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ABSTRACT
Motivation: One approach to inferring genetic regula-
tory structure from microarray measurements of mRNA
transcript hybridization is to estimate the associations
of gene expression levels measured in repeated sam-
ples. The associations may be estimated by correlation
coefficients or by conditional frequencies (for discretized
measurements) or by some other statistic. Although these
procedures have been successfully applied to other areas,
their validity when applied to microarray measurements
has yet to be tested.
Results: This paper describes an elementary statistical
difficulty for all such procedures, no matter whether based
on Bayesian updating, conditional independence testing,
or other machine learning procedures such as simulated
annealing or neural net pruning. The difficulty obtains if a
number of cells from a common population are aggregated
in a measurement of expression levels. Although there are
special cases where the conditional associations are pre-
served under aggregation, in general inference of genetic
regulatory structure based on conditional association is
unwarranted.
Contact: tchu@andrew.cmu.edu

INTRODUCTION
Two fundamentally different strategies have been pro-
posed to determine networks of regulatory relationships
among genes. One strategy (Yuh et al., 1998; Ideker et al.,
2001; Davidson et al., 2002) experimentally suppresses
(or enhances) the expression of one or more genes, and
measures the resulting increased or decreased expression
of other genes. The method, while laborious, has proved
fruitful in unraveling small pieces of the regulatory
networks of several species. Its chief disadvantage is
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that each experiment provides information only about
the effects of the manipulated gene or genes. A single
knockout of gene A resulting in changed expression of
genes B and C, for example, does not of itself provide
information as to whether A regulates both B and C
directly, or whether A regulates B which in turn regulates
C, etc. This implies that to identify a regulatory network,
the number of experiments required will be super expo-
nential in the number of distinct genes in the network. The
requisite statistical procedures are essentially confined
to the estimation of the expression level of each gene
considered in each experiment, and of the uncertainties of
those estimates.

A second strategy relies on the natural variation of
expression levels of the same gene in different cells. The
proposal is to measure—typically with microarrays—the
expression levels in repeated samples from the same
tissue source, or similar sources, and to infer the reg-
ulatory structure from the statistical dependencies and
independencies among the measured expression levels
(Akutsu et al., 1998; D’haeseleer, 2000; D’haeseleer et
al., 2000; Friedman et al., 2000; Hartemink, 2001; Liang
et al., 1998; Shrager et al., 2002; Yoo et al., 2002). The
apparent advantage of the strategy is that it offers the
possibility of determining multiple relationships without
separate experimental interventions. If, for example, gene
A regulates gene C only by regulating gene B which
in turn regulates C, the expression level of A should be
independent, or nearly independent, of the expression
level of gene C conditional on the expression level of gene
B. In principle, if adequate sample sizes were available,
the method could also be used as a supplement to gain
additional information from experiments in which the
expression of particular genes are experimentally sup-
pressed or enhanced. The requisite statistical procedures
for this strategy are more elaborate, and require direct
or indirect (e.g. implicit in the posterior probabilities)
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Fig. 1. A simple gene regulatory network.

estimates of conditional probability relationships among
expression levels.

There are many statistical obstacles to the second
strategy including: the joint influence of unmeasured fac-
tors (e.g. unmeasured gene expressions or extra-cellular
factors), a variety of sources of measurement error, an
unknown family of probability distributions governing
the errors, and functional dependencies for the expression
of any gene that may be Boolean for some regulating
genes and continuous for other regulators. Some of these
difficulties—in particular the presence of latent common
causes—have, in principle, been overcome. (Spirtes et al.,
2001). We describe a more elementary statistical difficulty
with the second strategy that calls its value into question
and raises a set of important research problems.

DIRECTED ACYCLIC GRAPHS AND MARKOV
FACTORIZATION
Qualitative regulatory relationships among genes are often
represented by directed graphs. Each vertex is a random
variable whose values represent levels of expression of
a particular gene. Each directed edge from a variable
X to a variable Y in such a graph indicates that X
produces a protein that regulates Y . In principle, the
graph may be cyclic or acyclic, and may even have self-
loops—a directed edge from a variable to itself—but most
proposed search methods have been confined to acyclic
graphs. In the simplest case, one assumes an acyclic graph
with noises and random measurement errors for each
measurement of each gene that are independent of those
for any other gene.

We consider a simplest case: the true, but unknown
regulatory structure can be represented by a directed
acyclic graph, with independent errors. Consider, for
example, four genes, X , Y , Z , W whose regulatory
connections can be represented by Figure 1.

Suppose that the measured values of X , Y , Z , W satisfy:

Z = f (Y, W ) + εz

Y = g(X) + εy (1)

W = h(X) + εw

Where f , g, h are any functions and εz , εy , εw are
independently distributed noises. It follows that the joint

probability density of Z , Y , W , X admits a Markov
factorization

d(X, Y, Z , W ) = d(Z |Y, W )d(Y |X)d(W |X)d(X) (2)

The Markov factorization implies that Y , W are inde-
pendent conditional on X , and that X , Z are independent
conditional on Y , W , and is in fact equivalent to specifying
that these two relationships hold. More generally, assum-
ing each random variable has an independent noise source
but is otherwise a deterministic function of its parents in
the graph, the system described by any directed acyclic
graph has a density that admits a Markov factorization that
can be written of as the product, over all variables, of the
density of each variable conditional on its parent variables
in the graph. Markov equivalent graphs imply the same
independencies and conditional independencies. In the ex-
ample of Figure 1, the Markov equivalence class consists
of the graph shown and the graphs obtained by reorienting
exactly one of the edges from X to Y or X to W . Absent
extra knowledge from other sources, the Markov equiva-
lence class represents the most information that could be
obtained from conditional independencies among the vari-
ables.

Where data are obtained in a time series, regulatory
relationships can still be represented by a directed acyclic
graph and probabilities admitting a Markov factorization,
but with vertices appropriately labeled by gene and time.

SUMS OF VARIABLES AND PRESERVATION
OF CONDITIONAL INDEPENDENCE
The aim is to discover the regulatory structure in individ-
ual cells, but measurements are typically of relative con-
centrations of mRNA transcripts obtained from thousands,
or even millions, of cells. Such measurements are not of
variables such as X in the graph above, but are instead,
ideally, of the sum of the X values over many cells. We
will denote such measured sums over n cells by

∑n
i=1 Xi .

The difficulty with the second strategy for regulatory
structure inference, which relies on the statistical de-
pendencies among the gene expression levels, is that the
conditional dependencies/independencies among the gene
expression levels of a single cell in general are not the
same as those among the sums of gene expression levels
over a number of cells. For example, if the variables
in Figure 1 are binary, and each measurement is of the
aggregate of transcript concentrations from two or more
cells,

∑n
i=1 Xi ,

∑n
i=1 Zi are not independent conditional

on
∑n

i=1 Yi ,
∑n

i=1 Wi , and the associations obtained from
repeated samples will not therefore satisfy the Markov
factorization (Danks and Glymour, 2002).

Interestingly, there are some special cases where the
conditional independencies are invariant under aggrega-
tion. For example, if binary regulatory relations among
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genes X , Y and Z are described by a singly connected
graph, i.e. X −→ Y −→ Z or X ←− Y ←− Z or
X ←− Y −→ Z , then the implied conditional inde-
pendence of X , Z given Y holds as well for sums of
independent measurements of X , Y and Z respectively
(Danks and Glymour, 2002).

Linear, normal distributions have special virtues for
invariance. Whatever the directed acyclic graph of cellular
regulation may be, if the noise terms, as in Equation (1),
are normally distributed and each variable is a linear
function of its parents and an independent Gaussian noise,
then the Markov factorization holds for the summed
variables. For in that case, conditional independence
is equivalent to vanishing partial correlation, and the
partial correlation of the two variables, each respectively
composed of the sum of n-like variables, will be the same
as the partial correlation of the unsummed variables.

Two less restrictive sufficient conditions for conditional
independence of variables to be the same as the condi-
tional independence of their sums, are given in the fol-
lowing two theorems. The general setting is an acyclic
graph such that each node is a function—not necessarily
additive—of its parents and an independent noise term.

THEOREM 1 (LOCAL MARKOV THEOREM). Given
an acyclic graph G representing the causal rela-
tions among a set V of random variables. Let
Y, X1, . . . , Xk ∈ V, and X = {X1, . . . , Xk} be the
set of parents of Y in G. If Y = cTX + ε,† where
cT = (c1, . . . , ck), and ε is a noise term independent of
all non-descendents of Y , then Y is independent of all its
non-parents, non-descendents conditional on its parents
X, and this relation holds under aggregation.

PROOF. Let U be the set of the variables in V that
are neither parents nor descendents of Y . That Y is
independent of U conditional on its parents X is a direct
consequence of the local Markov condition for acyclic
graphs (Spirtes et al., 2001).

Let Yi , εi , Xi , and Ui be the i th i.i.d. copy of Y , ε, X,
and U respectively, we have,

n∑
i=1

Yi =
n∑

i=1

(cTXi + εi ) = cT
n∑

i=1

Xi +
n∑

i=1

εi .

Clearly, (ε1, . . . , εn) is independent of (X1, . . . , Xn, U1,

. . . , Un). This means that
∑n

i=1 εi is independent of
(
∑n

i=1 Ui ,
∑n

i=1 Xi ), which again implies that
∑n

i=1 εi
is independent of

∑n
i=1 Ui conditional on

∑n
i=1 Xi .

Consequently, cT ∑n
i=1 Xi + ∑n

i=1 εi is independent of∑n
i=1 Ui given

∑n
i=1 Xi . (Note that cT ∑n

i=1 Xi is a

† In this and the next theorems, we shall use the same bold face symbol to
represent both a set of variables, and a vector of that set of variables.

constant conditional on
∑n

i=1 Xi = x, where x is an
arbitrary constant vector.) �

The above theorem states that, under the local linearity
condition, the conditional independence relation between
a random variable and its non-descendent and non-parent
is invariant under aggregation. In the next theorem,
we give another sufficient condition for the conditional
independence relation to be invariant under aggregation.

THEOREM 2 (MARKOV WALL THEOREM). Given an
acyclic graph G representing the causal relations among
a set V of random variables. Let X = {X1, . . . , Xh}, Y =
{Y 1, . . . , Y k}, W = {W 1, . . . , W m}, and X ∪ Y ∪ W = V.
Suppose that the following three conditions hold:

(1) The joint distribution of X1, . . . , Xh, Y 1, . . ., Y k is
multivariate normal with non-singular covariance
matrix.

(2) For i = 1, . . . , k, Y i is neither a parent, nor a child,
of any variable W j ∈ W. That is, there is no direct
edge between a variable in Y and a variable in W.

(3) For i = 1, . . . , h, Xi is not a child of any variable
W j ∈ W. That is, if there is an edge between a
variable in X and a variable in W, the direction
of the edge must be from the variable in X to the
variable in W.

Then conditional on X, Y is independent of W, and this
relation holds under aggregation.

PROOF. The conditional independence of Y and W
given X is obvious, because W can be represented
as a function of X and some other random variables
independent of (X ∪ Y). ‡

Now let Z = (X2, . . . , Xh, Y 1, . . . , Y k)T, suppose the
joint distribution of X1 and Z is:[

X1

Z

]
∼ N

([
µ

�ν
]

,

[
σ 2

1 �αT

�α �Z

])
.

Let Zi = (X2
i , . . . , Xh

i , Y 1
i , . . . , Y k

i )T, which is the
i th i.i.d. copy of Z, we are going to show that X1

1 is
independent of

∑n
i=1 Zi given

∑n
i=1 X1

i . First, let us see
the joint distribution of X1

1,
∑n

i=1 X1
i , and

∑n
i=1 Zi :

 X1
1∑n

i=1 X1
i∑n

i=1 Zi


 ∼ N




 µ

nµ

n�ν


,


 σ 2

1 σ 2
1 �αT

σ 2
1 nσ 2

1 n�αT

�α n�α n�Z




 .

We claim that conditional on
∑n

i=1 X1
i = nx and∑n

i=1 Zi = n�z, the mean of X1
1 is x .

‡ More precisely, these variables are the exogenous variables in W and the
independent noise terms associated with the endogenous variables in W.
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Note that:

E[X1
1

∣∣∣ n∑
i=1

X1
i = nx,

n∑
i=1

Zi = n�z]

= µ + [
σ 2

1 �αT
] [

nσ 2
1 n�αT

n�α n�Z

]−1 [
nx − nµ

n�z − n�ν
]

.

Let �βT = n�αT(n�Z )−1, γ = 1/(nσ 2
1 − �βTn�α), inverting

by partition, we have:

[
nσ 2

1 n�αT

n�α n�Z

]−1

=
[

γ −γ �βT

−γ �β (n�Z )−1[I + (n�α)γ �βT]
]

.

It then can be shown that:

[
σ 2

1 �αT
] [

nσ 2
1 n�αT

n�α n�Z

]−1

= [
1/n �0T

]
.

It then follows:

E[X1
1

∣∣∣ n∑
i=1

X1
i = nx,

n∑
i=1

Zi = n�z]

= µ + [
1/n �0T

] [
nx − nµ

n�z − n�ν
]

= x .

The conditional variance of X1
1 given

∑n
i=1 X1

i = nx
and

∑n
i=1 Zi = n�z is:

Var

(
X1

1

∣∣∣ n∑
i=1

X1
i = nx,

n∑
i=1

Zi = n�z
)

= σ 2
1 − [

σ 2
1 �αT

] [
nσ 2

1 n�αT

n�α n�Z

]−1 [
σ 2

1�α
]

= n − 1

n
σ 2

1 .

Thus, we have shown that both the conditional mean
and the conditional variance of X1

1 is constant in n�z.
Given that the conditional distribution of X1

1 is normal,
this implies that X1

1 is independent of
∑n

i=1 Zi given∑n
i=1 X1

i . Note that by the same argument, we could
show that, conditional on

∑n
i=1 X1

i , X1
1 is independent of∑n

i=1 X2
i , . . . ,

∑n
i=1 Xh

i . Let Xi be the i th copy of X, it
follows that, conditional on

∑n
i=1 Xi , X1

1 is independent
of

∑n
i=1 Yi . Because the choice of X1

1 is arbitrary, we

actually have shown that, conditional on
∑n

i=1 Xi , X j
i

is independent of
∑n

i=1 Yi for any 1 ≤ i ≤ n and
1 ≤ j ≤ h. Moreover, the joint distribution of X1, . . . , Xn

and
∑n

i=1 Yi conditional on
∑n

i=1 Xi is multivariate nor-
mal, and for multivariate normal, marginal independence
relations imply the joint independence relation.§ It then
follows that (X1, . . . , Xn) is independent of

∑n
i=1 Yi

given
∑n

i=1 Xi .
We note that Wi , the i th copy of W, can be represented

as a function of Xi and some other random variables
independent of (X1, . . . , Xn, Y1, . . . , Yn). Thus, as a
function of (X1, . . . , Xn) and other random variables
independent of (X1, . . . , Xn, Y1, . . . , Yn),

∑n
i=1 Wi is

independent of
∑n

i=1 Yi given
∑n

i=1 Xi . �
Although there are established regulatory mechanisms

in which some regulators of a gene act linearly in the
presence of a suitable combination of other regulators of
the same gene (Yuh et al., 1998), there does not appear
to be any known regulatory system that is simply linear.
One of the best-established regulatory functional relations
seems to be the expression of the Endo16 gene of the
sea urchin (Yuh et al., 1998). The expression level of the
gene is controlled by a Boolean regulatory switch between
two functions, each of which is a product of a Boolean
function of regulator inputs multiplied by a linear function
of other regulator inputs. Even much simplified versions
of such transmission functions do not preserve conditional
independence over sums of variables.

Suppose in each of n cells genes X , Y , Z and W have
the regulatory structure X −→ Y −→ Z ←− W with
Y = g(X); Z = aY W , where a is a positive real number,
W is Boolean such that P(W = 1) = p, and g(X) = X2.
Assume without loss of generality that a = 1. Assume
X takes values in {0, 1, 2, 3, 4} with uniform probability.
Let

∑n
i=1 Xi ,

∑n
i=1 Yi ,

∑n
i=1 Zi and

∑n
i=1 W denote the

sums of values of X , Y , Z and W respectively over n = 4
cells. Z is independent of X given Y ; however, we will
show that

∑n
i=1 Zi is not independent of

∑n
i=1 Xi given∑n

i=1 Yi .
For each cell i , Zi is Yi if the value of Wi is 1, and zero

otherwise. Hence the probability that Zi = yi given that
Yi = yi is p. Let

∑n
i=1 Yi = ∑n

i=1 X2
i = 16. There are

just five possible vector values for X = 〈X1, X2, X3, X4〉
consistent with

∑n
i=1 X2

i = 16: 〈4, 0, 0, 0〉; 〈0, 4, 0, 0〉;
〈0, 0, 4, 0〉; 〈0, 0, 0, 4〉 and 〈2, 2, 2, 2〉. The first four
vectors in the list have

∑n
i=1 Xi = 4 and the last has∑n

i=1 Xi = 8. We show that the probability
∑n

i=1 Zi =
16 given that

∑n
i=1 Yi = 16 and

∑n
i=1 Xi = 4 is not in

general equal to the probability that
∑n

i=1 Zi = 16 given
that

∑n
i=1 Yi = 16 and

∑n
i=1 Xi = 8.

For example, if X = 〈4, 0, 0, 0〉, then
∑n

i=1 Zi equals
16 if and only if W1 = 1. The probability that W1 = 1
is p. Similarly for the vectors 〈0, 4, 0, 0〉, 〈0, 0, 4, 0〉 and
〈0, 0, 0, 4〉. Given that

∑n
i=1 Xi = 4 and

∑n
i=1 Yi =

§ Suppose X, Y, Z are multivariate normal. If X is independent of Y , and X
is also independent of Z , then X is independent of (Y, Z).

1150



Inference to regulatory structure

X

U

Z

V

Y

Fig. 2. A Sea Urchin type regulatory network.

∑n
i=1 X2

i = 16, the set of the first four vectors has
probability 1, and each individual vector of the first
four has probability 0.25. Therefore the probability that∑n

i=1 Zi = 16 given that
∑n

i=1 Yi = ∑n
i=1 X2

i = 16 and
that

∑n
i=1 Xi = 4 is p. On the other hand, the probability

that X = 〈2, 2, 2, 2〉 is 1 given that
∑n

i=1 Xi = 8
and

∑n
i=1 Yi = ∑n

i=1 X2
i = 16. The probability that∑n

i=1 Zi = 16 given
∑n

i=1 Yi = 16 and
∑n

i=1 Xi = 8 is
therefore just the probability that Wi = 1 for i = 1, 2, 3, 4,
which is p4.

Although we have no general, interesting sufficient
condition for invariance to fail, many of the assumptions
in the preceding example, e.g. that n = 4, that X is
uniformly distributed, that X has 5 distinct values, that
Y = X2, are obviously inessential, and Y = X2 was used
only because it is the simplest non-linear, non-Boolean
function proposed for a regulator (Schilstra, 2002). (Note
that by the previous results if the dependency of Z were
linear in Y and additive in a function of W , the conditional
independence would hold for the sums of variables.)
Similar arguments would apply to a variety of non-linear
dependencies of Y on X . For example, consider the Sea
Urchin type causal structure shown in Figure 2, where Y =
U X and Z = V Y . Suppose X has a Poisson distribution
with parameter λ, U and V are Bernoulli random variables
with parameters p1 and p2 respectively.

It is obvious that X and Z are independent con-
ditional on Y . However, it can be shown that this
relation does not hold under aggregation. For example,
let X1, U1, Y1, V1, Z1 and X2, U2, Y2, V2, Z2 be two
independent samples generated from the same causal
structure. Assuming that U and V are not degenerate, that
is, p1, p2 �= 1 and p1, p2 �= 0, through straightforward
calculation, we can show that:

P(Z1 + Z2 = 2|Y1 + Y2 = 2)

= p2 − p2(1 − p2)
p1λe−λ

1 − p1 + p1e−λ + p1λe−λ

P(Z1 + Z2 = 2|Y1 + Y2 = 2, X1 + X2 = 4) = p2.

Clearly, conditional independence relation is not pre-
served under aggregation for the causal structure shown in
Figure 2, because as long as p1, p2 �= 1 and p1, p2 �= 0,

P(Z1 + Z2 = 2|Y1 + Y2 = 2) �=
P(Z1 + Z2 = 2|Y1 + Y2 = 2, X1 + X2 = 4).

In the above examples, we treat the number n of cells in
an aggregated sample as a constant. In practice, however,
as pointed by a referee, when several samples are obtained,
the number of cells in each sample is a random variable.
This could make the inference of conditional association
even more problematic. When n is held constant, we know
that there is a fixed set of conditional associations among
the aggregated genes, though they are not the same as the
genes within each individual cell. If n is a random variable,
we are not sure if the aggregated genes in different samples
share the same set of conditional associations.

CONCLUSION
The considerations we have advanced argue that, other
than by chance, inference to genetic regulatory networks
from associations among measured expression levels is
possible only if the graphical structure and transmission
functions from regulator concentrations to expression con-
centrations of regulated genes preserve conditional inde-
pendence relations over sums of i.i.d. units, or if the aggre-
gated variations from unit level conditional independence
are small. The few sufficient conditions we have provided
are not biologically relevant, but, unfortunately, the neg-
ative example based on a simplification of Endo 16 reg-
ulation is relevant. We have not as yet found interesting,
general sufficient conditions for conditional independence
not to be invariant.

These results appear to conflict with many reports
of successful machine learning searches for regulatory
structure. In many cases, however, the successes are with
simulated data in which the simulated values for individ-
ual cell representatives are not summed in forming the
simulated measured values, and are therefore unfaithful to
the actual measurement processes. In several other cases
results with real data are not independently confirmed,
but merely judged plausible. Rarely, results are obtained
that agree with independent biological knowledge; in
these cases the actual regulatory structure among the
genes considered may approximately satisfy invariance
of conditional independence for summed variables, or
the procedures may simply have been lucky. Feasible,
economical techniques for measuring concentrations of
transcripts in single cells could make machine learning
techniques based on associations of expressions valuable
in identifying regulatory structure, but such techniques
are not yet available. In the meanwhile, absent biological
evidence that regulatory dependencies have the requisite
invariance over sums of variables, there seems little
warrant for thinking accurate methods are possible for
inferring regulatory structures that depend on conditional
associations.

We know that two important features of the joint
distribution of the gene expression levels—the mean
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vector and the covariance matrix—are invariant under
aggregation up to a simple linear transformation. More
precisely, let G = (G1, . . . , Gk)T be a random vector
representing the expression levels of k genes in a single
cell, and Gi = (G1

i , . . . , Gk
i )

T be the i th i.i.d. copy of G
for i = 1, . . . , n, then it is trivial to see that the following
two equations hold:

nE[G] = E

[ n∑
i=1

Gi

]

nCov(G) = Cov

( n∑
i=1

Gi

)
.

It is also easy to see that the independence relations be-
tween the random variables are invariant under aggrega-
tion, for if G1 and G2 are independent, then (G1

1, . . . , G1
n)

and (G2
1, . . . , G2

n) are also independent, hence
∑n

i=1 G1
i

and
∑n

i=1 G2
i are independent. Thus, while waiting for

the technologies capable of measuring efficiently the ex-
pression levels in single cells, in experimental studies, we
can still make valid—although probably more limited—
inferences about the regulatory networks based only on
the first two moments of the joint distribution and the in-
dependence relations.
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