred equivalence, as in

Eama R ——
OpenSub, (&) ~ ClSub; (£)
~O7
g.
o —

Proof. Easy using the already noted fact that X = )0( and 5)( =X. 0O

OpenSub ;(£)
Proposition 4.3. The fibration 1 of open subobjects is a higher-order

£ .
fibration [5] with extensional entailment, in which the following hold (we label
OpenSub ;(£)
the connectives etc. in 1 with a subscript o):
£

o 1,,V,, 3o, Eq, are as for ordinary subobjects.
. 0 [ o ’ o
¢ To=T,XNY=(XAY), XD, Y=(XDY), (Yo)s X = (V;X), and
()
thus = (X) = (X D 1).
e true: 1> Q s a split generic object.

o

Hence interior (—) defines a fibred functor Sub(£) — OpenSub, () over £ which
preserves all this structure, except the generic object.

12



Proof. The first-order structure is defined categorically and thus preserved along
equivalences. Therefore, the first-order structure is obtained from the well-
known description of the logical operations of the closed subobject fibration
(explicitly stated, e.g., in [5]). For example, for XY € OpenSub, (£) over I we

(]
have that XV, Y = X V; Y, where V; is the disjunction in the closed subobject
° ° o o
fibration, s0 X Vo Y = X VY = (X VY) = X VY = X VY (where we used
that interior preserves V as a left adjoint). It is easy to verify that true: 1 —
is a split generic object. O

Proposition 4.4. There is a change-of-base situation

Sub(Dif) —— OpenSub,(£)

| |

ngL———eg.

Proof. Let X »— J be an open subobject of a discrete object J; then X itself is
discrete by Axiom 3. Moreover, since the discrete objects are closed under finite
limits in £, the pullback u*(X) of X along a map u: I = J between discrete

objects is discrete and hence also open. Thus the reindexing of X along u in
OpenSub;(£) °

1 , namely u*(X), is equal (as a subobject of I) to the reindexing of
£
X in Sub(D;€&), namely u*(X). |

Combining the above proposition with Proposition 4.4 we have the following
picture, complementing Lawvere’s “adjoint cylinder” picture of local maps [9]
(where the discrete objects come in to &£ on the left, the sheaves come in to &
on the right, and the category of discrete objects is equivalent to the category
of sheaves).

Sub(D; ) —> OpenSub, €) T = T CISubi(€) — Sulb—(Shjé')

| 7 |

D;€ £ O Sh; €

Combining Propositions 4.4 and 4.3, we of course derive a translation of the
internal logic of D;€ into the logic of £. Since we are restricting attention to
the discrete objects in the base, we can make some simplifications compared to
what we get directly from Proposition 4.3:

Proposition 4.5. The internal logical operations of D;€ are given as follows
(we label the connectives etc. with a subscript d):

e the geometric operations (T4, Ag, La, V4, 34) are, of course, as for ordi-
nary subobjects in £

13



[+] [o]
e X DY = (X D Y) and (Vd)fX = (VfX)
Proof. The first item is obvious since the inclusion of discrete objects is the

()
Inverse image of a geometric morphism. To show X DgY = (X DY) note that
X D¢ Y =X DY, by Propositions 4.4 and 4.3. Now let I be a discrete object
of £ and let X,Y € Subg(I) be subobjects of I. Suppose that X is open. Then
o]

o3 o3
(X DY) = (X DY) using Axiom 3 and the fact that discrete objects are closed
under finite limits in £. The case of V is similar. ’ O

Observe the following easy corollary of Proposition 4.5.

Corollary 4.6. Let u: I — J be a morphism of discrete objects in €& and let
[

X € Subg(I) be a subobject of I. Then (Vu)of) = (Vo X).

4.1 Preservation of Valid Stable Formulas

We now show that a wider class of sentences than the geometric sentences is
preserved by the inclusion of the discrete objects.

Let I' - o: Prop be a formula (in context) of first-order logic over a first-
order many-sorted language. Suppose that the basic types in the context I' of the
language are interpreted in £ by discrete objects and that the atomic predicates
are interpreted by open subobjects of discrete objects in &, corresponding to
subobjects in D;£. We then write [¢] for the interpretation of  in £. Likewise,
we write [¢] 4 for the interpretation of ¢ in D;&, i.e., in the subobject fibration
over D;&. For notational simplicity we allow ourselves to consider [p], as a
subobject in £, thus omitting the inclusion functor from discrete objects into
£. Finally, we say that ¢ is valid in &, written in short as £ F ¢, iff T < [¢]
in Subg([I']), where [I'] is the interpretation of I'. Likewise, we say that ¢ is
valid in D;&, written D;E F o, if T4 < [¢]q in Subp,e([T]4).

Definition 4.7. Let ¢ be a formula of first-order logic over a first-order many-
sorted language. We say that ¢ is stable if, for all subformulas (¢ D 9) of ¢,
the formula v is geometric.

Lemma 4.8. Let ¢ be a stable formula. Then [¢] = [¢]4.

Proof. The proof is by structural induction on ¢. Note that [], is discrete,
o]
and thus open, so [¢]a = [¢]a. For ¢ atomic we clearly have ] = [¢]q and
[}
thus also [] = [¢]a. Given the result for atomic formulas, for ¢ a geometric

o
formula, we clearly also find that [¢] = [¢]s4, and thus also [¢] = [¢]s. It
remains to consider implication and universal quantification.

14



Suppose that ¢ = (¢ D ¥). Then we have that
(]
[+ 2 9]a = ([¥]a D [9]a) see definition of Dg4, Prop. 4.5
¢

. [ o
= ([%] > [¥D) by induction hypothesis
[+

(l

([1 > [91) by Prop. 4.5
]
([¥] > I9]) since 9 is geometric by stability of ¢,

as required.
Finally, suppose that ¢ = (Vz: X. ¢). Then we have that

Ve: X. ¥]q = (Ve: X. [¢]a) see definition of V4, Prop. 4.5

= (Vz: X. [¢]) by induction

= (Ve: X. [¢]) by Corollary 4.6

= [Vz: X. 4],
as required. O
Theorem 4.9. If p is stable, then EF ¢ iff D;EF .

Proof. Let I = [I'] = [T']4 be the discrete object interpreting I, the context of
free variables of ¢. Then, writing <4 for the ordering in Subp.¢(/) and < in
Subg (I), we have that

D;EF o
< Ta<alels
= T < el since Tg=T
= T<L [[goo]] by Lemma 4.8
= T < [l since [ is discrete and thus open
<= EE p.

4.2 A Modal Logic for Local Maps

We now consider interior as a logical operator. Interior is not a logical operation
in the subobject fibration over £ because it does not commute with substitution,
see Remark 2.2. (See also Lawvere’s discussion of co-Heyting operations in
presheaf toposes [11], where a similar phenomenon arises.) However, when we
restrict attention to discrete objects, interior does commute with substitution:

15



Proposition 4.10. Let u: I — J be a morphism between discrete objects I
o

and J in & and suppose X — J is a subobject of J. Then (u*X) = u*()o() as
subobjects of I.

o 4
Proof. First note that X is discrete by Axiom 3 and thus also u*(X) is discrete
o

0 0 [
and hence open. Thus v*(X) = w*(X) < v*X. The other direction always

holds (regardless of I and J being discrete): (u*X) < u*()of) iffu* X < u* ()O() =
ur X, |

The following definition makes precise the idea of considering the logic of &
restricted to discrete objects.

Pred

Definition 4.11. We define the fibration | of £-predicates over D;€ by
D€

change-of-base along D;EC——=& as in

Prfi]—) Sujl(g)
D,EC— >¢g.

Pred
Thus in the internal logic of | , types and terms are interpreted by objects
D;&

and morphisms of D;& and predicates over a type o, interpreted by a discrete
object I, are interpreted as subobjects of I, in £. In other words, we consider
all the predicates of £, but only on types and terms from D;&.

Pred
The pulled-back fibration | is clearly a first-order fibration. By Proposi-
D;E
’ Pred
- tion 4.10, the interior operation is a logical operation in | . So is, of course,
D;¢&

the closure operation. We can now give axioms for the interior and closure op-
erations to obtain what we will refer to as a modal logic for local maps. In the
syntactic calculus we denote interior by § and closure by b. The choice of this
notation comes from our realizability model RT(A4, 4;) discussed in [1].

The calculus is an extension of standard intuitionistic first-order logic. We
write logical entailment as I' | ¢ F 1, where T is a context of the form
Ty1:01,...,%,: 0y giving types to variables, and where ¢ and ¥ formulas with
free variables in I'. There are two additional logical operations: if ¢ is a formula,
also fl¢o and by are formulas. Substitution of terms for variables in these new
formulas is defined in the obvious way. There are the usual rules of many-sorted
first-order intuitionistic logic plus the following axioms and rules:

_ 8 —4
Flﬂy*so() FliisoFﬁitp()
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= 05) (6)
I'ITFHT) T He Aty F (e Ad)

F|ﬁ90}‘7/1 (8)
T]pkby z:0,y: 0|z =0ykf{x=5y)

Intuitively, Axiom (3) says that § is a deflationary operation, Axiom (4) then
says that § is idempotent, Axioms (5) and (6) say that § is left exact, Rule (6)
says that ff is left adjoint to b, and Axiom (8) expresses that all the types are
discrete and hence equality is §.

From the above axioms and rules one can easily prove the necessitation rule:

Trke
T e

and that § distributes over implication:

fle D) Fip Dty

Thus § has the formal properties of the box operator in the modal logic 54,
which is why we refer to the first-order logic axiomatized here as a modal logic
for local maps.
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