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Automated Search for Godel’s Proofs
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‘We present strategies and heuristics underlying a search procedure that finds
proofs for Gédel’s incompleteness theorems at an abstract axiomatic level, As
azioms we take for granted the representability and derivability conditions
for the central syntactic notions as well as the diagonal lemma for construct-
ing self-referential sentences. The strategies are logical ones and have been
developed to search for natural deduction proofs in classical first-order logic.
The heuristics are mostly of a very general mathematical character and are
concerned with the goal-directed use of definitions and lemmata. When they
are specific to the meta-mathematical context, these heuristics allow us, for
example, to move between the object-and meta-theory. Instead of viewing
this work as high-level proof search, it can be regarded as a first step in a
proof-planning framework: the next refining steps would consist in verifying
the axiomatically given conditions. Comparisons with the literature are de-
tailed in Section 4. {The general mathematical heuristics are indeed general:
ir Appendix B we show that they, together with two simple algebraic facts
and the logical strategies, suffice to find a proof of “4/2 is not rational”.)

1 Background

In a genuinely experimental spirit, we extended the intercalation method for
proof search from pure first-order logic to parts of mathematics by interweav-
ing general logical strategies with specific mathernatical heuristics. The guid-
ing question for our investigation was: What is needed, in addition to purely
logical corsiderations, for finding proofs of significant theorems in a fully au-
tomated way? We answer the question for Godel’s incompleteness. theorems
[23]. When proved at an abstract aviomatic level they lend themselves nat-
urally to such an investigation; they have intricate, yet not overwhelmingly
difficult proofs, and they are obviously significant. During the academic years
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1975-77, the first author had taken steps towards establishing them interac-
tively. That work was done for a computer-based course on Elementary Proof
. Theory; a detailed report was given in [18] and a brief summary in [22].

Elementary Proof Theory presented the incompleteness theorems for ZF”,
that is Zermelo—Fraenkel set theory without the axiom of infinity; see, for
example, [7)- Its major innovation consisted in carrying out the meta-math-
ematical work in a formal theory of binary trees and elementary inductive
definitions, called TEM.* Without the detour of their arithmetization, the in-
ductively given syntactic notions were shown to be representable in ZF”"; the
diagonal lemuma was established and the proof of the Hilbert-Bernays deriv-
ability conditions, central for the second theorem, was sketched. Within that
high-level framework the standard material on the incoropleteness theorems
is compact and the proofs are direct. It was natural to ask, whether the proofs
can be found via an appropriate extension of the intercalation method.

The arguments for the incompleteness theorems are carried out in the first-
order theory TEM: instead of viewing syntactic objects as (having been coded
as} natural numbers, we consider them as finitely branching trees; instead of
defining syntactic notions recursively, we specify them by elementary inductive
definitions, briedy, by eid’s. In the language of TEM we have the constant §
for the empty tree and the function symbol [, ] for the binary operation of
building a tree from two given ones. We use X, ¥, Z—possibly with indices—
as variables ranging over binary trees. The axioms for § and [, | are formulated
in analogy to those of Dedekind-Peano arithmetic for zero and successor. The
further axioms of TEM include the induction principle for binary trees, and
closure and minimality conditions for the eid’s. Instead of discussing these
axioms in generality—the details do not matter for the current project—we
specify some definitions that are actually needed to characterize the formal
theory for which the incompleteness theorems are to be proved.

The theory to be considered is ZF*, Zermelo and Fraenkel’s theory of sets
without the axdom of infinity. The details of its axiomatic formulation do not
matter etther for the current project. Let us assume that it is formulated in a
first-order language with z, y, z—possibly with indices—as variables ranging
over sets. To indicate the general character of eid’s we specify the generating
clauses of the familiar notion of a formula (taking for granted the concepts of
atomic formula and of variable); @ stands for any binary sentential connective,
@ for the existential or universal quantifier:

If X is an atomic formula, X is a FORMULA;

If X is a FORMULA, =, X] is a FORMULA;

If X is a FORMULA and Y is a FORMULA, [@, [X, Y] is a FORMULA;
If X is a variable and ¥ is a FORMULA, [[@, X], Y] is a FORMULA.

! 7EM abbreviates Theory for Elementary Meta-Mathematics. Feferman systemn-
atically investigates in his papers [10] and [11] the use of “fnitary inductive”
definitions in meta-mathematics.
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We write also “FORM(X)” for “X is a FORMULA”. TEM contains for such
eid’s a closure and a minimality principle. The first principle asserts that
FORM is closed under the above clauses and is expressed by

FOR ALL X (if A(FORM, X} then FORM(X)).?

The minimality principle claims that FORM is the smallest such class.
This is approximated in first-order logic by the usual principle of induction
for formulas:

¥ FOR ALL X (if (P, X) then P(X))
then FOR ALL X (if FORM(X) then P(X)).

Formulas are binary trees built up from the empty tree using pairing. In a
similar way one can generate inductively the relation X s o proof of V'
from assumptions Zi,...,Zy, or from a{n inductively generated) class of ax;
loms; if X is & proof of ¥ using axioms of ZF*, this relation is denoted by
PROOF(X,Y’). To indicate that there is a ZF*-proof for ¥, we write ZF* - (v),
ZF* Y or THEO(Y).

Using the constant @ and the set-theoretic pairing operation (,) one can
build up terms in the language of ZF* whose parse trees are isomorphic to
tke binary trees; they are used as names for the meta-mathematical trees in
the same way as numerals in Dedekind~Peano arithmetic are used as names
for natural numbers. With every meta-mathematical tree we can directly as-
sociate its set-theoretic name or code: CODE(S) = @ and CODE(|X,Y]) =
{CODE(X), CODE(Y')). We also write | X for CODE{X) or indicate it by X.
This is the apparatus needed to formulate the representability conditions for
the syntactic notions. We give them paradigmatically for FORM and PROOQF:

If FORM(X) then ZF* I form{X), and
If NOT FORM(X) then ZF* I —form(X).

“form” is a formula in the language of set theory for which these conditions
are provable in TEM. Similarly, there is a formula “proof” ir the language of
ZF* that represents the proof relation PROOF:

If PROOF(X,Y) then ZF* F proof(X,Y), and
If NOT PROOF(X,Y") then ZF* I = proof( X, Y ).

Using the first representability condition for PROOF one can establish:
If THEO(Y'} then ZF"* b theo(Y),
b

2 84(P, X) is obtained from the generating clauses; it is the disjunction of the fol-
lowing TEM-formulas: (i) X is atomic; (i) {X)o is = and P{(X)1); (i) (X)o is
@ and P(((X)1)o) and P(((X)1)1); (iv) ((X)o)o is @ and ((X}o}: is & variable
and P((X)1). P can be viewed as either a meta-variable over TEM-formulas or
as & free second-order variable; under the second reading we have an appropriate
substitution rule in the logical calculus for TEM.
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where theo(y) abbreviates (3x) proof(z, y) Finally, we will use the Self-reference
Lemma (or Diagonal Lemma) in the form: if F is a formula in the language
of set theory (with one free variable), then there is a sentence Dp in that
very language such that ZF* proves (Dr «F(Dr)). Applied to the formula
—theo(y), the self-reference lemma yields the Godel sentence (7 that expresses
its own. unprovability, i.e., ZF* proves (G + —theo(G)).

With this systematic background it is not difficult to prove that G is not
provable iz ZF* assuming, of course, that ZF* is consistent. So let us assume—
in order to obtain a contradiction—that ZF* proves G; then, by the diago-
nal lemma concerning G, ZF* proves —theo(G). On the other hand, by the
(semi-) representability of THEQ, we can infer from the fact that ZF* proves G,
that ZF" establishes theo(G). Thus, ZF” proves both = theo(G) and theo(G),
and we have obtained a contradiction! The independence of G requires a proof
that —& is not provable either; for that a stronger assumption concerning ZF*,
stronger than mere consistency, has to be made. G6del used for that purpose
the notion of w-consistency; the corresponding concept for the context of our
meta-mathematical set-up is 7-consistency, thinking of = as the class of (sets
denoted by codes for) binary trees. ZF* is r-consistent is defined by the condi-
tion: there is no formula F'(y) such that ZF" proves (Jy)(7(y) &F(y)) and also
~F(Y"} for all Y; or equivalently, for all formulas F(y), if ZF* proves —=F(Y")
for all ¥, then ZF" does not prove (Jy)(r(1) &F(y)).

Assuming that ZF* is 7-consistent, we show now that ZF* does not prove
the negation of the Gddel sentence G. By what we established already (and
the fact that 7-consistency implies ordinary consistency) we know that

FOR ALL X: NOT PROOF(X, G);
the representability of PROOF implies
FOR ALL X: ZF" I —proof( X, G).
But then the 7-consistency of ZF* ensures
NOT ZF* + (3y) proof(y, G).

As the formula (Jy) proof(y, &) is abbreviated by theo{G), we can use the self-
reference lemma for @ to infer that this formula is in ZF" provably equivalent
to =G. Thus, NOT ZF* = (-G), and the independence of G from ZF" has
been established.

Given the axiomatic context provided by the representability of PROOF
and THEO and the self-reference lemma applied to —theo(y), the proofs are
direct, yet intricate. To take a first step towards describing the search algo-
rithm that finds proofs of these and related theorems, we present briefly the
basic ideas underlying the intercalation method for classical logic; for the the-
oretical underpinnings we refer to Sieg [19], Sieg and Byrnes [20] and Byrnes
[6]. We should emphasize at this point that, in our view, logical formality per
se does not facilitate the finding of proofs. However, logic within a natural
deduction framework does help to bridge the gap between assumptions and
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conclusions by suggesting very rough structures for arguments, ie., logical
structures that depend solely on the syntactic form of assumptions and goals.
This role of logic, though modest, is the crucial starting-point for moving up
to subject-specific considerations that support a theorem. In the case study
at hand we will show, how far these logical considerations go, and how they
can be extended quite naturally by the leading mathematical ideas underlying
Godel’s proofs. '

2 Intercalation: broad strategies & special heuristics

The intercalation method is a proof search procedure that is goal-directed and
guided by the possibly expanding syntactic context of the problem at hand.
In first-order logic it is a complete procedure and a basis for broad logical
strategies. The fundamental idea is straightforward. In order to bridge thé
gap between premises Ay, ..., A, and a goal B, one applies systematically the
rules of the natural deduction calculus, i.e., the elimination rules are applied
only from “above”, whereas the introduction rules are inverted and applied
from “below”. Such systematic applications of the rules generate a search
space that either contains a proof of B from the assumptions 4;,..., A, or
provides a semantic courterexarnple to the claim that B is a logical conse-
quence of 4y,..., Ap—tertium non datur; in addition, proofs contained in the
search space are necessarily normal. The argument for this sharpened com-
pleteness theorem provides a method for searching directly for normal proofs;
indeed, it yields also a semantic argument for normal form theorems in natu-
ral deduction. Such arguments concerning classical first-order logic were first
given in [19], later also for intuitionistic logic and some modal logics in col-
laboration with Cittadini in [21)].

Normal proofs satisfy a similar subformula property as cut-free derivations
in the sequert calculus. That, of course, allows a. restriction of the systematic
search and is basic for broad strategies underlying our proof search: (i) ex-
tracting B via elimination rules—if B is a strictly positive subformula of an
assurcption, {ii) sub-goaling via the appropriate inverted introduction rule—if
B is a logically complex formula, (i) refuting B via the elimination rule for
negation—if an appropriate pair of contradictory formulas is available.? In
the latter case there must be a negation that is a strictly positive subformula
of an assumption. It is evident that direct proof search is strongly and natu-
rally coustrained by the syntactic context of the problem, as only particular
subformulas can be intercalated between assumptions and goals.

With these logical strategies in the background let us return to the proof
of the first part of the first incompleteness theorem and examine, how the

¥ This condition was modified for the republication. The old formulation was “(iid)
refuting B via the rules for negation—if B is a negation or an atomic formula and
if an appropriate pair of contradictory formulas is available”. Negated formulas
are actuaily treated under (ii); the restriction to atomic formulas is too resirictive.
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intercalation method might find it with “a little help” (when pure logic is
unable to proceed any further). So we begin with the goal NOT (ZF" I (G))
and the premise ZF*CONS. We also have a definition and a lemma available,
namely, the definition

ZF"CONS IFF NOT [ZF" I (@) AND ZF* F (—=G))
and the consequence of the diagonal lemma for —theo{z}, i.e.,
ZF* F (G + —theo(G)).4

The goal cannot be extracted from the premises. Thus, the algorithm proceeds
indirectly with the assumption ZF*'F (&) and needs.a pair of contradictory
formulas as mew goals. However, no negation occurs as a strictly positive
subformula of the premise. As there is a negation in the definition of the
premise, we use it and the premise to infer

NOT [ZF* I (G) AND ZF* F (=G)].

This negation is one element of a contradictory pair, and the algorithm at-
tempts to prove [ZF* + (G) AND ZF* + (—@G)]. This formula cannot be ex-
tracted: even though it is a subformula of a premise, it is not a strictly positive
one. So the algorithm inverts the formula and attempts to prove the new goals
ZF* b (G) and ZF* I {(~@). The former goal is already an assumption of the
indirect proof, so we examine the latter goal.

It is here that we make the first significant change to the proof search
procedure. ZF" b (=) cannot be extracted, but as an existential formula
it can be inverted. Instead of searching for a term in the language of TEM
describing a ZF"-proof of =G, the search proceeds “inside” ZF*. The claim
ZF* = (=@G) can be justified, after all, by the presentation of a proof of =G
within ZF*. The procedure tries now to find a ZF"-proof for the goal ~G. As
the formula —G cannot be extracted, indivect proof is applied to —(G: assume
@ and find a contradictory pair. There is no negation immediately available
in the premises, except through the diagonal lemma for (7. Note that this
lemma is formulated within TEM as & provability claio for ZF" and should
be available for any ZF*-proof. In general, wher attempiing an extraction or
looking for contradictory pairs within a ZF*-proof, strictly positive subfor-
mulas of ZF*formulas A must be considered, where ZF™ F (A) occurs as a
strictly positive subformula of a premise or available assumption in TEM. So,
the diagonal lemma makes available the formula — theo{), which is used to

construct the contradictory pair. This leaves theo{G) as a new goal, which

cannot be extracted. The regular proof search procedure would attempt an
inversion. But here an additional step can be considered, since theo is a semi-
representable relation: we can justify theo(G) by establishing ZF* i (G) in
TEM. ZF* F (@) is an assumption In TEM, 0 the proof is complete.

4 We could have chosen one of the more gereral formulations of consistency, for
example, NOT (EXISTS X)(ZF* b (X) AND ZF* I (-=X)). The quantificational
search in the SH-expansion (see [20]) would find the appropriate instance quickly.
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The expanded version of the proof search algorithm, which results from
the careful examination of the above proof, interweaves mathematical and

purely logical considerations in an intefcalating and goal-directed manner. It

has the following main steps:

Extraction

If the goal is in TEM, then extraction functions as described above for first-
order logic. If the goal is in ZF*, then the set of formulas available for ex-
traction is expanded by those formulas A, for which the claim ZF” - (4) is
extractable in TEM and the goal is extractable from A. That is the inference
ProvE, which is used to turn A into a part of the ZF*-proof.

Inversion

For the standard connectives inversion is applied as discussed earlier. There

are two additional cases where “inversion” is applied. The first case oceurs,
when the goal in TEM is a statement of the form ZF* |- {4). Here the algorithm
tries to find a proof of 4 in ZF™; that is the inversion of the inference Prov 1.5 In
the second case, when the goal is a formula like [-] rel(X) in ZF*, and when the
relation REL is represented by rel, the procedure tries to prove [NOT]REL{X)
in TEM, after having explored indirect strategies in ZF". For semirepresentable
relations such as ZF" + (X0), this step is obviously not applied to the negation
—rel{X) in ZF".

Extended extraction and inversion { “Meaning of premises and goals”)

Definitional and other mathematical equivalences are used to obtain either
a new available formula from which the current goal is extractable or to get
an equivalert statement as a new goal. This we would like to do relative to
a developing background theory; currently, we just add the definitions and
lemmata explicitly to the list of premises.

Indirect strategies are pursued in the same way as in pure first-order logic,
with one exception: the set of contradictory pairs for indirect proofs in ZF* is
expanded by pairs whose negations are sirictly positive subformulas of 4 in
case ZF" I (A) (and this TEM-statement is itself extractable from an available
TEM-claim).

This compietes the informal description of the algorithm that searches for
statements surrounding the first incompleteness theorem. The extensions of
extraction and inversion mentioned have a very general mathematical charac-
tex, whereas the exfensions via ProvE and Provl express most directly meta~
mathematical contént, The former rule reflects, in part, that theorems can be
appealed to in proofs, and the latter rule expresses that the search mechanism
provides syntactically correct object theoretic proofs.

® If the goal is of the form ZF* + ([~]rel(X)), the algorithm tries first to prove
[NOT]REL{X) directly.
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The extended search procedure evolved out of a probing analysis of the
staxdard proofs for the first incompleteness theorem and incorporates what we
take to be the leading mathematical ideas for this part of meta-mathematics. It
finds proofs not only for the first and second incompleteness theorems (after
incorporating the derivability conditions), but also for a broader range of
theorems and lemmata in this general area; ¢f. Appendix A for a proof of

" Lob’s Theorem and Appendix D for two further examples. Even without the
specifically meta-mathematical steps the algorithm is of real mathematical
interest, as it discovers the structure of the proof for the irrationality of the
square roct of 2; sec Appendix B.

3 Machine proofs & new heuristics

We present now the proofs of the first and second incompleteness theorem and
start out by explaining the format of proofs. Proofs are presented in a modified
Fitch-style format, which can be given using only plain text; cf. [12]. A line
of dashes sets off the assumptions themseives. To distinguish the parts of the
proof which occur in TEM and those which are embedded ZF*-proofs, we mark
every line in the object language with a star. Note that ZF™-proofs retain the
scope indications from the meta-language, and appeals to representability will
use all available TEM-assumptions.

The rules include the standard natural deduction rules. For example, con-
jurction introduction has the name “And1?, and the left and right-hand ver-
sions of conjunction elimination are named “And EL” and “And ER” respec-

tively. To these basic rules we add special rule names for every heuristically
~ applied theorem or lemma. “Rep” names the rule for representable or semi-
representable relations, where the premise is a representable relation in TEM
and the conclusion the corresponding relation in ZF*. “ProvE” and “Prov!”
indicate provability elimination and introduction.

We present fizst the machine proof of non-provability of the Godel sen-
tence (7, assuming that ZF* is consistent. In addition, the machine uses an
instance of the diagonal lemma ZF* - (G «— ~(theo{®))) and the definition
of consistency, ZF*CONS IFF NOT {ZF* I- () AND ZF*\- {(~(G))).

® Dawn McLaughlin modified the presentation of proofs in such a way that the
next sentence in the original publication could be dropped. That sentence was:
“We show the scope of assumptions by inserting bars between the number and
formule on each line, with nested assumptions being noted by alternating bazs
and exclamation points.”
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Proof. 7
1. ZF* F (G « —(theo{G))) Premise
2. ZF*CONs Premise
3. ZF'CONS IFF NOT (ZF* I (G} AND ZF* I (~(G))) Premise
4. EE* (&) Assumption
*5. 11 @ Assumption
*6. || theo(G) Rep 4
70| (G~ =(theo(G))) ProvE 1
* 8. || ~(theo(G)) MFER T, 5
9. | —(G) Notl 5, 6, 8
10. | ZF* - (-(GY) Provl 9 -
11 | ZF" (@) AND ZF* I (-(&)) Andl 4, 10
12. | NOT(ZF* + (G) AND ZF* I (~(G))) FFER 3, 2
13. NOT (ZF" - (GY) ' Notl 4, 11,12

To prove the independence of G' we have also to establish the non-
provability of ~(7. As remarked earlier, that requires the stronger hypothesis
of 7-consistency. Here are the premises for the non-provability of =G

- the diagonal lemma ZF* I (G + ~(theo{@))),
ZF* CONS,
ZFL.CONS IMPLIES [{ FOR ALL X)
(ZF" | (=(proof(X, G))) IMPLIES NOT (ZF* - (theo(G))))],
- ZFLCONS IMPLIES ZF*CONS,
and a reformulation of what was established above, namely
ZF"CONS IMPLIES (FOR ALL X)(NOT (PROOE(X, G))).

1

4 Whex‘z foIl_owing this argument and all the other machine proofs, the reader should
keep in mind the intercalation strategies for bridging the gap between assumptions
and goals. After ali, they motivate the steps in the argurents.

L7
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Proof.

1. ZF* I (G + ={theo(&))) Premise

2. ZFLCONS Premise

3. ZFrCONS IMPLIES Premise

[(FOR ALL X)(ZF* I~ (~(proof(X, G}
IMPLIES NOT (ZF* I (theo(G))))]
4. ZF*CONS IMPLIES ZF"CONS Premise
5. ZF*CONS IMPLIES Premise
(FOR ALL X){NOT (PROOF(X, G))))

6. | ZF* = (~(@)) Assumption
*7, 1] ~(theo(G)) Assumption
* 8. || (G = —{theo(&))) ProvE 1
9. || G | FFEL 8,7

*10. || =(G) ProvE 6
*11. | theo(G) NotE 7,9, 10
12, i ZF" = (theo(@)) Provl 11
13. | (FOR ALL X){ZF" - {=(proof(X, G))) ImpE 3,2
IMPLIES NOT (ZF" I (theo(G7)))
14. | ZF*CONS ImpE 4,2
15. | (FOR ALL X)(NOT (PROOF(X, G))) ImpE 5, 14
16. | NOT (PROOF(X, G)) AllE 15
*17. | =(procf(X, G)) Rep 16
18. | ZF* - {—{proof(X, () Provl 17
19. | (FOR ALL X)ZF* b (=(proof(X, 3))) Alll 18
20. | NOT (ZF" & (theo(G))) ImpE 13,19

21. NOT(ZF* F (=(G))) Neotl 6,12,20 @O

For the proof of the second incompleteness theorem, i.e., the non-provability
of the formal consistency statement zf"cons under the assumption of the con-
sistency of ZF*, the formalism has to satisfy the Hilbert-Bernays derivability
conditions D1 and Ds. D1 is the formalized semi-representability condition for
the theorem predicate [theo{X) — theo(theo(X})], whereas Dj is the prov-
able closure under modus ponens {theo(X — Y) — (theo(X) — theo(¥"))].
The algorithm makes use of these conditions as rules with one additional
heuristic to exploit Ds: if theo{F) is the goal and F, as a consequent of a
conditional (or biconditional), is a strictly positive subformula of an available
purely implicational formula, apply Dy repeatedly and try to extract theo(F).
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Proof.
1. ZF" F (theo(G) «+ ~@)) Premise®
2. ZF* | {zf*cons + =(theo(@) & theo(~@F))} Premise
3. NOT(ZF* + (G)) Premise
4. | ZF* I (zf*cons) Assumption
*5. || =(@&) Assumption
*6. || (theo(@) « -G ProvE 1
7. || theo(G) WFEL 6,5
* 8. || theo(theo(G)) Derl 7
*9. || theo(theo(G)) — theo(~G) Der2 6
*10. | | theo(—G) ImpE 9, 8 »
*11. | | theo(G) & theo(-G) Andl 7, 10
*12. || (zf"cons & —(theo(F) & theo(=G))) ProvE 2
*13. | | zZ*cons ProvE 4
*14. || =(theo(G) & theo(~G)) IFEL 12, 13
*15. | G NotE 5,11, 14
16. | ZF* (&) Provi 15

17. NOT (ZF* F (zf*cons)) Notl 4,17,3 O

This argument made use of the special character of the G5del sentence
G—in order to obtain the two conjuncts of line 11. Instead, one can exploit
the elegant way of proceeding made possible by Léb’s theorem in [14]:

For all sentences F: ZF™ i (theo(F) —F) IFF ZF* I~ (F.

Lob’s theorem expresses that a sentence F' is provable in ZF* if and only
if its refiection formula (theo{F) — F'} can be established in ZF*. Consider a
refutable sentence H (i.e., » sentence whose negation is provable in ZF*) and
assume that ZF"'is consistent; ther H is not provable in ZF". Lb’s theorem
implies that the corresponding reflection formula (theo(H) — H) is not prov-
able either. Thus, the second incompleteness theorem amounts to establishing
NOT (ZF* F (zf*cons)) from the premises NOT (ZF* F (theo(H) — H)),
ZF* b {zf*cons «+ —(theo(H) & theo(—~H))), and ZF* I (—H). That is done
in the next proof.

§ Notice that the diagonal lemma is used here in a propositionally equivalent form;

the current algorithm does not find the proof, when it is given in its standard
form.
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Proof.
1. NOT{ZF" I~ (theo{H) — H)) Premise
2. ZF* - (zf*cons «» —{theo(H ) & theo(~H))) Premise
3. ZF' | (-H) Premise
4. | ZF" b (zf" cons) Assumption
*5. || theo(H) Assumption
* 6. ——:(H ) - Assumption
*7. theo(—H) : ' Rep 3
* 8. theo{H ) & theo(—H) Andl 3,7
* 9, (zf*cons « =(theo(H ) & theo(-H)}) ProvE 2
*10. zf*cons ProvE 4
* 11, —(theo(H) & theo(—H)) KFER 9,10
*12. || H ' NotE 6,8, 11
*13. | theo(H) — H Impl 3,12
14. | ZF" F (theo{H) — H) Provl 13

18. NOT(ZF* b (zf"cons)) Notl 4,14,1 O

This proof of the second incompleteness theorem uses Lob’s Theorem only in
the discussion leading up to the precise derivational problers. In Appendix A
the prefiminary considerations are incorporated into the proof; there we also
show an elegant machine proof of Ldb’s Theorem.

4 Comparisons

A number of researchers have pursued goals similar to ours, but with inter-
estingly different programmatic perspectives and strikingly different compu-
tational approaches. We focus on work by Ammon [1], Quaife [15], Bucdy
et al. [5] and Shankar [17]. We first discuss Ammon’s and Quaife’s work, as
theirs is programmatically closest to ours: Ammon aims explicitly for a fully
automatic proof of the first incompleteness theorem, and Quaife establishes
the incompleteness theorems and Léb’s theorem in a setting that is similarly
“abstract” as ours. .

In his 1993 Research Note An automatic proof of Gddel’s incompleteness
theorem, Ammon describes the SHUNYATA program and the proof it found for
the first incompleteness theorem. SHUNYATA’s proof is structurally identical
with the proof in Kleene’s book Introduction to Metamathematics (pp. 204-8);
the latter proof is discussed in great detail in Sections 4 and & of Ammon’s
note. Two main claims are made: (i) G&del's undecidable sentence is “con-
structed” by the program “on the basis of elementary rules for the formation
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of formulas”, and this is taken as evidence for the subsidiary claim (on p. 305)
that the program “implicitly rediscovered Cantor’s diagonal method”; (ii) the
proof of its undecidability is found by a hewristically guided complete proof
procedure involving Gentzen’s natural deduction rules for full frst-order logic.
The first claim (made on p.291 and reemphasized on p.295) is misleading:
the Gbdel sentence is of course constructible by the elementary rules for the
(suitably extended) language of number theory, but that the formmla so con-
structed expresses its unprovability has to be ensured by other means (and is
“axiomatically” required to do so by Ammon’s definition 3 and lemma 1).°
As to the second claim (made on p.294), the paper contains neither a logi-

* cal calculus nor a systematic proof procedure using the rules of the caleulus.

‘What one finds are local heuristics for analyzing quantified statements and
conditionals together with directions to prove the negation of a statement, i.e.,
to use the not introduction rule. These latter directions are quite open-ended,
as there is no mechanism for selecting appropriate contradictory pairs. {Cf.
Ammon’s discussion of the “contradiction heuristic” on p.296.)

In 1988 Quaife had already published a paper on Automated proofs of Lib’s
Theorem and Gédel’s two incompleteness theoremns. The paper presents proofs
of the theorems mentioned in its title!® “at a suitable level of abstraction”—
as the author emphasizes on p.219—*“from the underlying details of Gédel
oumbering and of recursive functions”. The suitable level of abstraction is
provided by the provability logic K4. That well-known logic contains as spe-
cial axioms the derivability conditions and as its special rule {beyond modus
ponens) the rule of “necessitation”; the additional rule corresponds to the
semi-representability of the theorem predicate. In order to make use of the
resojution theorem proving system ITP, the first-order meta-theory of K4 is
represented in ITP by five “clauses”, which are listed in Appendix C. Four of
the clauses correspond to the axioms and rules just mentioned, whereas the
very first clause guarantees that all tautologies are obtained. The tautologies
are established by “applying properly specified demodulators” and transform-
ing given sentential formmulas into comjunctive normal form; the underlying
procedure is complex and involves particular weighting schemes. Quaife us-
trates the procedure by presenting on pp. 226-7 a derivation of a “reasonably
complex tautology”; the derivation uses a sequence of 73 demodulation steps.
Quaife concludes the discussion of this derivation by saying: “ITP can also be
asked to print out the line-by-line application of each demodulator, but that
detailed proof is too long for this article”. We present this tautology and its
direct {and easily found) natural deduction proof in Appendix C.

¥ Qur assessment of this claim is in full agreement with that found in the Letter o

the Editor by Brining et al. [3].

*® Quaife establishes only the unprovability of G, not of its negation under the
assemption of w-consistency. On p. 229 he asserts, “With the right axiorns, its
proof [i.e, the other half of the first incompleteness theorem, S&¥F] could be
reproduced about as easily as the principal half above”.
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In contrast to Ammon’s paper, we find here a conceptually and technically
straightforward meta-mathematical and logical set-up: representability and
derivability conditions are axiomatically assumed, and the logical inference
machinery is precisely and carefully described. However, it is very difficult to
understand, how the syntactic context of axioms, theorems and assumptions
directs the search in a way that is motivated by the leadivg ideas of the mathe-
matical subject.** The proofs use in every case “axioms and previously proven
theorems” in addition to the standard hypotheses for the theorem under con-
sideration. It is clear that the “previously proven theorems” are strategically
selected, and it is fair to ask, whether the full proof—from axioms through
intermediate results to the meta~-mathematical theorems—should be viewed
as “automated” or rather as “interactive” with automated large logical steps.
So the direct computational question is, would proofs of the main. theorems
be found, if only the axioms were available?

The answer is most likely “No”. OTTER, the resolution theorem prover
that developed out of ITP, was not able to prove, under appropriately similar
conditions, the full first incompleteness theorem in 1996 that is reported in
Burdy, Giunchiglia, Villafiorita and Walsh'’s paper An incompleteness theorem
via abstraction.’? It was precisely this computational problem that motivated
their paper, namely to show how “abstraction” can be useful to attack if.
They present a proof of Godel’s theorem, where the real focus is not on the
particular meta-mathematical proof, but rather on the process of abstraction
and refinement that aids proof planning. This process is not a fully automated
one, since both the choice of the abstraction and the subsequent refinement of
the abstract proof into the original language require external guidance. While
we share the ultimate goal of limiting the search space for mathematical proofs
by “abstraction”, their semi-automated abstraction process is a very different,
though complementary approach.

The three approaches we have been discussing are as “abstract” as ours
in the sense that the diagonal lemma, the representability condition and,
in Quaife’s and our case, the derivability conditions are taken for granted.
Shankar’s book Metamathematics, Machines, and Gédel’s Proof focuses on
an interactive proof of (the Rosser version of) the first incompleteness the-
orem.'® The explicit goal was to find out, whether the full proof could in
practice be checked using a computer program, i.e., the Boyer-Moore theo-
rem prover. Iu the preface to his book Shankar points out that “A secondary
goal was to determine the effort involved in such a verification, and to iden-
tify the strengths and weaknesses of automated reasoning techunology”. The

12 A similar reservation is articulated by Fearnley-Sander in his review [9] of Quaife’s
book [16].

2 On p.10 they write: “This proof [of the full first incompleteness theorem; S&F)
turns out to be a considerable challenge to an unguided theorem prover. We have
given these axioms to OTTER {v. 3.0) ...but i blew up”.

12 In addition, Shankar provides a “mechanical proof” of the Church~Rosser Theo-
rem in Chapter 6.

Automated search for Gédel’s proofs 131

crucial meta~-mathematical task and most significant difficulty consisted in
verifying the representability conditions—for a particular theory (the system
Zo for number theory in Cohen’s book) and a particular way of making com-
putability precise (viz McCarthy’s Lisp}. That required, of course, a suitable
formalization of all meta-mathematical considerations within, what Shankar
calls on p. 141, “a constructive axiomatization of pure Lisp”. In Sections 5.4
and 5.5 Shankar gives a very informative analysis of, and an excellent per-
spective on, the work presented. _

Moving back from interactive theorem proving to automated proof search,
it is clear that the success of our search procedure results from carefully inter-
weaving mathematical and logical considerations, which lead from explicitly
formulated principles to a given conclusion. Proofs provide ezplanations of
what they prove by putting their conclusions in a context that shows them to
be correct. This need not be a global context providing a foundation for all of
mathematics, but it can be a rather more restricted one as here for the pre-
sentation of the incompleteness theorems. Such a local deductive organization
is the classical methodology of matheratics with two well-known aspects: the
formulation of principles and the reasoning from such principles; we have il-
lustrated only the latter aspect by using suitable strategic considerations and
appropriate heuristic “leading mathematical ideas”.

The task of considering & part of mathematics, finding appropriate basic
notions, and explicitly formulating principles—so that the given part can be
systematically developed-—is of a quite different character.. For Dedekind the
need to introduce new and more appropriate noticns arises from the fact that
human intellectual powers are imperfect. The limitation of these powers leads
us, Dedekind argues in [8], to frame the object of a science in different forms
or different systems. To introduce a notion, “as a motive for shaping the sys-
tems”, means in a certain sense to formulate a hypothesis concerning the inner
nature of a science, and it is only the further development that determines
the real value of such a notion by its greater or smaller efficacy | Wirksamkeit]
in recognizing general truths. In the part of meta-mathematics we have been
considering, Hilbert and Bernays did just that: their formulation of repre-
sentability and derivability conditions ultimately led to more “abstract” ones
and, in particular, to the principles for the provability logic K4 and related
systems; see [2].14

5 Concluding remarks

No matter how one might mechanize an attempt of gaining such a principled
deeper understanding of a part of mathematics, the considerations for a sys-

1 In a differeat, though closely related case, Hilbert and Bernays succeeded in pro-
viding “recursiveness conditions” for the informal concept of calculability in a
deductive formalism; that was done in & supplement of the second volume of
their Grundiagen der Mathematik.
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tematic and efficient automated development would still be central. In our
giver meta-mathematical context, there is an absolutely natural-step to be
taken next. As we emphasized earlier, there is no conflict or even sharp con-
trast between proof search and proof planning: proof search is hierarchically
and heuristically organized through the use of “axdoms” and their subsequent
verification (or refutation). The guiding idea for verification in the interca~
lation approach is to generate sequences of formulas, reduce differences, and
arrive ultimately at syntactic identities. Such difference reduction also under-
lies the techniques for inductive theorem proving that have been developed
by Bundy ef al. in their recent book [4]. We conjecture that those techniques
can be seamlessly joined with the intercalation method to take the nest siep
and prove the representability conditions. The strictly formal proof in TEM
might then be transformed into a ZF* proof of the first derivability condition,
automatically. From a different, more proof-theoretic perspective one might
wish to compare the intercalation method for natural deduction calculi with
appropriately formulated methods for sequent calculi with and without cuts.
That might lead to interesting heuristics for choosing suitable cut formulas
(to make proof search more efficient).?®
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built into the argument. In order to prove Léb’s theorem in TEM, one faces
two claims, namely,

(i} ZF" I (theo(F) — F) IMPLIES ZF* - (F)
and
(i) ZF* F (F) IMPLIES ZF* - (theo(F) — F).

'.I‘he last claim is immediate, whereas the first is difficult: its proof uses the
instance of the diagonal lemma for the formula (theo(z) — F). Here is the

precise derivational problem at the heart of L&b’s theorem: ZF* - (F) can be
proved from the premises

ZF* b (theo(F) — F)
and
ZF* - (L > (theo(L) — F)).

We actually have two proofs of Lob’s theorem, which differ in the pre-
sentation of the derivability conditions. In the first proof the conditions are
formulated as premises and are instantiated for this problem. They enter the
search th;ough the standard extraction procedure. In the second proof heuris-
tics guide their application. The heuristics were described above and have a
fairly general character; they are designed to apply each condition when it
may be useful. The resulting proofs are very similar, differing mainly in the
greater number of extraction rule applications necessary in the first proof to

make use of the axiomatically given derivability conditions. We present only
the first proof.
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Proof.

W o

* 5.
* 6.
*7T.
* 8.
*9,
*10.
*11.
*12.
*13.
* 14,
*15.
16.
*17.
* 18,
19.
20.
21.

*22.

* 23,
* 24
25.
28.
27,
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ZF" k- (L « (theo(L) — F))

ZF" | (theo{L) — (theo(theo(L)) — theo(F}}))

ZF" |- (theo(L) ~ theo(theo(L)))
E* F ((theo{F) — F))

ﬂeo(L)

theo{L) — (theo(theo(L)) — theo(F"))
(theo{theo(L)) — theo(F")) '
{(theo{L) ~» theo(theo{L)))
theo(theo(L))
theo(F)
(theo(F) — F)
F

(theo(L) — F)

(L e (theo(L) — F)) -
L
ZF* - (L)
theo{L)
F
ZF* - (F)

(ZF* F ((theo(F") — F)) IMPLIES ZF" - (F))
ZF* - (F)

theo(F")
B

{theo(F) — F)

ZF* + {{theo(F) — F))
(ZF* & (F) IMPLIES ZF* | ((theo(F) — F)))
(ZF* i~ ((theo(F) — F)) IFF ZF™* I {F))

Premise
Premise
Premise
Assumption

Assumption

ProvE 2
impE 6,5
ProvE 3
ImpE 8,5
ImpE 7,9
ProvE 4
ImpE 11, 10
impl 5,12
ProvE 1
WEL 14,13
Prov! 15
Rep 16
ImpE 13, i7
Provl 18
tmpl 4, 19
Assumption

Assumption

ProvE 21
Impl 22, 23
Prov] 24
Impl 21, 25

IfF1 20,26 O
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Now we present the proof of the second incompleteness theorem with the
explicit use of Lob’s Theorem.

Proof.
1. ZF*CONS Premise
2. ZF" + (-(H)) Premise
3. {ZF"CONS IFF NOT ((ZF" - (H) AND ZF" + (=(H))))) Premise
4. ZF" = (zf*cons «— ={{theo(H) & theo(—(H))))) Premise
5. (ZF* &~ (H) IFF ZF* + ((theo{H) — H))) Premise
6. | ZF" b (zf"cons) Assumption
7. | NOT ((ZF* - (H) AND ZF* + (=(H)))) IFFER 3,1
* 8. 1| theo(H) Assumption
*9. |1 =(H) Assumption
*10. (zf*cons « —((theo(H} & theo(~{H))))) ProvE 4
* 11. zf*cons ProvE 6
* 12, —((theo(H } & theo(=~{H)))) IFER 10, 11
* 13. theo(={H)) Rep 2
*14. (theo(H) & theo{—(H))) Andi 8,13
*15. || H NotE 9,14, 12
% 16. | {theo(H) — H) Impl 8, 15
17, | ZF" - ((theo(H) — H)) Provl 16
18. | ZF* - (H) HFEL 5,17
19. | (ZF* = (H) AND ZF* F (~(H))) Andi 18,2
20. NOT (ZF* - (zf*cons)) Notl 6,19,7 O
Appendix B

The square root of 2 is not rational. The logical search algorithm uncovers
directly the following proof of the claim frorn the premises:

(1) +/2 is rational + (32)(3y) (V2 * z = y & -~(Fz)(z|z & 2|y))
(2) (va)(7y)(2 2% = ? — 2|z & 2ly)

(3) (o) (M) (V2xz =y — 2x2” =¢?)

The universe of discourse consists of the set of all reals or just the algebraic
ones, but the range of the quantifiers consists just of the sort of positive
integers. Here is the transiation of the automatically generated proof; “trans-
lation”, as the parser understands only a more restricted language.
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Proof.

1. V2 is rational — (37)(3y) (V2 + z = y & —~(Z2) (2| & 2|y)) Premise

2. (Vo)) (2% 2% = y? — 2z & 2)y) Premise

3. (Vo) (V) (V2% x =y — 2% 2% = ¢?) Prerise

4. | /2 is rational Assumption

5. | 30)3y)(V2xz =y &~(32)(zlz & 2ly)) IFFER 1,4

6. || (V2 *u=y&=(3z)(zlus zjy)) Assumption

7. (V2 *u=v8&-(32){z|u& z]v}) Assumption

8. (V)2 % u? = 9% — 2u&2|y) AlIE 2

9. || (2xu? = — 2ud2v) AIE 8
10. (V) (V2 xu=y = 2xu? =y?) AlE 3
11. (V2ru=v—2+u? =1v?) AllE 10
12. ||| V2¥u=wv AndEL 7
13. 2xu? =12 ImpE 11,12

14 ||| 22l ImpE 9, 13

15. (32) (z|uwd& zv) ©Exl 14
16. “{dz)(z|u & 2[v) AndER 7
17, 4 L1 15,16
18 || L ExE 6,7, 17
19. | L ExE 5, 6,18
20. —(v/2 is rational) Notl 4,19 O

L is taken as a placeholder for an appropriate contradiction, say, (P& ~P).

Appendix C

In [15, pp. 226-227), this “reasonably complex tautology” is presented:
(P—(@—R)) = ((Q= (R~ 8))—(Q— (P— 3]

Its proof, however, is considered to be too long for incorporation into the
article. In our natural deduction framework the proof is absolutely canonical
and direct; here it is—in twelve lines:
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Proof.
L .,.gf - (Q ~ R)) Assumption
2. E — (R— 9)) Assumption
3. _9“_ Assumption
4. P Assumption
3. (R~ 3) ImpE 2,3
6. (@—R) ImpE 1,4
7. R ImpE 6,3
8. 8§ ImpE 5,7
0. ||| (P =8 Impl 4,8
W0 | [{Q@=(P—3) Impl 3,9 °
1L [ {(@=>(BR—8) = (@~ (P—8)) Impl 2,10

12. {(P—(@=R)) 2 (@—(R~5)— (@~ (P—5))) Impl 1,110

As mentioned in Section 4, Quaife’s framework is a formulation of the first-
order meta-theory of K4 within 1TP. The predicate ThmK4(z) expresses that
the formula z is a theorem of K4. Here are the clauses generating theorems
{from p.223):

(ItP.Al) If taut(z) then ThmK4{x);

{ItP.A2) ThmK4{(b(x — y) — (b(z) — b(y))));

{(1rp.A3) ThmK4(b(z) — b(b(z)));

(rp.R1) If ThmK4((z - y)) & ThmK4{z) then ThmK4{y);
(1rp.R2) If ThmK4(x) then ThmK4(b(x)).

Al guarantees that all tautologies are theorems; A2 and A3 correspond to
the derivability conditions; Rl is modus ponens, and R2 expresses the serni-
representability of the theorem predicate.

Appendix D

Here we present two further computer-generated proofs surrounding the in-
completeness theorems. The first claim is a version of the first half of the first
incompleteness theorem, asserting the unprovability of the reflection formula
for the Gddel sentence.

(i} ZF"CONS IMPLIES NOT (ZF* I~ (theo{G) — G)).
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Proof.

2.
3.
4.
5.
*§.
*7,

* 8.
* 10.
* 1l
*12.

13.
* 14.

* 15.
* 16.

*17. ]

18.
19.
20.
21

1. (ZF*CONS IFE NOT ({ZF* - (G) AND ZF* i~ (-{G))))) Premise
ZF F (G + ~{theo(G)))) Premise .
ZF*CONS Assumption
ZF* b= ((theo(G) — () Assumption
NOT {(ZF* |- (G) AND ZF* - (~(G)))) HFER 1,3
(G —(theo(G))) ProvE 2
theo(G) Assumption
{theo(G) — &) ProvE 4
& ImpE 8, 7
~(theo(G)) fFER 6,9
~(theo{q)) Notl 7,7, 10
¢ FFEL 6,11
ZF" - (@) Prov] 12
G Assumption
theo(G) Rep 13
~theo(G) fFER 6, 14
-(G) Not! 14,15,16
ZF" = (=(@3) Provl 17
(ZF* + (G) AND ZF* F (—(G))) Andl 13, 18
NOT (ZF*  ((theo(G) - G))) Notl 4,19, 5
(ZF*CONS IMPLIES NOT (ZF* F ((theo(G) — G3))) lmpl 3,20 O

The argument is perfectly canonical-—up to the extraction step in line 12;

at this point G could have been extracted from the formula (theo(G@) — G)
in line 4. The resulting proof is “symmetric” to the given one.

The second claim asserts that for any refutable sentence R, the formula ex-

pressing its unprovability, i.e., 7(theo(R)), is in ZF* equivalent to its reflection
formula (theo(R) — R)).

(i) ZF* I (=(R)) IMPLIES ZF* b ((={theo(R)) « (theo(R) — R)}).
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\
Proof.
L. ZF' F {(~(R)) Premise
* 2. | -(theo(R)) Assumption
_ *3. || theo{R) Assumption
] * 4, L—-'_(R) Assumption
' *5 || R NotE 2,3
* 6. | (theo(R) — R) Impl 5
* 7. (~(theo(R)) = (theo(R) - R)) Impl 6
* 8. | (theo(R) — R) Assumption
*9. | theo(R) Assumption
*10. || -(R) ProvE 1 ’
*11. || R impE 8,9
*12. | —(theo(R)) Notl 10, 11
* 13, {(theo(R) — R) — =(theo(R))) Impl 12
*14. (=(theo(R)) « (theo(R) — R)) IfF1 7, 13
15. ZF* b ({=(theo(R)) < (theo{R} — R))) Provl 14 o
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There may, indeed, be other uses of the system than its use as a logic.ﬂ
A. Church [8]

Logic and theory of computation have been intertwined since their first days.
The formalized notion(s) of effective computation are at first technical tools
for the investigation of first order systems, and only ten vears later — in the
hands of John von Neumann — become the blueprints of engineered physical
devices. Generally, however, one tends to forget that in those same years,
in the newly-born proof-theory of Gerhard Gentzen [20] there is an implicit,
powerful notion of computation - an effective, combinatorial procedure for
the simplification of a proof. However, the complexity of the rules for the
elimination of cuts (especially the commutative ones, in the modern jargon)
hid the simplicity and generality of the basic computational notion those rules
were based upon. We had to wait thirty more years before realizing in full glory
that Gentzen’s simplification mechanism and one of the formal systems for
computability {Church’s Acalculus) were indeed ore and the same notion.

As far as we know, Haskell Curry is the first to explicitly realize [L1] that
the types of sorze of his basic combinators correspond to axioms of intuition-
istic implicational calculus, and that, more generally, the types assignable to
expressions made up of combinators are exactly the provable formulae of in-
tuitionistic implicational logic. ¥t is William Howard in 1969 to extend this
formulas as types correspondence to the more general proofs as programs iso-
morpaism ([27], published in 1980 but widely circulated before). Under this
interpretation, the two dynamics — proof normalization on one hand, and 5-
reduction on the other — are identified, so that techniques and results from
cne area are immediately available to the other.

I this paper, we will discuss the use of the Curry-Howard correspondence
in computational complexity theory, the area of theoretical computer science
concerned with the definition and study of complexity classes and their rela-
tions. The standard approach to this discipline is to fix first a machine model
(e.g., Turing machines) equipped with an explicit cost (e.g., number of transi-
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Preface

This volume is located in a cross-disciplinary field bringing together mathe-
matics, logic, natural science and philosophy. Reflection on the effectiveness
of proof brings out a number of questions that have always been latent in
the informal understanding of the subject. What makes a symbolic construc-
tion significant? What makes an assumption reasonable? What makes a proof
reliable? Godel, Church and Turing, in different ways, achieve & deep under-
standing of the notion of effective calculability invelved in the nature of proof.
Turing’s work in particular provides a “precise and unquestionably adequate”
definition of the general notion of a formal system in terms of & machine with
a finite number of parts. On the other hand, Eugene Wigner refers to the un-
reasonable effectiveness of mathematics in the natural sciences as a miracle.

‘Where should the boundary be traced between mathematical procedures
and physical processes? What is the characteristic use of a proof as a compu-
tation, as cpposed to its use as an experiment? What does natural science tell
us about the effectiveness of proof? What is the role of mathematical proofs
in the discovery and validation of empirical theories? The papers collected
in this book are intended to search for some answers, to discuss conceptual
and logical issues underlying such questions and, perhaps, to call attertion to
other relevant questions.

Can every ‘real’ proof be translated into a ‘formal’ proof? Although Hilbert
and Gentzen’s positive answer is widely shared, there are also reasons for dis-
agreement. To deals with this matter Carlo Cellucci addresses two fundamen-

" tal questions - Why proof? What is a proof? - which he settles by contrasting

the notion of axiomatic proof with the notion of analytic proof.

The contribution by Andrea Cantini concentrates on the nature and role
of formal proofs. It is argued that formal proofs do not target certainty or
formalistic foundations. Recent results in proof theory are considered in or-
der to illustrate the role of formal proofs in exploring ideas and clarifying
foundational questions in mathematics. The question is raised to what extent
are proofs for mathematics what experimental procedures are for empirical
sciences?




