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1) Introduction

In recent years, directed acyclic graphs (DAGs) have received considerable
.attention. (Good overviews can be found in Lauritzen 1996, Pearl 1988, and Whittaker
1990.) DAGs represents a set of distributions, all of which share certain conditional .
independence relations encoded in the graph. As long as a DAG does not contain any
latent variables, and any sample contains data that is missing at random, DAGs have a
number of attractive features that have made them widely used in both statistics and
Artificial Intelligence. However, introducing latent variables and data that is not missing
at random makes the estimation, evaluation, and finding of DAG models considerably
~ more difficult. In this paper we will discuss a class of graphical models, the mixed
ancestral graphs, which are a generalization of DAGs, are closed under marginalization
and conditionalization, retain the attractive features of other graphical models, and can
handle latent variables and data that is not missing at random while making the
estimation, evaluation, and search problems more tractable.

First we will review the definition of MAGs and state some of their more
important features. Then we will show how to form a linear parameterization of MAGs,
how to perform maximum likelihood estimates of the parameters, demonstrate that the set
of distributions represented by a linear MAG is a curved exponential family, show how to
calculate the dimensionality of a linear MAG, and how to calculate the BIC score of a
linear MAG. Finally we will illustrate the use of MAGs on an actual data set, and

illustrate the advantages that they have over other kinds of graphical models.

2) DAGs and MAGs

'Each missing edge in a DAG entails some conditional independence relation. In
the case of DAGs, the conditional independence relation entailed by a missing edge is a

“local Markov” condition: if there is no edge between X and Y, and Y is not an ancestor



of X, then X is independent of Y given the parents of Y.2 (Pear] 1988, Lauritzen ef al.
1990) There is a three place graphical relation among disjoint subsets of variables in a
DAG G (X is d-separated from Y given Z) that holds if and only if satisfying the local
Markov condition for G entails that X is independent of Y given Z; this relation is
described in more detail in section ?7?? (Pear] 1988, Lauritzen et al. 1990)

A DAG can also be given a simple interpretation as a data-generating mechanism
(in which the value of a variable X is generated by the values of X’s parents.) (Wermuth
and Lauritzen 199077, Spirtes et al, 1993.) When interpreted in this way, DAGs are
useful for predicting the effects of changing an existing data-generating mechanism.
(Spirtes et al. 1993, Pearl 1995)

Often a DAG G contains latent variables, and selection variables (which take the
value 1 if a unit is in the sample, and O otherwise.)® Suppose there is a distribution P(V)
represented by DAG G. Assume that the variables in V can be partitioned into O
(observed), L (latent), and S (selected, or conditioned on.) (S variables are used in Rubin
77) In DAGs with latent variables and selection bias, we place latent variables (which are
marginalized out) in boxes and selection variables (which are conditioned on) in circles.
In that case instead of observing P(V), we may be able to observe only P(OIS = 1), that is
the marginal distribution over the observed variables in the selected subpopulation. Let us
call P(OIS = 1) the “observed” distribution. A DAG G in which the variables have been
partitioned into obsérved variables, | latent variable, and seléction variables will beA
denoted by G(O,S,L).

A MAG is a graph that represents both the d-separation relations among the

variables in O (condition on the variables in S), and represents some of the ancestor

2 This follows from the more general rule that each variable is independent of its non-parental non-

descendants given its parents.

* In general, corresponding to each variable'O, € O, there is a variable S, € S, which takes the value 1
for a unit in which O; has been recorded, and 0 otherwise. If there are no missing values for observed
variables in the sample, then there is a single selection variable S, which is 1 if the unit is in the sample, and

0 otherwise.



relations among the variables in O or S. In order to define MAGs, we will first define

MGs (mixed graphs), and m-separation (a generalization of d-separation.)

3) Definition of MAGs

A mixed graph (MG) is a graph <V,E> with three kinds of edges in E, directed
edges A — B (also written as B < A); double-headed edges A <> B; and undirected
edges A — B. At most one edge connects any given pair of vertices. An example of an
MG that is not a DAG, an UG, or a chain graph is shown in Figure 1. We define the
following graph theoretical notions in an MG G with vertices V, which are simple
generalizations of the corresponding concepts in DAGs and undirected graphs.

A sequence of vertices <V7y,...,Vp1> is a path if for 1 * i * n, there is an edge
‘with endpoints V; and Vi, and E; # Ej,;. A path U is acyclic if no vertex appears more
than once in the corresponding sequence of vertices. We will assume that a path is acyclic
unless specifically mentioned otherwise. A sequence of vertices <Vji,...,Vy1> is a
directed path D from V, to V,,, if and only if for 1 * i * n, there is a directed edge V;
—V 1. Uis a m-directed path (abbreviating mixed graph direéted path) from X to Y if
there is a path U between X and Y such that if A and B are adjacent on U, and A is
between X and B or X = A, then the edge between A and B is out of A (e.g. <B,D,AE>
in M in Figure 1. A is a parent of B (and B is a child of A) in a MAG M if there is an
edge A — B; A is an ancestor of B (and B is a descendant of A) in M if there is a’
directed path from A to B or A = B. X is an m-ancestor of Y in MAG G if there is a m-
directed path from X to Y or X = Y (e.g. B is a m-ancestor of E in M in Figure 1.) X €
Ancest(R) if and only if X is an ancestor of some member of R. X € M-Ancestors(R) if
X is a m-ancestor of a member of R. If a MAG M is a DAG, then X is a m-ancestor of Y
if and only if it is an ancestor of Y. V is a collider on a path P in MAG M if P contains
two adjacent edges that are into V (e.g. E is a collider on <D,A,E;F> in M.) An u-vertex
(undirected vertex) in a MAG M is a variable A for which there is some edge A —B.

4) M-Separation
D-separation is a graphical relationship in DAGs that is useful for determjning

whether an arbitrary conditional independence relation is entailed by satisfying the local



Markov condition for a DAG. For disjoint sets of vertices X, Y, and Z in DAG M, X is d-
connected to Y if there is a path U between X € X and YeY such that every collider on.
U is an ancestor of Z, and ho non-collider on U is in Z; otherwise X is d-separated from
Y given Z. If X and Y are d-separated given Z in DAG G, then for any distribution that
satisifies the local Markov condition for G, X and Y are independent conditional on Z.
(See Lauritzen et al. 1990 for an exposition on the relation between various separation
principles.)

M-separation is a generalization of d-separation that plays a role analogous to that
of d-separation. The exact role that m-separation plays in MGs will be explained in more
detail in section ??. The definition of m-separation and m-connection in MGs carries over
unchanged from the definition of d-separation and d-connection respectively in DAGs.
(Of course, terms such as “collider” in the definition of m-separation are generalizations
of the corresponding term in the definition of d-separation.) This entails that m-separation

(m-connection) when applied to a DAG is identical to d-separation (d-connection).
%GC\ C
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DAG G(O,S,L) M

Figure 1

5) Mixed Ancestral Graphs (MAGs)

» We will be concerned with a subclass of MG’s called Mixed Ancestral Graphs (or
MAGs). An MG M is a MAG if:
1. If for every subset W of O, X; and Xj are m-connected given W U S, then X; and X;

are adjacent in M.



2. If X; and X are adjacent in M, and X is an ancestor of X; in M, then the edge
between X; and X is oriented as X; — X;.
3. If X; is an u-vertex in M, then every edge containing X is out of X;.

Condition 1 is required in order to ensure that if X and Y are not adjacent, then
there is some set that m-separates them.

Just as the vertices in a DAG can be partitioned into <O,S,L>, so the vertices in a
MAG M can be partitioned into <O,S,L.>; in that case we write M(Q,S,L). If we refer to |
a MAG M with vertices V, then it is assumed that the partition of V is <V,J,J>.

A MAG M with vertices V is said to represent another MAG G(O,S,L) when V
= 0, and for X, Y, Z disjoint subsets of O, X is m-separated from Y given Z U S in
G(OS,L)if and only if X is m-separated from Y given Z in M. If a MAG M represents a
DAG G(O,S,L), then m-separation in M gives the conditional independence
consequences of P(O U § U L) satisfying the local Markov condition for G(O,S,L) in
P(OIS=1). |

An example of a MAG is shown in Figure 1, where O = {A,B,C,D,E,F},
members of L are enclosed in ovals, and members of S are enclosed in boxes and M
represents G(O,S,L).

The following algorithm describes how to form a MAG that represents both the d-
separation relations and some of the ancestor relations among the variables in O and S in
MAG M(O,S,L). | | |

Algorithm Form-MAG
Input: MAG G(O,S,L)
Output: MC(G(0O,S,L))
1.  Place the edge A—B in MC(G(O,S,L)) if and only if A is an m-ancestor of B or
S in G(O,S,L), B is an m-ancestor of A or S in G, and in G for every subset W of O, A

and B are m-connected given W U S.

2. Place the edge A — B in MC(G(O,S,L))) if and only if A is an m-ancestor of B or
S in G(O,S,L), B is not an m-ancestor of A and S in G, and and in G for every subset W

of O, A and B are m-connected given W U S.



3. Place the edge A <> B in MC(G(O,S,L)) if and only if A is not an m-ancestor of
" Band S in G, B is not an m-ancestor of A and S in G, and and in G for every subset W of

O, A and B are m—connected_ given W U S,

It is clear from the algorithm that MC(G(O,S,L)) represents som of the m-
ancestor relations in G(O,S,L). (If G(O,S,L) is a DAG, then the m-ancestor relations are
just ancestor relations.) The next theorem states that the result of applying this operation
to a MAG M is another MAG which represents M.

Theorem 1: If for some MAG G(O,S,L), M = MC(G(O,S,L)), then M is a MAG that
represents G(O,S,L). ., '

For example, for G(O,S,L) and M in Figure 1, M = MC(G(O,S,L)).

6) Parameterizing MAGs

A linear parameterization of a MAG M is a model parameterized in the

following way:

e Two u-vertices A and B have a non-zero correlation conditional on all of the other

u-vertices only if there is an edge A—B in M.

e Each non u-vertex A in M is a linear function of its parents in M, and a unique error

term, €a.

e Two error terms €4 and €g have a non-zero correlation only if there is an edge A < B

in the graph.

o Each u-vertex is uncorrelated with each error term.

For notational convenience, we will assume that the variables in a MAG G are
Xiyees X, Xs41...Xn, Where X; is not an ancestor of X;in G if i > j, s is the number of u-
v.ertices in G, and all of the u-vertices precede all of the non u-vertices. We will refer to
the error term of X; as &, rather than Ex;-
A complete MAG is a MAG in which every pair of variables is adjacent.
Lemma 1: If G is a MAG, there is a complete MAG Gg, such that G is a subgraph
of Ge.



Proof. Suppose that G is a MAG. Form Gc in the following way: if X; and X; are
u-vertices then add an edge X; — Xj; if X; is an u-vertex and Xj is an non u-vertex then
add an edge X; —X;; if X and X are n-variables and X; is an ancestor of X; in G, add an
edge X; — X; in Gg; and if X; and X are n-variables and X; is not an ancestor of X; and X;
is not an ancestor of X;, then add an edge X; <> X to Gc. By Theorem 1, G¢ is a MAG. ..

In MAGM, V € Ancest(X) if V ¢ X, and V is an ancestor of some vertex X € X,
or V is an u-vertex .

Theorem 2: If G. is a complete MAG over a set of variables X, and ¥ is a
positive definite covariance matrix for X, then there is a linear parameterization 0 of G¢
such that X6 ) = Z.

Proof. Let X be the covariance matrix for X. An instantiation of a
parameterization of Gc has the properties that each non u-vertex can be expressed as
linear function of its parents and an error term, that if COV(E,,€,) ¢ 0 then X, &> X, in Gg,
and if X, — X, then the partial correlation of X, and X, conditional on the other u-
vertices * 0. We will now show that there is a parameterization of G that has covariance
matrix X. Let Parents(X,) be the set of parents of Xj.

Note that since Gcis a complete ancestral graph, if X, is an non u-vertex, then
Parents(X,) < {X|lj <k}, and further if X; € {Xjj <k}\ Parents(X,) then X; <> X, in Gc.
We will abbreviate Parents(X,) by P,. Take each v’ariable Xy in turn. Regress X, on P,.

Let

X, = 20X,
X;eP,

be the linear predictor of X, on P, (where summation over an empty set is equal to zero)

and the residuals
| g, =X, — Zaijj
X;eR
We will now show that the oy and the correlations between the residuals form a
parameterization of the complete MAG Ge. First note that X, is a linear function of its
parents in G¢ and the error term €; because

X = X 0u,X; +g
X; ePy



Second, we will show that if Cov(e,g,) * 0 then X, <> X, in G, (where X, and Xq
are non u-vertices, because they have error terms). Suppose that Cov(ép, g, * 0, but that
there is no double headed arrow X, <> X, in Ge. We may suppose without loss of
generality that p < . Since there is no double headed arrow X, <> X, and p < q it follows
that X, — X, in Gc. It then follows that X € P,

Cov(g,,€,) =cov(e,, X, - X,0,X,)
] X;eP,

We will now show that cov(g,g,) = 0 by showing that cov(g,,X,) = 0, and for all
X; in Py, cov(g,,X;) = 0. By construction, €, is uncorrelated with X, € P,, (since ¢ is the
residual remaining after regressing X, on P,), so Cov(g,,X;) = 0. If X; € P, then X; —» X,
in Gc. Since X, = X, in G, it follows that X; is an ancestor of X, in Gc. As Geis a
complete ancestral graph it then follows that X; =X, in Gg, so X € P,. Hence cov(g,,X;)
= 0, as claimed. It follows that cov(g,.€,) = 0.

If X, is an u-vertex, and X, is an non u-vertex, then by construction, g, is
uncorrelated with X, € P, (since &, is the residual remaining after regressing X, on P,), so
cov(g,,X,) =0.

Finally, positive definiteness of X ensures that each €, has positive variance; otherwise
X would be a linear combination of previous X;'s and X would not be positive definite. ..

Lemma 2: In a MAG G, if X; € Ancest(X;), and there is no edge X; — X; and X;
is not an noﬁ u-vertex, then X is m-sebarated from X; given Anéest(Xi)\{Xj}. |

Proof. Suppose, on the contrary that there is a path U that m-connects some
member X; € Ancest(X;) to X; given Ancest(X;)\{X;}. There are four cases: on U either
there is an edge X, — X, an edge X; = X, an edge X; <> X, or an edge X, — X
Because any u-vertex on a path is a non-collider, and every u-vertex (except possibly X;)
is in Ancest(X)\{X;}, U does not contain any u-vertex (except possibly X;), and hence U
does not contain X, — X,.

Suppose there is an edge X, — X on U. X, # X; because otherwise there is an
edge X; — X, in G. Hence X is in Ancest(X;))\{X;}. But then X, is not a collider on U,
and U does not m-connect X; to X; given Ancest(X;)\{X;}.



Suppose that the first edge on U is an edge X; — X,. It follows that either X is an
ancestor of X, or there is a collider on U. Because G is acyclic, and X; is an ancestor of
X, X; is not an ancestor of X;. Suppose then that there is a collider on U. Let X, be the
first collider on U; it follows that X; is an ancestor of X. Because U m-connects X; and X;
given Ancest(X)\{X;}, X, is an ancestor of Ancest(X;\{X;}. Because X is not an u-
vertex but is in Ancest(X)\{X;}, Xj is an ancestor of X;. It follows that G is cyclic,
contrary to our assumption that G is a MAG.

Suppose that the first edge on U is an edgé X; & X,. It follows that either X, is an
ancestor of X;, or there is a collider on U. If X; is an u-vertex, then Xy is not an ancestor
of X; (because no u-vertex has any non-trivial ancestors.) If X; is not an u-vertex then it is
an ancestor of Xj, in which case Xy is an ancestor of X, contrary to the X; <> X, edge.
Suppose then that there is a collider X, on U. Because U m-connects X; and X; given
Ancest(Xij\{Xj}, X, is an ancestor of X;. It follows that G is cyclic, contrary to our
assﬁmption that G is a MAG. ..

U is an inducing path between X and Y with respect to MAG M(O,S,L) if and
only U is an acyclic path such that every member of O U S on U is a collider on U, and
every collider on U is an ancestor of {X,Y} U S. This is a generalization of the concept
of inducing path that was introduced in Verma and Pearl 1990. The following two
lemmas are proved in Richardson and Spirtes ??

Lemma 3: In MAG G(O,S,L) if there is an inducing f)ath U between A and B-
then for any subset Z of O\{A,B} there is a path P that m-connects A and B given Z U S »
with the same orientation as U.

Lemma 4: In MAG G(O,S,L) if a path U m-connects' A and B given (M-
Ancestors({A,B} U S) N 0) U S\{A,B} then U is an inducing path.

Theorem 3: If G is a MAG, and X is a positive definite covariance matrix such
that if X; and X are m-separated given Z in G, then cov(X;,X|Z) = 0, then there is a linear
parameterization 0 of G such that g = X.

Proof. By Lemma 1, there is a complete MAG G¢ such that G is a subgraph of
Gc. By Theorem 2 there is a parameterization 0 of G such that Egc(e) = 3. We will now

show that 0 assigns zeroes to every edge that is in G¢ but not in G.



First consider an edge X; — X that is in G¢ but not in G. Because there is no edge
between X; and X; in G, every path between X; and X; contains some vertex that is an u-
vertex and not a collider. Ancest(X;,Xj) is equal to the set of u-vertices. Hence X; and X
are m-separated given Ancest(X;,Xj). Hence covy(X;, XjlAncest(X;,Xj)) = 0 by hypothesis,
and the parameter in G¢ associated with the X; — X edge is 0.

Next consider an edge X; — X that is in G¢ but not in G. By the method of
construction of Gg, X; is in Ancest(X;)\{X;} in G. Because G does not contain X; — X,
by Lemma 2, X; is m-separated from X; given Ancest(X;)\{X;} in G. Hence
covy(X; XjAncest(Xj)\{X;}) = 0 by hypothesis.

Because G is a MAG, ¢ is uncorrelated with the errors of any member of
Ancest(X)\{X;}, and hence uncorrelated with any member of Ancest(X;)\{X;}. Hence in
Oc the coefficients of the ancestors of X in the equation for X; are equal to the partial
regression coefficients of X; on Ancest(Xj)\{X;}. But when X, is regressed on
Ancest(X;)\{X;}, the partial regression coefficient of X; in the equation for X, is equal to
zero when COVGC(QC)(Xi,XjIAnceSt(Xj)\{Xi}) = (. Hence, if there is no edge X; — X in G,

'X; and X; are m-separated given Ancest(X;)\{X;} in G, and by hypofhesis
Cov(X;, XjlAncest(X)\{ Xi}) = 0. CovgopXiXlAncest(X)\{Xi}) =
Covs(X;, XjlAncest(X;)\{ Xi}) = 0. Hence in 6O, the partial regression coefficient of X; in
the equation for X, is equal to zero. _ '

Finally consider an edge X; <> X that is in G but not in G. Let 6 be a
parameterization of G such that every parameter that is in both 9 and O¢ is equal (i.e. 0 is
the same as O¢ except that it sets parameters corresponding to edges in Gc but not in G
equal to zero. )

Let <i,j> be an ordered pair such that i < j, and <k,m> an ordered pair such that k

<m. Say <k,m> < <i,j> if m < j or m = j and k < i. Let the induction hypothesis be that if
<km> < <ij> then covo e )(ExEm) = COVGeE)(EkEm). We will then show that

covGC(eC)(ei,sj) = cOVG(e)(€;»€j)- (This is true by definition of 8 if the edge X; <> Xj occurs

in G; we will show that it is true even when X; & X does not occur in G.)



By Theorem 1 there is no inducing path between X; and X;in G. By Lemma 4, X;
and X; are m-separated given Ancest(X;X)) in G. Hence covee(X;,XAncest(XX))) = 0.
By hypothesis, CoVG e Xi, XjAncest(X;X;)) = covx(X;,Xjl Ancést(X;X;)) = 0. Hence,
) covee(Xi, XlAncest(XiX;)) = covg (X XjlAncest(X;X))).

First we will show that if <k,m> < <i,j> then covge)(Xx,Xm) = COVGeec) ( Xk, Xm)-

X, = Zaerr + z:akrsr Xn= Zan;,Xr+ E‘amr.er

I<r<s s<r<k 1<r<s s<r<m
COV g0y ( Xy, X ) =
zakrbm: varg (X, ) + z a,. b, vag o (€) +
1<r<min(k,s) s<r<k

2y D @by +ayb, ) covg, (X, X,)

1<r <min(k,s) r<t<min(m,s)

2 2 Z(ahbmt +a,b,, )0V (E,,€,)

s<r<kr<t<m
Note that in G¢c(Bc) and G(6), the coefficients of the reduced form of each
variable is exactly the same in each of the parameterizations, because we have already
shown that the structural equations in each parameterization are identical. (The reduced

form expresses each variable as a linear function of error variables.) We have already
shown that if X, and X, are u-vertices, then covge)(XnXp) = covGC(eC)(X,,Xt). Because

<r,t> < <i,j>, by the induction hypothesis COVG(e)(EnEr) = covGC(eC)(e,,et). It follows that
covoE)(XXm) = CoVee(XKXm): Because covoe(XuXm) = C€OVG00)KkXm),

equations (2), (3), and (4) follow.

(2) COVG(Q)(Xi, Ancest(Xi, XJ)) = COVGC(QC)(Xi, Ancest(Xi, Xj))
(3) var g (Ancest(X;, X;)) = varg e ' (Ancest(X;, X;))
(4) COVG(Q)(Xj, Ancest(Xi, XJ)) = COVGC(_QC)(Xj’ Ancest(Xi, X_]))

By rearranging the terms in cov(Xi,leAncest(Xi, Xj)), equations (5) and (6) follow.
) covge(Xi,X;) =
covG(e)(Xi,leAncest(Xi, Xj)) - covge)(Xi, Ancest(X,, X;)) x

varge)” (Ancest(X;, X;)) X covgey(Xj, Ancest(X;, X;))
6 COVG o)X, X;) =



covGC(ec)(Xi,leAncest(Xi, Xj)) - COVGC(eC)(Xi, Ancest(X,, X;)) X
varGe " (Ancest(Xi, X;)) X coven(X;, Ancest(X;, X;))

From equations (1) - (6) it follows that covge)(Xi,Xj) = covGC(ec)(Xi,Xj).

X, = Zaer-f Zairer X, = Zaj,Xr+ z:ajrsr

1<r<s s<r<i 1<r<s s<r<j

covG(e)(Xi,Xj) =

z‘,airbjr varg (X, )+ z“airbjr varg g, (€,) +

1<r<min(,s) s<r<i

2y Y (a,b, +a,b,)cov

ir - jt it~ jr
1<r<min(i,s) r<t<min(j,s)

2 2 Z(air‘bj‘ + aitbjr)covG(e)(er,et)

s<r<ir <t<j

X X,)

G@®)

An analogous equation holds for covg,e)(Xi,Xj). All of the terms in the two
equations have been proved equal except COVGec)(€irg) and covee)(€ig;). Because
COVG(Q)(Xi,Xj) = COVGC(GC)(Xi,Xj)y it follows that 0 = COVG(Q)(Si,Ej) = COVGC(QC)(Si,Sj).

7) Maximum Likelihood Estimates

The vertices V in a MAG M can be divided into two disjoint subsets, U,
consisting of the u-vertices, and N, consisting of all other vertices. Similarly, the
parameters 6 in a MAG M can be divided into two parts: 0, which are the parameters
associated with undirected edges, and 6, all of the other parameters. The implied
covariance matrix among U depends only 0y, while the implied covariance matrix among
N depends upon 6, and 6,. This implies that when calculating maximizing maximum
likelihood estimates of 0, we can first maximize the likelihood for 8,, and then for 6,

For normal distributions, the maximum likelihood estimates can be found by
minimizing the following fit function:

Py = loglZg(e)l + tr(SZge) ") — logIS! - p
where S is the sample covariance matrix, G(8) is the vector of parameters, and p is the

number of vertices.

8) Curved Exponential Families and the Dimensionality Of MAGs

Let the set of natural parameters of a regular exponential family be denoted by N.



Theorem 4: The family of distributions represented by a linear MAG M over a
set of k variables is a locally parameterized curved exponential family of dimension equal
to k(k+1)/2 minus the number of pairs of variables in M that are not adjacent to each
other.

Proof. According to Theorem 4.2.1 in Kass and Vos(1997), a subfamily S, of an
n-dimensional regular exponential family is a locally parameterized curved exponential
family if for each ng in Ny there is an open neighborhood U in N containing Mg and a
diffeomorphism h: U — R¥ x R™* such that Sy = {Py, in SU: h() = (B,y) and y = 0}.

First we will show that there is a diffeomorphism from a covariance matrix X of
the normal distribution (with zero means) over k variables to the parameters of a
complete MAG. By Corollary A.3 in Kass and Vos, it suffices to show that there is a
smooth one-to-one function from X to the parameters of a complete MAG, whose inverse

is also smooth.

According to Theorem 2, the distributions represented by a given MAG M can be
parameterized in the following way. For a given covariance matrix ¥ among the X
variables, regress each non u-vertex X; on the set Py := {X; | Xj « X, and X; €
Ancest(X,)}. Let

Xy = Z%XJ’
X’-ePk

be the linear predictor of X on Py, or 0 if P, is empty. Now let
g, =X, — Zocijj

XeR
The oy, the non-zero covariances among the €, and the partial correlations among the u-

vertices parameterize a MAG. It follows that
cov(g,,g,) =cov(X - X, X —X,)=

cov(X,,X,)— cov(X,, X,) - cov(X,,X, ) +cov(X,,X ) =
cov(X,.X,) — Y0, cov(X,, X))~ Yo covX, X )+ Y, Yoo coviX,, X))

. &P, X.eP, X;eh X.eP,
P j€¥a i€kp A;€F,

Each coefficient of an X; — X edge is a partial correlation, and hence a rational
function of X. Each of the oy is a regression coefficient, and hence a rational function of

2. CoV(g,.€,) is also a polynomial function of %, because it is a polynomial function of the



oy and 2. Because the parameters of a complete MAG are a polynomial function of Z,
there is a smooth function from X to the parameters of a complete MAG.

It was also shown in Theorem 2 that each variable X, could be written as

X, = D o,X+g
X; Py

Hence the function mapping the covariance matrix to the MAG parameters has an
inverse, and is one-to-one. In addition, it follows that there is a reduced form for the X
variables, i.e. they are a rational function of the Ol; parameters, the € variables, and the u-
vertices. Hence the covariances among the X variables are a rational function of the
covariances among the € variables , the oy; parameters, and the partial correlation among
the u-vertices. It follows that there is a smooth function from the parameters of a
complete MAG to X.

It follows that there is a diffeomorphism from X to the parameters of a complete
MAG.

There is also a diffeomorphism from the natural parameters of the normal
distribution to the covariance matrix of a normal distribution (Kass and Vos, p. 101). The
composition of two diffeomophisms is a diffeomorphism (Kass and Vos, p. 101), and
hence there is a diffeomorphism from the natural parameters to the parameters of a
complete MAG.

Each family of distributions .represented by a MAG 'can be characterized by-
setting some subset of the parameters of a complete MAG équal to zero. It follows from
Theorem 4.2.1 that the distributions represented by a MAG are a curved exponential
family.

Since the dimensionality of the full space of k normal variables with zero mean is
equal to k(k+1)/2, the dimensionality of a compete MAG is k(k+1)/2. Let M be. an
incomplete MAG. By Lemma 1, M has a complete extension M’, and the dimensionality
of M’ is k(k+1)/2. Each parameter in M’ that is set to zero (one of the Ok;j, Of a covariance
between two error terms €, and g, or a partial correlation between two u-vertices)

' corresponds to a pair of variables in M that are not adjacent. The number of parameters in



M is equal to k(k+1)/2 minus the number of parameters in M’ set to zero, i.e. kk+1)/2

minus the number of pairs of variables in M’ that are not adjacent to each other. .-.

9) The BIC Score of a Linear MAG

As the sample size increases without limit, the Bayes Information Criterion is an
O(1) approximation of a function of the posterior distribution. In the case of a multi-
variate normal model, for a given sample

BIC(M , sample) = —2L(Zy__, ,sample) + In(samplesize) * dfy,,
where
® Omax is the maximum likelihood estimate of the parameters for model M from
sample,
* 2ye,, is the implied covariance matrix for M when © takes on its maximum
likelihood value 0,4,

* L(Zye,,) sample) is the likelihood of Zy, ,, and

e dfy is the degrees of freedom (dimensionality) of the MAG M.
(See Raftery, 1993).

10) Example: Noctuid Moth Data

To illustrate the use of these models on a simple data set we present an analysis of
data on moth trappings, which originally appeared in the statistical literature in a paper of
Cochran (1938), but which were subsequently analyzed by Démpster (1972), who used
the data to illustrate covariance selection models, and Whittaker (1990), who fitted a
chain graph model to this data. These earlier analyses provide an interesting point of
comparison for the partial ancestor graph analysis. '

The data consist of one response variable,

moth : log (1 + no. of moths caught in a light trap on one night),
and five covariates:

min :  the minimum night temperature,

max : the previous day'é maximum temperature,

wind : the average wind speed during the night,

rain : the amount of rain during the night

cloud: the percentage of starlight obscured by clouds



The data as given by Cochran are:

min max wind rain cloud moth

|min 1.00

max 0.40 1.00

wind 0.37 0.02 11.00

rain 0.18 -0.09 0.05 1.00

cloud -0.46 0.02 -0.13 -0.47 1.00

moth 0.29 0.22 -0.24 0.11 -0.37 1.00

Variance | 14.03 14.54 2.07 17.11 7.87 3.55

The original observations are not available, but Cochran implies that they come

froma complicated design with an effective sample size of 72.

a) Dempster’s Model

Dempster (1972) fitted a covariance selection model to this data, which

corresponds to the following undirected graph:

max min wind Dimension Deviance Deviance +
In(SS)*dim
rain — cloud moth 12 15.56 66.90

Figure 2: Dempster’s Model

where conditional independence is encoded via separation, e.g. min L moth |
cloud,wind.

Dempster arrived at his model via a forward selection procedure which terminated
when it found the first model for which the p-value > 0.05; the p-value was computed by
comparing the Deviance to a %2 distribution with d.f. = (21 — dimension. of the model).
We also give Deviance + In(Sample Size)*Dimension, since this is equal to the BIC score

+ a constant (note that lower scores correspond to 'better' models under this criterion).



b) Whittaker’s Model

Whittaker (1990) presents an analysis based on a chain graph, based upon a
division of the variables into two blocks, the first containing the five covariates, the

second containing the response:

wind Dimension Deviance Deviance +
\ I \ l - 1n(SS)*dim
rain cloud —¥» moth 14 4.42 64.52

Figure 3: Whittaker’s Model4
Whittaker arrived at this model by first searching for an undirected model for the
covariates, and then regressing moth on the five covariates, selecting min, cloud, and
wind on the basis of the edge exclusion deviances (which is the deviance of the model
with one edge removed against the full model including all covariates). Note that this
model implies that cloud AL wind | min, and does not imply cloud L wind 1 min, moth

whereas the reverse is true of Dempster’s model.

¢) FCI Model

We applied an algorithm (the FCI algorithm described in Spirtes et al. 1993) that
searches for sets of MAG models that are statistically equlvalent (i.e. represent the same
sets of conditional independence relatlons) Figure 5 shows one of the MAG models
represented by the output. (The structural equation modelling programme EQS,

developed by Peter Bentler was used to fit these models.)

max ——p min—p wind Dimension Deviance Deviance +
T i In(SS)*dim
rain —p cloud —P»moth 12 6.53 57.77

Figure 4: MAG found by FCI search

4When we used the Bentler’s EQS programme to fit this model it gave a deviance of 4.74; Whittaker
reports a devianceof 4.42.



This MAG imposes the following conditional independence constraints:
max A rain, cloud, moth;
min AL rain, moth | cloud,
wind 1L max, cloud, rain | min;

rain 1 max, min, wind, moth | cloud.

This is not a complete list of conditional independences, but it is sufficient to
uniquely specify the MAG.

It can be shown that the following structural properties are true of any DAG
(possibly with latent variables and selection bias) which is conditional independence
equivalent to the MAG:

min is not an ancestor of cloud or max;

wind is not an ancestor of min or moth,;

moth is not an ancestor of cloud or wind,

min is an ancestor of wind.

It is interesting to compare the FCI model to those of Whittaker and Dempster. In
fact, the FCI model is nested within Whittaker’s model. Since the two models differ by 2
d.f. but the difference in deviance is only 2.11, a likelihood ratio test finds no evidence
against the FCI model (p-value 0.348). In fact, the FCI model has the same pairs of
adjacent vertices as in Dempster’s model. The two extra edges present in Whittaker’s
model are the max—cloud and min — moth edges. Let us examine these in turn:

In déscribing how he came 'ﬁp with his model Whittéker states that at first hé
fitted an undirected model to the covariates, which did not include the max—cloud edge,
since these two variables are close to being uncorrelated. However, after examining the
edge exclusion deviance, which measured the dependence of max and cloud given min,
wind and rain he decided to include this extra edge, since the deviance indicated strong
dependence, yet the model without the edge would imply max L cloud | min, wind, rain.
The FCI model manages to accomodate both thé marginal independence and the
conditional independence. In fact, in this case a DAG model such as shown in Figure 6

could also have achieved this.



max —Pp min —» wind

f

rain —p cloud

Figure 5: DAG model for the covariates
This calls into question the motivation for blocking variables and fitting
undirected graphs within blocks, and directed edges between blocks, that is advocated by
Whittaker and others. ,

If we now examine the min — moth edge that is absent in the FCI MAG, but
present in Whittaker’s model, this illustrates a potential shortcoming of regressing a
response on all previous covariatés in order to determine those that are causes of the
-response. Consider vthe DAG with latent variables Ty, T, shown in Figure 8. This DAG
is conditional independence equivalent to the FCI MAG over the variables {cloud, min,
wind, moth}. Further, it is compatible with the background knowledge that Whittaker
used when constructing his model: all the covariates temporally preceed moth. However,
although min and moth are not directly related in this DAG, min and moth are dependent

given the other covariates cloud and wind.

T1 TZ

Cloud mm —p wind

\ moth

Figure 6: A DAG with latent variables

It is well known that failing to include a confounding variable in a regression may
lead to a spurious dependence between two variables. What is perhaps less well known is
that including the wrong variable in a regression may lead to a spurious dependence: in
this case regressing mo;h on min, wind and cloud leads to a spurious dependence
between moth and min, and thus to the additional edge in Whittaker’s model.

It should be stressed that in comparing the FCI model to Whittaker’s model we do
not wish to imply that the FCI model is the 'true’ model for this dataset. With a



comparatively small sample size, as in this case, we would not expect the data to
uniquely identify a single model: this is borne out by the fact that there are many different
PAG models with scores that are relatively close. (See Figure 10.) The existence of so
many different models with relatively similar scores must temper any causal or structural
inferences that we might wish to draw from this analysis, unless all of the models
receiving high scores share this feature in common.

The FCI search is a heuristic search procedure based upon the results of a series
of conditional independence tests, and is not guaranteed to find the (set of) MAGs with
the best BIC score (though it will do so asymptotically). However, it appears that in this
example the FCI algorithm did locate the MAG with the best score; a greedy search
failed to find a MAG with a higher score. A number of other MAGs, together with the

associated deviance and scores are given in Figure 7.



Dimension Deviance Deviance

+In(SS)*dim.
max min —§»wind
g | t 13 6.50 62.01
rain cloud —P»moth

max ——P»min —Pwind

? \ t 13 477 60.28

cloud ~—P»moth

rain

max —»-min @-P-wind

t\ t 13 4.77 59.11

rain -<— cloudﬂ-bmoth

max ~——@»-min <@-P-wind

e 0 e

rain —cloud-@Pmoth

max =———7-min <@—-Ppwind

12 11.13 62.37
rain -@— cloud-@—Pmoth
max ——P»min <@—Pwind

12 ‘ 7.52 58.76
rain cloud —#»moth

Figure 7: Other MAG Models
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