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Abstract. Turing’s notion of human computability is exactly right not only for obtaining

a negative solution of Hilbert’s Entscheidungsproblem that is conclusive, but also for
achieving a precise characterization of formal systems that is needed for the general
formulation of the incompleteness theorems. The broad intellectual context reaches back

to Leibniz and requires a focus on mechanical procedures; these procedures are to be
carried out by human computers without invoking higher cognitive capacities. The
question whether there are strictly broader notions of effectiveness has of course been

asked for both cognitive and physical processes. I address this question not in any general
way, but rather by focusing on aspects of mathematical reasoning that transcend
mechanical procedures. Section 1 discusses Gödel’s perspective on mechanical com-
putability as articulated in his [193?], where he drew a dramatic conclusion from the

undecidability of certain Diophantine propositions, namely, that mathematicians cannot
be replaced by machines. That theme is taken up in the Gibbs Lecture of 1951; Gödel
argues there in greater detail that the human mind infinitely surpasses the powers of any

finite machine. An analysis of the argument is presented in Section 2 under the heading
Beyond calculation. Section 3 is entitled Beyond discipline and gives Turing’s view of
intelligent machinery; it is devoted to the seemingly sharp conflict between Gödel’s and

Turing’s views on mind. Their deeper disagreement really concerns the nature of ma-
chines, and I’ll end with some brief remarks on (supra-) mechanical devices in Section 4.

Key words: absolutely unsolvable (undecidable), axiom of infinity, Church’s Thesis,
Diophantine problem, finite machine, general recursive function, mechanical comput-
ability, objective mathematics, subjective mathematics, Turing machine

1. Mechanical computability

[Gödel 193?] is the unpublished draft for a lecture Gödel presumably
never delivered; it was written in the late 1930s. Here one finds the
earliest extensive discussion of Turing and the reason why Gödel, at
the time, thought Turing had established ‘‘beyond any doubt’’ that
‘‘this really is the correct definition of mechanical computability’’.
Obviously, we have to clarify what ‘‘this’’ refers to, but first I want to
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give some of the surrounding context. Already in Gödel [1933]
elucidated, as others had done before him, the mechanical feature of
effective procedures by pointing to the possibility that machines carry
them out. When insisting that the inference rules of precisely
described proof methods have to be ‘‘purely formal’’ he explains:

[The inference rules] refer only to the outward structure of the
formulas, not to their meaning, so that they could be applied by
someone who knew nothing about mathematics, or by a machine.
This has the consequence that there can never be any doubt as to
what cases the rules of inference apply to, and thus the highest pos-
sible degree of exactness is obtained. (Collected Works III, p. 45)

During the spring term of 1939 Gödel gave an introductory logic
course at Notre Dame. The logical decision problem is informally dis-
cussed and seen in the historical context of Leibniz’s ‘‘Calculemus’’.1

Before arguing that results of modern logic prevent the realization of
Leibniz’s project, Gödel asserts that the rules of logic can be applied
in a ‘‘purely mechanical’’ way and that it is therefore possible ‘‘to
construct a machine which would do the following thing’’:

The supposed machine is to have a crank and whenever you turn
the crank once around the machine would write down a tautology
of the calculus of predicates and it would write down every existing
tautology ... if you turn the crank sufficiently often. So this ma-
chine would really replace thinking completely as far as deriving of
formulas of the calculus of predicates is concerned. It would be a
thinking machine in the literal sense of the word. For the calculus
of propositions you can do even more. You could construct a ma-
chine in form of a typewriter such that if you type down a formula
of the calculus of propositions then the machine would ring a bell
[if the formula is a tautology] and if it is not it would not. You
could do the same thing for the calculus of monadic predicates.

Having formulated these positive results Gödel points out that ‘‘it is
impossible to construct a machine which would do the same thing for
the whole calculus of predicates’’. Drawing on the undecidability of
predicate logic established by Church and Turing, he continues with a
striking claim:

So here already one can prove that Leibnitzens [sic!] program of
the ‘‘calculemus’’ cannot be carried through, i.e. one knows that
the human mind will never be able to be replaced by a machine
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already for this comparatively simple question to decide whether a
formula is a tautology or not.

I mention these matters to indicate the fascination Gödel had with
the mechanical realization of logical procedures, but also his penchant
for overly dramatic formulations concerning the human mind. He
takes obviously for granted here that a mathematically satisfactory
definition of mechanical procedures has been given.

Such a definition, Gödel insists in [193?], p. 166, is provided by the
work of Herbrand, Church and Turing. In that manuscript he exam-
ines the relation between mechanical computability, general recursive-
ness and machine computability. This is of special interest, as we will
see that his methodological perspective here is quite different from his
later standpoint. He gives, on pp. 167–168, a perspicuous presentation
of the equational calculus that is ‘‘essentially Herbrand’s’’ and defines
general recursive functions. He claims outright that it provides ‘‘the
correct definition of a computable function’’. Then he asserts, ‘‘That
this really is the correct definition of mechanical computability was
established beyond any doubt by Turing.’’ Here the referent for
‘‘this’’ has finally been revealed: it is the definition of general recursive
functions. How did Turing establish that this is also the correct defi-
nition of mechanical computability? Gödel’s answer is as follows:

He [Turing] has shown that the computable functions defined in
this way [via the equational calculus] are exactly those for which
you can construct a machine with a finite number of parts which
will do the following thing. If you write down any number n1, ... nr
on a slip of paper and put the slip of paper into the machine and
turn the crank, then after a finite number of turns the machine will
stop and the value of the function for the argument n1, ... nr will be
printed on the paper. (Collected Works III, p. 168)

The implicit claim is clearly that a procedure is mechanical just in
case it is executable by a machine with a finite number of parts. There
is no indication of the structure of such machines except for the insis-
tence that they have only finitely many parts, whereas Turing
machines are of course potentially infinite due to the expanding tape.

The literal reading of the argument for the claim ‘‘this really is the
correct definition of mechanical computability was established beyond
any doubt by Turing’’ amounts to this. The equational calculus char-
acterizes the computations of number-theoretic functions and provides
thus ‘‘the correct definition of computable function’’. That the class of
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computable functions is co-extensional with that of mechanically com-
putable ones is then guaranteed by ‘‘Turing’s proof’’ of the equiva-
lence between general recursiveness and machine computability.2

Consequently, the definition of general recursive functions via the
equational calculus characterizes correctly the mechanically comput-
able functions. Without any explicit reason for the first step in this
argument, it can only be viewed as a direct appeal to Church’s Thesis.

If we go beyond the literal reading and think through the argument
in parallel to Turing’s analysis in his [1936], then we can interpret mat-
ters as follows. Turing considers arithmetic calculations done by a
computor. He argues that they involve only very elementary processes;
these processes can be carried out by a Turing machine operating on
strings of symbols. Gödel, this interpretation maintains, also considers
arithmetic calculations done by a computor; these calculations can be
reduced to computations in the equational calculus. This first step is
taken in parallel by Gödel and Turing and is based on a conceptual
analysis; cf. the next paragraph. The second step connects calculations
of a computor to computations of a Turing machine. This connection
is established by mathematical arguments: Turing simply states that
machines operating on finite strings can be proved to be equivalent to
machines operating on individual symbols, i.e., to ordinary Turing ma-
chines; Gödel appeals to ‘‘Turing’s proof’’ of the fact that general
recursiveness and machine computability are equivalent.

Notice that in Gödel’s way of thinking about matters at this junc-
ture, the mathematical theorem stating the equivalence of general
recursiveness and machine computability plays the pivotal role: It is
not Turing’s analysis that is appealed to by Gödel but rather ‘‘Tur-
ing’s proof’’. The central analytic claim my interpretation attributes
to Gödel is hardly argued for. On p. 13 Gödel just asserts, ‘‘... by
analyzing in which manner this calculation [of the values of a general
recursive function] proceeds you will find that it makes use only of
the two following rules.’’ The two rules as formulated here allow
substituting numerals for variables and equals for equals. So, in some
sense, Gödel seems to think that the rules of the equational calculus
provide a way of ‘‘canonically’’ representing steps in calculations and,
in addition, that his characterization of recursion is the most general
one.3 The latter is imposed by the requirement that function values
have to be calculated, as pointed out in [1934], p. 369 top; the former
is emphasized much later in a letter to van Heijenoort of April 23,
1963, where Gödel distinguishes his definition from Herbrand’s. His
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definition, Gödel asserts, brought out clearly what Herbrand had
failed to see, namely ‘‘that the computation (for all computable func-
tions) proceeds by exactly the same rules‘‘. (Collected Works V,
p. 308) By contrast, Turing shifts from arithmetically meaningful
steps to symbolic processes that underlie them and can be taken to
satisfy restrictive boundedness as well as locality conditions. These
conditions cannot be imposed directly on arithmetic steps and are
certainly not satisfied by computations in the equational calculus.

2. Beyond calculation

In [193?] Gödel begins the discussion by reference to Hilbert’s ‘‘famous
words’’ that ‘‘for any precisely formulated mathematical question a un-
ique answer can be found’’. He takes these words to mean that for any
mathematical proposition A there is a proof of either A or not-A,
‘‘where by ‘proof’ is meant something which starts from evident axioms
and proceeds by evident inferences’’. He argues that the incompleteness
theorems show that something is lost when one takes the step from this
notion of proof to a formalized one: ‘‘... it is not possible to formalize
mathematical evidence even in the domain of number theory, but the
conviction about which Hilbert speaks remains entirely untouched. An-
other way of putting the result is this: it is not possible to mechanize
mathematical reasoning; ...’’ Then he continues, in a way that is similar
to the striking remark in the Notre Dame Lectures, ‘‘i.e., it will never be
possible to replace the mathematician by a machine, even if you confine
yourself to number-theoretic problems.’’ (pp. 164–165)

The succinct argument for this conclusion is refined in the Gibbs
Lecture of 1951. In the second and longer part of the lecture, Gödel
gave the most sustained defence of his Platonist standpoint drawing
the ‘‘philosophical implications’’ of the situation presented by the
incompleteness theorems.4 ‘‘Of course,’’ he says polemically, ‘‘in con-
sequence of the undeveloped state of philosophy in our days, you
must not expect these inferences to be drawn with mathematical
rigor.’’ The mathematical aspect of the situation, he claims, can be
described rigorously; it is formulated as a disjunction, ‘‘Either mathe-
matics is incompletable in this sense, that its evident axioms can never
be comprised in a finite rule, that is to say, the human mind (even
within the realm of pure mathematics) infinitely surpasses the powers
of any finite machine, or else there exist absolutely unsolvable
Diophantine problems of the type specified ...’’ Gödel insists that this
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fact is both ‘‘mathematically established’’ and of ‘‘great philosophical
interest’’. He presents on pages 11–13 an argument for the disjunction
and considers its conclusion as ‘‘inevitable’’.

The disjunction is called in footnote 15 a theorem that holds for
finitists and intuitionists as an implication. Here is the appropriate
implication: If the evident axioms of mathematics can be comprised in
a finite rule, then there exist absolutely unsolvable Diophantine prob-
lems. Let us establish this implication by adapting Gödel’s consider-
ations for the disjunctive conclusion; the argument is brief. Assume the
axioms that are evident for the human mind can be comprised in a
finite rule ‘‘that is to say’’, for Gödel, a Turing machine can list them.
Thus there exists a mechanical rule producing all the evident axioms
for ‘‘subjective’’ mathematics, which is by definition the system of all
humanly demonstrable mathematical propositions.5 On pain of contra-
diction with the second incompleteness theorem, the human mind can-
not prove the consistency of subjective mathematics. (This step is of
course justified only if the inferential apparatus for subjective mathe-
matics is given by a mechanical rule, and if subjective mathematics
satisfies all the other conditions for the applicability of the second the-
orem.) Consequently, the Diophantine problem corresponding to the
consistency statement cannot be proved either in subjective mathemat-
ics. That justifies Gödel’s broader claim that it is undecidable ‘‘not just
within some particular axiomatic system, but by any mathematical
proof the human mind can conceive’’. (p. 13) In this sense the problem
is absolutely undecidable for the human mind. So it seems that we have
established the implication. However, the very first step in this argu-
ment, indicated by ‘‘that is to say’’, appeals to the precise concept of
‘‘finite procedure’’ as analyzed by Turing. Why is ‘‘that is to say’’ justi-
fied for Gödel? – To answer this question, I examine Gödel’s earlier
remarks about finite procedures and finite machines.6

Gödel stresses in the first paragraph of the Gibbs Lecture that the
incompleteness theorems have taken on ‘‘a much more satisfactory
form than they had had originally’’. The greatest improvement was
made possible, he underlines, ‘‘through the precise definition of the
concept of finite procedure, which plays a decisive role in these
results’’. Though there are a number of different ways of arriving at
such a definition which all lead to ‘‘exactly the same concept’’, the
most satisfactory way is that taken by Turing when ‘‘reducing the
concept of a finite procedure to that of a machine with a finite num-
ber of parts’’. Gödel does not indicate the character of, or an
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argument for, the reduction of finite procedures to procedures
effected by a machine with a finite number of parts, but he states
explicitly that he takes finite machine ‘‘in the precise sense’’ of a Tur-
ing machine. (p. 9) This reduction is pivotal for establishing the
central implication rigorously, and it is thus crucial to understand and
grasp its mathematical character. How else can we assent to the claim
that the implication has been established mathematically as a theo-
rem? In his [1964] Gödel expressed matters quite differently: there he
asserts that Turing in [1936] gave an analysis of mechanical proce-
dures and showed that the analyzed concept is equivalent to that of a
Turing machine. The claimed equivalence is viewed as central for
obtaining ‘‘a precise and unquestionably adequate definition of the
general concept of formal system’’ and for supporting, I would like to
add in the current context, the mathematical cogency of the argument
for the implication.

Gödel neither proved the mathematical conclusiveness of the
reduction nor the correctness of the equivalence. So let us assume, for
the sake of the argument, that the implication has been mathemati-
cally established and see what conclusions of great philosophical
interest can be drawn. There is, as a first background assumption,
Gödel’s deeply rationalist and optimistic perspective that denies the
consequent of the implication. That perspective, shared with Hilbert
as we saw in Section 1, was articulated in [193?], and it was still taken
in the early 1970s. Wang reports in [1974], pp. 324–325, that Gödel
agreed with Hilbert in rejecting the possibility that there are number-
theoretic problems undecidable for the human mind. Our task is then
to follow the path of Gödel’s reflections on the first alternative of his
disjunction or the negated antecedent of our implication. That asser-
tion states: There is no finite machine (i.e. no Turing machine) that
lists all the axioms of mathematics which are evident to the human
mind. Gödel argues for two related conclusions: (i) the working of the
human mind is not reducible to operations of the brain, and (ii) the
human mind infinitely surpasses the powers of any finite machine.7

A second background assumption is introduced to obtain the first
conclusion: The brain, ‘‘to all appearances’’, is ‘‘a finite machine with
a finite number of parts, namely, the neurons and their connections’’.
(p. 15) As finite machines are taken to be Turing machines, brains are
consequently also considered as Turing machines. That is reiterated in
Wang, p. 326, where Gödel views it as very likely that ‘‘The brain
functions basically like a digital computer.’’ Together with the above
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assertion this allows Gödel to conclude in the Gibbs Lecture, ‘‘the
working of the human mind cannot be reduced to the working of the
brain’’.8 In Wang it is taken to be in conflict with the commonly
accepted view, ‘‘There is no mind separate from matter.’’ That view is
for Gödel a ‘‘prejudice of our time, which will be disproved scientifi-
cally (perhaps by the fact that there aren’t enough nerve cells to per-
form the observable operations of the mind)’’. Gödel uses the notion
of a finite machine in an extremely general way when considering the
brain as a finite machine with a finite number of parts. It is here that
the identification of finite machines with Turing machines becomes
evidently problematic: Is it at all plausible to think that the brain has
a similarly fixed structure and fixed program as a particular Turing
machine? The argumentation is problematic also on different grounds;
namely, Gödel takes ‘‘human mind’’ in a more general way than just
the mind of any one individual human being. Why should it be then
that mind is realized through any particular brain?

The proposition that the working of the human mind cannot be
reduced to the working of the brain is thus not obtained as a ‘‘direct’’
consequence of the incompleteness theorems, but requires additional
substantive assumptions: (i) there are no Diophantine problems the
human mind cannot solve, (ii) brains are finite machines with finitely
many parts, and (iii) finite machines with finitely many parts are
Turing machines. None of these assumptions is uncontroversial; what
seems not to be controversial, however, is Gödel’s more open formu-
lation in [193?] that it is not possible to mechanize mathematical rea-
soning. That raises immediately the question, what aspects of
mathematical reasoning or experience defy formalization? In his note
[1974] that was published in Wang, pp. 325–326, Gödel points to two
‘‘vaguely defined’’ processes that may lead to systematic and effective,
but non-mechanical procedures, namely, the process of defining recur-
sive well-orderings of integers for larger and larger ordinals of the
second number class and that of formulating stronger and stronger
axioms of infinity. The point was reiterated in a modified formulation
[Gödel, 1972d] that was published only later in Collected Works II, p.
306. The [1972d] formulation of this note is preceded by [1972c],
where Gödel gives Another version of the first undecidability theorem
that involves number theoretic problems of Goldbach type. This ver-
sion of the theorem may be taken, Gödel states, ‘‘as an indication for
the existence of mathematical yes or no questions undecidable for the
human mind’’ (p. 305). However, he points to a fact that ‘‘weighs
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against this interpretation’’, namely, that ‘‘there do exist unexplored
series of axioms which are analytic in the sense that they only expli-
cate the concepts occurring in them’’. As an example he points also
here to axioms of infinity, ‘‘which only explicate the content of the
general concept of set’’ (p. 306). If the existence of such effective,
non-mechanical procedures is taken as a fact or, more cautiously, as a
third background assumption, then Gödel’s second conclusion is
established: The human mind, indeed, infinitely surpasses the power
of any finite machine.

Though Gödel calls the existence of an ‘‘unexplored series’’ of axi-
oms of infinity a fact, he also views it as a ‘‘vaguely defined’’ procedure
and emphasizes that it requires further mathematical experience; after
all, its formulation can be given only once set theory has been devel-
oped ‘‘to a considerable extent’’. In the note [1972d] Gödel suggests
that the process of forming stronger and stronger axioms of infinity
does not yet form a ‘‘well-defined procedure which could actually be
carried out (and would yield a non-recursive number-theoretic func-
tion)’’: it would require ‘‘a substantial advance in our understanding of
the basic concepts of mathematics’’. In the note [1974], Gödel offers a
prima facie startlingly different reason for not yet having a precise defi-
nition of such a procedure: it ‘‘would require a substantial deepening of
our understanding of the basic operations of the mind’’ (p. 325).

Gödel’s Remarks before the Princeton bicentennial conference in
[1946] throw some light on this seeming tension. Gödel discusses there
not only the role axioms of infinity might play in possibly obtaining
an absolute concept of demonstrability, but he also explores the pos-
sibility of an absolute mathematical ‘‘definition of definability’’. What
is most interesting for our considerations here is the fact that he con-
siders a restricted concept of human definability that would reflect a
human capacity, namely, ‘‘comprehensibility by our mind’’. That
concept should satisfy, he thinks, the ‘‘postulate of denumerability’’
and in particular allow us to define (in this particular sense) only
countably many sets. ‘‘For it has some plausibility that all things con-
ceivable by us are denumerable, even if you disregard the question of
expressibility in some language’’ (p. 3). That requirement, together
with the related difficulty of the definability of the least indefinable
ordinal, does not make such a concept of definability ‘‘impossible, but
only [means] that it would involve some extramathematical element
concerning the psychology of the being who deals with mathematics.’’
Obviously, Turing brought to bear on his definition of computability,
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most fruitfully, an extramathematical feature of the psychology of a
human computor.9 Gödel viewed that definition in [1946], the reader
may recall, as the first ‘‘absolute definition of an interesting epistemo-
logical notion’’ (p. 1). His reflections on the possibility of absolute
definitions of demonstrability and definability were encouraged by the
success in the case of computability. Can we obtain by a detailed
study of actual mathematical experience a deeper ‘‘understanding of
the basic operations of the mind’’ and thus make also a ‘‘substantial
advance in our understanding of the basic concepts of mathematics’’?

3. Beyond discipline

Gödel’s brief exploration in [1972d] of the issue of defining a non-
mechanical, but effective procedure is preceded by a severe critique of
Turing. The critical attitude is indicated already by the descriptive
and harshly judging title of the note, A philosophical error in Turing’s
work. The discussion of Church’s thesis and Turing’s analysis is in
general fraught with controversy and misunderstanding, and the con-
troversy begins often with a dispute over what the intended informal
concept is. When Gödel spotted a philosophical error in Turing’s
work, he assumed that Turing’s argument in the 1936 paper was to
show that ‘‘mental procedures cannot go beyond mechanical proce-
dures’’. He considered the argument as inconclusive:

What Turing disregards completely is the fact that mind, in its use,
is not static, but constantly developing, i.e., that we understand
abstract terms more and more precisely as we go on using them,
and that more and more abstract terms enter the sphere of our
understanding. (Collected Works II, p. 306)

Turing did not give a conclusive argument for Gödel’s claim, but then
it has to be added that he did not intend to argue for it. Simply car-
rying out a mechanical procedure does not, indeed, should not in-
volve an expansion of our understanding. Turing viewed the restricted
use of mind in computations undoubtedly as static; after all, it seems
that this feature contributed to the good reasons for replacing states
of mind of the human computor by ‘‘more definite physical counter-
parts’’ in section 9, part III, of his classical paper.

Even in his work of the late 1940s and early 1950s that deals
explicitly with mental processes, Turing does not argue that mental
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procedures cannot go beyond mechanical procedures. Mechanical
processes are, as a matter of fact, still made precise as Turing
machine computations; machines that might exhibit intelligence have,
in contrast, a more complex structure than Turing machines. Concep-
tual idealization and empirical adequacy are now being sought for
quite different purposes, and Turing is trying to capture clearly what
Gödel found missing in his analysis for a broader concept of humanly
effective calculability, namely, ‘‘... that mind, in its use, is not static,
but constantly developing’’.10 Gödel continued the above remark in
this way:

There may exist systematic methods of actualizing this develop-
ment, which could form part of the procedure. Therefore, although
at each stage the number and precision of the abstract terms at our
disposal may be finite, both (and, therefore, also Turing’s number
of distinguishable states of mind) may converge toward infinity in the
course of the application of the procedure.

The particular procedure mentioned as a plausible candidate for satis-
fying this description is the process of forming stronger and stronger
axioms of infinity. We saw that the two notes, [1972d] and [1974], are
very closely connected. However, there is one subtle and yet substan-
tive difference. In [1974] the claim that the number of possible states
of mind may converge to infinity is obtained as a consequence of the
dynamic development of mind. That claim is then followed by a
remark that begins, in a superficially similar way, as the first sentence
in the above quotation:

Now there may exist systematic methods of accelerating, specializ-
ing, and uniquely determining this development, e.g. by asking the
right questions on the basis of a mechanical procedure.

Clearly, I don’t have a full understanding of these enigmatic observa-
tions, but there are three aspects that are clear enough. First, mathe-
matical experience has to be invoked when asking the right questions;
second, aspects of that experience may be codified in a mechanical
procedure and serve as the basis for the right questions; third, the an-
swers may involve abstract terms that are incorporated into the non-
mechanical mental procedure.

We should not dismiss or disregard Gödel’s methodological
remark that ‘‘asking the right questions on the basis of a mechanical
procedure’’ may be part of a systematic method to push forward the
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development of mind. It allows us, even on the basis of a very limited
understanding, to relate Gödel’s reflections tenuously with Turing’s
proposal for investigating matters. Prima facie their perspectives are
radically different, as Gödel proceeds by philosophical argument and
broad, speculative appeal to mathematical experience, whereas Turing
suggests attacking the problem largely by computational experimenta-
tion. That standard view of the situation is quite incomplete. In the
paper Intelligent machinery written about 10 years after [1939], Turing
states what is really the central problem of cognitive psychology:

If the untrained infant’s mind is to become an intelligent one, it
must acquire both discipline and initiative. So far we have been
considering only discipline [via the universal machine, W.S.]. ... But
discipline is certainly not enough in itself to produce intelligence.
That which is required in addition we call initiative. This statement
will have to serve as a definition. Our task is to discover the nature
of this residue as it occurs in man, and to try and copy it in ma-
chines. (p. 21)

How can we transcend discipline? A hint is provided in Turing’s 1939
paper, where he distinguishes between ingenuity and intuition. He ob-
serves that in formal logics their respective roles take on a greater
definiteness. Intuition is used for ‘‘setting down formal rules for infer-
ences which are always intuitively valid’’, whereas ingenuity is to
‘‘determine which steps are the more profitable for the purpose of
proving a particular proposition’’. He notes:

In pre-Gödel times it was thought by some that it would be possi-
ble to carry this programme to such a point that all the intuitive
judgements of mathematics could be replaced by a finite number of
these rules. The necessity for intuition would then be entirely elimi-
nated. (p. 209)

The distinction between ingenuity and intuition, but also the explicit
link of intuition to incompleteness, provides an entry to exploit
through concrete computational work the ‘‘parallelism’’ of Turing’s
and Gödel’s considerations. Copying the residue in machines is the
task at hand. It is extremely difficult in the case of mathematical
thinking, and Gödel would argue it is an impossible one, if machines
are Turing machines. Turing would agree. Before we can start copy-
ing, we have to discover at least partially the nature of the residue,
with an emphasis on ‘‘partially’’, through some restricted proposals
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for finding proofs in mathematics. Let us look briefly at the broad
setting.

Proofs in a formal logic can be obtained uniformly by a patient
search through an enumeration of all theorems, but additional intui-
tive steps remain necessary because of the incompleteness theorems.
Turing suggested particular intuitive steps in his ordinal logics; his
arguments are theoretical, but connect directly to the discussion of
actual or projected computing devices that appears in his Lecture to
London Mathematical Society and in Intelligent Machinery. In these
papers he calls for intellectual searches (i.e., heuristically guided sear-
ches) and initiative (that includes, in the context of mathematics,
proposing new intuitive steps). However, he emphasizes (1947, p. 122):

As regards mathematical philosophy, since the machines will be
doing more and more mathematics themselves, the centre of gravity
of the human interest will be driven further and further into philo-
sophical questions of what can in principle be done etc.

Gödel and Turing, it seems, could have cooperated on the philosophi-
cal questions of what can in principle be done. They also could have
agreed, so to speak terminologically, that there is a human mind
whose working is not reducible to the working of any particular
brain. Towards the end of Intelligent Machinery Turing emphasizes,
‘‘the isolated man does not develop any intellectual power’’, and
argues:

It is necessary for him to be immersed in an environment of other
men, whose techniques he absorbs during the first 20 years of his
life. He may then perhaps do a little research of his own and make
a very few discoveries which are passed on to other men. From this
point of view the search for new techniques must be regarded as
carried out by the human community as a whole, rather than by
individuals.

Turing calls this, appropriately enough, a cultural search and con-
trasts it with more limited, intellectual searches. Such searches, Turing
says definitionally, can be carried out by individual brains. In the case
of mathematics they would include searches through all proofs and
would be at the centre of ‘‘research into intelligence of machinery’’.
Turing had high expectations for machines’ progress in mathematics;
indeed, he was unreasonably optimistic about their emerging capaci-
ties. Even now it is a real difficulty to have machines do mathematics
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on their own: work on Gödel’s ‘‘theoretical’’ questions has to be com-
plemented by sustained efforts to meet Turing’s ‘‘practical’’ challenge.
I take this to be one of the ultimate motivations for having machines
find proofs in mathematics, i.e., proofs that reflect logical as well as
mathematical understanding.

When focusing on proof search in mathematics it may be possible
to use and expand logical work, but also draw on experience of actual
mathematical practice. I distinguish two important features of the lat-
ter: (i) the refined conceptual organization internal to a given part of
mathematics, and (ii) the introduction of new abstract concepts that
cut across different areas of mathematics.11 Logical formality per se
does not facilitate the finding of arguments from given assumptions to
a particular conclusion. However, strategic considerations can be
formulated (for natural deduction calculi) and help to bridge the gap
between assumptions and conclusion, suggesting at least a very rough
structure of arguments. These logical structures depend solely on the
syntactic form of assumptions and conclusion; they provide a seem-
ingly modest, but in fact very important starting-point for strategies
that promote automated proof search in mathematics.

Here is a pregnant general statement that appeals primarily to the
first feature of mathematical practice mentioned above: Proofs provide
explanations of what they prove by putting their conclusion in a context
that shows them to be correct.12 The deductive organization of parts
of mathematics is the classical methodology for specifying such con-
texts. ‘‘Leading mathematical ideas’’ have to be found, proofs have to
be planned: I take this to be the axiomatic method turned dynamic
and local.13 This requires undoubtedly the introduction of heuristics
that reflect a deep understanding of the underlying mathematical
subject matter. The broad and operationally significant claim is, that
we have succeeded in isolating the leading ideas for a part of mathe-
matics, if that part can be developed by machine – automatically,
efficiently, and in a way that is, furthermore, easily accessible to
human mathematicians.14 This feature can undoubtedly serve as a
springboard for the second feature I mentioned earlier, one that is so
characteristic of the developments in modern mathematics, beginning
in the second half of the 19th century: the introduction of abstract
notions that do not have an intended interpretation, but rather are
applicable in may different contexts. (Notions like group, field, topo-
logical space.) The above general statement concerning mathematical
explanation can now be directly extended to incorporate also the
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second feature of actual mathematical experience. Turing might ask,
can machines be educated to make such reflective moves on their
own?

It remains a deep challenge to understand better the very nature of
reasoning. A marvelous place to start is mathematics; where else do
we find such a rich body of systematically and rigorously organized
knowledge that is structured for intelligibility and discovery? The
appropriate logical framework should undoubtedly include a structure
theory of (mathematical) proofs. Such an extension of mathematical
logic and in particular of proof theory interacts directly with a sophis-
ticated automated search for humanly intelligible proofs. How far can
this be pushed? What kind of broader leading ideas will emerge?
What deeper understanding of basic operations of the mind will be
gained? – We’ll hopefully find out and, thus, uncover with strategic
ingenuity part of Turing’s residue and capture also part of what Göd-
el considered as ‘‘humanly effective’’, but not mechanical – ‘‘by asking
the right questions on the basis of a mechanical procedure’’.

4. (Supra-) Mechanical devices

Turing machines codify directly the most basic operations of a human
computor and can be realized as physical devices, up to a point.
Gödel took for granted that finite machines just are (computationally
equivalent to) Turing machines. Similarly, Church in [1937a, b]
claimed that Turing machines are obtained by natural restrictions
from machines occupying a finite space and with working parts of
finite size; he viewed the restrictions ‘‘of such a nature as obviously to
cause no loss of generality’’. In contrast to Gödel and Church, Gandy
did not take this equivalence for granted and certainly not as being
supported by Turing’s analysis. He characterized machines informally
as discrete mechanical devices that can carry out massively parallel
operations. Mathematically Gandy machines are discrete dynamical
systems satisfying boundedness and locality conditions that are physi-
cally motivated; they are provably not more powerful than Turing
machines. Clearly one may ask: Are there plausible broader concepts
of computations for physical systems? If there are systems that carry
out supra-Turing processes they cannot satisfy the physical restric-
tions motivating the boundedness and locality conditions for Gandy
machines. That is, such systems must violate either the upper
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bound on signal propagation or the lower bound on the size of
distinguishable atomic components.15 In Paper machines, Mundici and
I diagnosed matters concerning physical processes in the following
way. Every mathematical model of physical processes comes with at
least two problems, ‘‘How accurately does the model capture physical
reality, and how efficiently can the model be used to make predic-
tions?’’ What is distinctive about modern developments is the fact
that, on the one hand, computer simulations have led to an emphasis
on algorithmic aspects of scientific laws and, on the other hand, phys-
ical systems are being considered as computational devices that pro-
cess information much as computers do. It seems, ironically, that the
mathematical inquiry into paper machines has led to the point where
(effective) mathematical descriptions of nature and (natural) computa-
tions for mathematical problems coincide.

How could we have physical processes that allow supra-Turing
computations? If harnessed in a machine, we would have a genuinely
supra-mechanical device. However, we want to be able to effectively
determine mathematical states from other such states – that ‘‘parallel’’
physical states, i.e., we want to make predictions and do that in a
sharply intersubjective way. If that would not be the case, why would
we want to call such a physical process a computation and not just
an oracle? Wouldn’t that undermine the radical intersubjectivity com-
putations were to insure? There are many fascinating open issues con-
cerning mental and physical processes that may or may not have
adequate computational models. They are empirical, broadly concep-
tual, mathematical and, indeed, richly interdisciplinary.

Notes

1 This is [Gödel 1939]. As to the character of these lectures, see Dawson (1997),
p. 135.

2 In Turing’s [1936] general recursive functions are not mentioned. Turing
established in an Appendix to his paper the equivalence of his notion with k-defin-
ability. As Church and Kleene had already proved the equivalence of k-definability
and general recursiveness, ‘‘Turing’s Theorem’’ is thus established for Turing
computability.

3 This is obviously in contrast to the view he had in 1934 when defining general
recursive functions; cf. [Sieg 2006].

4 That standpoint is formulated at the very end of the lecture as follows: p. 38 (CW
III, 322/3): ‘‘Thereby [i.e., the Platonistic view] I mean the view that mathematics
describes a non-sensual reality, which exists independently both of the acts and
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[[of]] the dispositions of the human mind and is only perceived, and probably
perceived very incompletely, by the human mind.’’

5. This is in contrast to the case of ‘‘objective’’ mathematics, the system of all true
mathematical propositions, for which one cannot have a ‘‘well-defined system of
correct axioms’’ (given by a finite rule) that comprises all of it. – In [Wang 1974],

pp. 324-326, Gödel’s position on these issues is (uncritically) discussed. The dis-
junction is presented as one of ‘‘two most interesting rigorously proved results
about minds and machines’’ and is formulated as follows: ‘‘Either the human

mind surpasses all machines (to be more precise: it can decide more number theo-
retic questions than any machine) or else there exist number theoretical questions
undecidable for the human mind.’’

6 Boolos’Introductory Note to the Gibbs Lecture, in particular Section 3, gives a dif-
ferent perspective on difficulties in the argument.

7 This does not follow just from the fact that for every Turing machine that lists
evident axioms, there is another axiom evident to the human mind not included in
the list. Turing had tried already in his 1939 paper, Ordinal Logics, to overcome

the incompleteness results by strengthening theories systematically. He added con-
sistency statements (or reflection principles) and iterated this step along construc-
tive ordinals; Feferman perfected that line of investigation, cf. his [1988]. Such a

procedure was also envisioned in [Gödel, 1946], pp. 1–2.
8 Cf. also note 13 of the Gibbs Lecture and the remark on p. 17.
9 Cf. Parsons’ informative remarks in the Introductory Note to [Gödel, 1946] on
p. 148.

10 [Gödel 1972d] may be viewed, Gödel mentions, as a note to the word ‘‘mathemat-
ics’’ in the sentence, ‘‘Note that the results mentioned in this postscript do not
establish any bounds of the powers of human reason, but rather for the potentiali-

ties of pure formalism in mathematics.’’ This sentence appears in the 1964 Post-
scriptum to the Princeton Lectures Gödel gave in 1934; Collected Works I,
pp. 369–371. He states in that Postscriptum also that there may be ‘‘finite non-

mechanical procedures’’ and emphasizes, as he does in many other contexts, that
such procedures would ‘‘involve the use of abstract terms on the basis of their
meaning’’. (Note 36 on p. 370 of Collected Works I) Other contexts are found in
volume III of the Collected Works, for example, the Gibbs Lecture (p. 318 and

note 27 on that very page) and a related passage in ‘‘Is mathematics syntax of
language?’’ (p. 344 and note 24) These are systematically connected to Gödel’s
reflections surrounding (the translation of) his Dialectica paper [1958] and [1972].

A thorough discussion of these issues cannot be given here; but as to my perspec-
tive on the basic difficulties, see the discussion in Section 4 of my paper ‘‘Beyond
Hilbert’s Reach?’’.

11 That is, it seems to me, still far removed from the introduction of ‘‘abstract
terms’’ in Gödel’s discussions. They are also, if not mainly, concerned with the

introduction of new mathematical objects. Cf. note 10.
12 That is a classical observation; just recall the dual experiences of Hobbes and

Newton with the Pythagorean Theorem, when reading Book 1 of Euclid’s
Elements.

13 Saunders MacLane articulated such a perspective and pursued matters to a certain
extent in his Göttingen dissertation. See his papers [1935] and [1979].
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14 To mention one example: in an abstract setting, where representability and deriv-
ability conditions, but also instances of the diagonal lemma are taken for granted
as axioms, Gödel’s proofs can be found fully automatically; see Sieg and Field,

(2005). The leading ideas used to extend the basic logical strategies are very
natural; they allow moving between object and meta-theoretic considerations via
provability elimination and introduction rules.

15 My [2002a, b] discuss the methodological issues and Gandy machines in detail.
For a general and informative discussion concerning ‘‘hypercomputation’’, see
Davis’s paper [2004]. A specific case of ‘‘computations’’ beyond the Turing limit is

presented through Siegelmann’s (1997) ANNs (artificial neural nets): they perform
hypercomputations only if arbitrary reals are admitted as weights. Finally, there is
the complex case of quantum computations: they allow a significant speed-up for

example in Shore’s algorithm, but if I understand matters correctly the current
versions don’t go beyond the Turing limit.
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Gödel, K (1972a) Some remarks on the undecidability results. Collected Works II: 305–
306
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