CALCULATIONS BY MAN AND MACHINE:
CONCEPTUAL ANALYSIS*

WILFRIED SIEG

§1. Analysis & history. To investigate calculations is to analyze symbolic pro-
cesses carried out by calculators; that is a lesson we owe to Turing. Taking the
lesson seriously, I will formulate restrictive conditions and well-motivated axioms
for two types of calculators, namely, for human (computing ) agents and mechanical
(computing) devices." My objective is to resolve central foundational problems in
logic and cognitive science that require a deeper understanding of the nature of
calculations. Without such an understanding, neither the scope of undecidability
and incompleteness results in logic nor the significance of computational models
in cognitive science can be explored in their proper generality. The claim for logic
is almost trivial and implies the claim for cognitive science; after all. the relevant
logical notions have been used when striving to create artificial intelligence or to
model mental processes in humans.

The foundational problems come to the fore in arguments for Church’s or
Turing’s Thesis, asserting that an informal notion of effective calculability is
captured fully by a particular precise mathematical concept. Church’s Thesis,
for example, claims in its original form that the effectively calculable number
theoretic functions are exactly those functions whose values are computable in
Gdodel’s equational calculus. My strategy, when arguing for the zdequacy of a
notion, is to bypass theses altogether and avoid the fruitless disctssion of their
(un-)provability. This can be achieved by conceptual analysis, i.e., by sharpening
the informal notion, formulating its general features axiomatically, and investigat-
ing the axiomatic framework. Such an analysis will be provided for ihe two types
of calculators I mentioned, examining closely and recasting thoroughly work of
Turing and Gandy. My paper builds on systematic and historical work 1 have
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pursued for more than a decade, much of it in collaboration with John Byrnes.
Daniele Mundici, and Guglielmo Tamburrini. The considerations presented here
reshape and extend the earlier systematic work in a novel and, for me. unexpected
way; their aim is nevertheless extremely classical, namely, to provide what Hilbert
called eine Tieferlegung der Fundamente. It will also become evident that they are
embedded in an illuminating historical context.

There is general agreement that Turing, in 1936, gave the most convincing
analysis of effective calculability in his paper “On computable numbers - with an
application to the Entscheidungsproblem”. It can be argued that he gave the only
convincing analysis and, in addition, that the nature of his analysis is still not
clearly recognized. Thus, it seems worthwhile to go back to the discussion of the
mid-thirties of the last century. Section 2 sets the stage by dealing with effective
calculability of number theoretic functions as investigated by Gédel, Church,
and Hilbert & Bernays, whereas section 3 makes explicit Turing’s truly distinctive
contribution and focuses on calculations by mechanical man (or computors).”
Evident limitations of the human sensory apparatus motivate boundedness and
locality conditions for computors, and broad physical limitations lead to similar
requirements for mechanical devices in section 4. There I adapt Gandy's work on
machine computability and treat calculations by (parallel) machines.* Shifting
the methodological perspective and drawing consequences from thesc investiga-
tions, section 5 gives axiomatic characterizations of Turing Computors and Gundy
Machines. For both notions suitable representation theorems can be proved. The
theorems guarantee that the computations of any model of the axioms can be
simulated by a standard Turing machine over a two-letter alphabet.

The detailed conceptual analysis of effective calculabilty yields rigorous char-
acterizations that dispense with theses, reveal human and machine calculability as
axiomatically given mathematical concepts, and allow their systematic reduction
to Turing computability.

§2. Effective calculations. Church reviewed Turing’s “On computable num-
bers” a few months after its publication for the Journal of Symbolic Logic. He
contrasted Turing’s notion for effective calculability (via idealized machines) with
his own (via A -definability) and with Gédel’s (via the equational calculus). =Of
these [notions],” Church remarked, “the first has the advantage of making the
identification with effectiveness in the ordinary (not explicitly defined) sense evi-
dent immediately ... ” Neither in this review nor anywhere else did Church give
reasons, why the identification is immediately evident for Turing’s notion. and
why 1t is not for the others. In contrast, Godel seemed to capture essential aspects
of Turing’s considerations when making a brief and enigmatic remark in the 1964

2For a detailed historical and systematic examination with extensive references to the literature see
my papers (1994) and (1997). but also (Davis 1982), (Gandy 1988). and (Soare 1996).

IMathematical details for the characterization of machines are presented in ¢ companion paper.
(Sieg 2000).
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postscript to the Princeton Lectures he had delivered thirty years earlier: “Tur-
mg’s work gives an analysis of the concept of ‘mechanical procedure’ ... This
coneept is shown to be equivalent with that of a “Turing machine’.”* But neither
in this postscript nor in other writings did Gédel indicate the nature of Turing’s
analysis or give a proof showing that the analyzed concept is indeed equivalent
to that of a Turing machine.

G6del underlined the significance of Turing’s analysis, repeatedly and emphat-
ically. He claimed in 1964. for example, that only Turing’s work provided “a
precise and unquestionably adequate definition of the general concept of formal
system™. A formal system is defined to be a mechanical procedure for produc-
ing theorems: consequently, the adequacy of this definition rests squarely on the
correctness of Turing’s analysis of mechanical procedures. Gédel had an abid-
ing interest in the issue. as it was crucial for his goal to give the most general
mathematical formulation and the broadest philosophical interpretation of his
incompleteness theorems. A general concept of formal system was needed to
achieve that goal. Godel himself had tried to arrive at such a concept in a quite
different way. namely. by a direct characterization of effectively calculable number
theoretic functions. As a first step towards such a characterization, Gédel had
introduced in his Princeton Lectures general recursive functions via his equational
caleulus.® T will review briefly the crucial features of Godel’s definition.

The general recursive functions are taken by Gédel to be those number theo-
retic functions whose values can be calculated from basic equations via elementary
substitution rules. This is an extremely natural approach and generalizes prop-
crly the idea underlying the definition of primitive recursive functions: the new
class of functions includes in addition to all primitive recursive functions also the
non-primitive recursive Ackermann function. Assume, Godel suggests, you are
given a finite sequence y . . ... ¥ of “known” functions and a symbol ¢ for an
“unknown” one. Then substitute these symbols “in one another in the most gen-
cral fashions™ and equate certain pairs of the resulting expressions. If the selected
sct of functional equations has exactly one solution, consider ¢ as (denoting)
a general recursive function. Godel attributes this proposal to Herbrand® and
proceeds to make two restrictions: (1) the left-hand side of given equations must
beofthe form ¢y (xi.....x,).....wy(x1,....x,)). and (2) for every [-tuple of
natural numbers the value of ¢ must be “computable in a calculus”. The second
condition demands more precisely that for every I-tuple ki, . .. . k; there is exactly
one m such that ¢(k,..... ki) = m is a “derived equation”. So it remains to

paper (and reflecting the above discussion of Church and Gédel). | consider effective and mechanical
procedure as synonymous.

SRecall that in the contemporaneous discusssion the class of recursive functions consisted of those
functions we now call primitive recursive.

#As we know now. Gédel misremembered: see section 2.2 and the Appendix of (Sieg 1994). The
reader should compare the discussion there with that in (Wang 1974), pp. 87-89.
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specify the set of derived equations. That is done inductively using elementary
substitution rules: the basic ones are:
(A.1) Replacingall the variables of a given equation by numerals yields a derived
equation:
(A.2) All true equalities w;; (xy.. ... x,) = m are derived equations.
The rules allowing steps from already obtained equations to additional ones are
formulated as follows:

(R.1) Replace occurrences of y;; (x;... ... xp) by m, if wi(x1....,x,) =misa
derived equation;

(R.2) Replace occurrences of ¢(x)....,x;) on the right-hand side of a derived
equation by m. if ¢(xy...., x/) = m is a derived equation.

Kleene analyzed, using Godel’s arithmetization technique for describing prov-
ability in the equational calculus, the general recursive functions in his (1936). He
established a version of what is now called Kleene’'s Normal Form
Theorem: every general recursive function can be expressed in the form
wley.p(x).....x,,y) = 0), where y and p are primitive recursive and for ev-
ery n-tuple x;...., x, thereis a y such that p(x;,..., x,, y) = 0; ¢ is the e-symbol
as introduced by Hilbert and used by Godel in his 1934 Princeton Lectures. This
theorem (or rather its proof) is quite remarkable: the ease with which it allows to
establish equivalences of different formulations makes it plausible that some stable
notion has been isolated; what is needed for the proof is only that the inference
or computation steps are all primitive recursive. However, the question, whether
that stable notion corresponds to the informal concept of effective calculability,
has to be answered independently.

Any formal system S that is even weakly adequate for number theory will
allow the computations carried out in Gédel’s equational calculus. Gédel made
an important observation in 1936 and tried to use it in his answer to the question
Just formulated: no extension of such an S by higher types, even transfinite
ones, will increase the class of calculable or computable functions.” “Thus,” he
concluded, “the notion ‘computable’ is in a certain sense ‘absolute’, while almost
all metamathematical notions otherwise known (for example, provable, definable,
and so on) quite essentially depend upon the system adopted.” At the Princeton
Bicentennial Conference in 1946, Gédel stressed again the importance of the
concept of general recursiveness or Turing computability and reemphasized:

It seems to me that this importance is largely due to the fact that
with this concept one has for the first time succeeded in giving an

TThis observation made it for the first time plausible to Godel that a stable notion had been
characterized: cf. (Sieg 1994). p.88. He pointed out. quite forcefully. in a letter to Martin Davis of
February 15. 1965 that Note 3 of his 1934 Princeton Lectures did not give a formulation of Church’s
Thesis. Indeed. 1:2 emphasized in the letter that “at the time of these lectures, [I was] not at all
convinced that my zoncept of recursion comprises all possible recursions: and in fact the equivalence
between my definiion and Kleene's ... is not quite trivial.” The reference is to Kleene’s 1936 paper.
For further details. cf. (Davis 1982) and (Sieg 1997). pp. 159-160.
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absolute definition of an interesting epistemological notion, i.e., one
not depending on the formalism chosen.?

Indeed, the details of the formalisms (extending arithmetic) do not matter, but
it is crucial that we are dealing with formalisms at all; in other words, a precise
aspect of the (unexplicated) formal character of the extending theories has to come
into play, when arguing for the absoluteness of the concept computability. Godel
did not prove that computability is an absolute concept, neither here nor in the
earlier paper. I conjecture that he used considerations similar to those underlying
the proof of Kleene’s Normal Form Theorem in order to convince himself of the
claim in 1936. If that conjecture is correct, then Church’s contemporaneous step-
by-step argument for the co-extensiveness of effective calculability and general
recursiveness is completely parallel.’ Church required, when explicating effective
calculability as computability in logical calculi, the inferential steps in such calculi
not only to be effective, but—without any supporting reason—to be general
recursive.

So we find in both these cases a hidden and semi-circular condition on “steps”,
a condition that allows the parallel arguments to go through. This step-condition
was subsequently moved into the foreground by Hilbert & Bernays’ marvelous
analysis of “computations in deductive formalisms”. Their analysis, presented
in a supplement to the second volume of Grundlagen der Mathematik, used the
concept of reckonable function (regelrecht auswertbare Funktion). General de-
ductive formalisms were appropriately restricted by “recursiveness conditions™,
the crucial one requiring the proof predicate of such formalisms to be primitive
recursive. Hilbert & Bernays showed that all reckonable functions are computable
in a restricted number theoretic formalism, and that the functions computable
in that formalism coincide with the general recursive ones. In this way, proper
mathematical underpinnings were provided for Gédel’s absoluteness claim and
Church’s argument, but they were provided only relative to the recursiveness
conditions.

The conceptual work of Gédel, Church, and Hilbert & Bernays had intimate
historical connections and is still of genuine and deep interest.!® It explicated
effective calculability of functions by one core notion, namely, computability of
their values in a calculus via restricted rules. But no one gave convincing reasons

8(CW II, p. 150); my emphasis. In the footnote added to this remark in 1965 Godel wrote: “To
be more precise: a function of integers is computable in any formal system containing arithmetic if
and only if it is computable in arithmetic, where a function f is called computable in S if there is in
§ a computable term representing f.” — Tarski’s remarks at this conference, only recently published
in (Sinaceur 2000), make so vivid, how important the issue of the “intuitive adequacy” of general
recursiveness was taken to be.

9The argument was given in Church’s (1936); the Thesis had been formulated publicly by Church
in 1935 using Godel’s notion. —— How closely related Gédel’s and Church’s considerations were can
be seen from the letter Church wrote to the Polish logician Pepis on June 8, 1937; cf. my (1997),
pp. 168-9 and Appendix A.

0T heir work was complemented by important mathematical work of Kieene and Rosser: cf, (Sieg
1997).

CALCULATIONS BY MAN AND MACHINE 395

for the proposed restrictions on the steps permitted in computations, i.e., all
the analyses ran up against the very same stumbling block. A dramatic shift of
perspective made for real progress. Instead of considering particular schemes for
computing the values of number theoretic functions, Turing and Post proposed to
look at underlying symbolic or combinatory processes. The shift is also dramatic
in a different sense: though contiguous with the other work, it overcomes—
through Turing’s reflections—the stumbling block for a fundamental conceptual
analysis.

§3. By mechanical man. In his specification of finite combinatory processes Post
used a human worker who operates in a “symbol space” and carries out, over a
two-letter alphabet, exactly the kind of operations Turing machines can perform.
Post thought that the support for his model would be provided inductively, by
considering ever-wider formulations and reducing them to the restricted formula-
tion I just hinted at.!! In the argument for his model, Post did not use the fact that
a human worker does the computing; Turing, in describing his model, focused so
strongly on machines that some commentators have taken him to analyze machine
computations. Turing examined however human mechanical computability and
exploited, in sharp contrast to Post, limitations of the human computing agent
to motivate restrictive conditions. The latter replace the unconvincing implicit or
explicit recursiveness requirements in the earlier analyses. The essence of Turing’s
formulation is brought out by an aphoristic remark of Wittgenstein’s on Turing’s
‘Machines’. “These machines,” Wittgenstein said, “are humans who calculate.”
Thatis not only right, but Turing asked in the historical context in which he found
himself the pertinent question, namely, what are the possible processes a human
being can carry out (when computing a number or, equivalently, determining al-

- gorithmically the value of a number theoretic function)? The general problematic

required an analysis of the idealized capacities of calculators, and precisely this
focus makes the analysis epistemologically significant,'?

In my further discussion I shall use a convention suggested by Gandy and
refer by computor to a human computing agent who proceeds mechanically, A
computor operates on certain symbolic configurations, and Turing demands im-
mediate recognizability of these symbolic configurations so that the most basic
computation steps need not be subdivided any further. This normative demand

'1Cf. (Sieg 1994), pp. 91-2, and (Sieg & Byrnes 1996), section 2.

2In my presentation I am taking an anachronistic step by having Turing discuss “computable
functions”. This is mainly for expository expediency, but it is systematically justifiable as follows.
Turing discusses “computable numbers”, but enmiphasizes that he could have equally easily investigated
“computable functions of an integral variable or a real or computable variable, computable predicates,
and so forth”. Indzed, he states emphatically: “The fundamental problems involved are, however,
the same in each cagse, and I have chosen the computable numbers for explicit treatment as involving
the least cumbrous technique.” (Turing 1936), p. 116. — That is clearly in the broad tradition of
Leibniz’s “Calculemus!”, and it is needed for the negative resolution of the Entscheidungsproblem
(and other mathematical and metamathematica) issues). That some such “machine simulation”
should be considered is clear from other contemporaneous remarks, e.g., in (Gédel 1933).
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and the evident limitation of a computor’s sensory apparatus!'® lead to a number
of restrictive conditions that can be extracted from Turing’s discussion.!* To for-
mulate them in the most straightforward way, I am using two ideas, both endorsed
by Turing: (i) the elimination of internal states by “more physical counterparts”
(proposed in section 9 (III) of his 1936 paper), and (ii) the representation of
Turing machines as Post production systems (used by Turing for obtaining new
mathematical results in 1950, but also for a wonderful informal exposition of
solvable and unsolvable problems in 1953).1

Of course, the elimination of internal states is realized in the Post representation,
as the physical counterparts of such states are joined to the ordinary symbolic
configurations to form complete instantaneous descriptions or ids. Anyid contains
exactly one such physical counterpart, and the!® immediately recognizable sub-
configuration of an id must contain it. Given this compact description, the
restrictive conditions are as follows:

(B) (Boundedness) There is a fixed bound on the number of configurations a
computor can immediately recognize.

(L) (Locality) A computor can change only immediately recognizable (sub-) con-
figurations.

Computors proceed deterministically; consequently, the computing process has
to satisfy:

BTuring goes beyond the appeal to sensory limitations and views memory limitations as the
ultimate reason for the restrictive conditions; cf. (Sieg 1994), p. 96.

M ¥For ease of comparison, I attach here Turing’s conditions as analyzed, for example, in my (1997)
a similar analysis is presented in (Wang 1974) on pp. 90-95. (However, the crucial point of grounding
the boundedness and locality conditions in the limitations of the computing subject is not brought
out by Wang.) A first boundedness condition can be formulated as follows:
(B.1) There is a fixed bound on the number of symbolic configurations a computor can immediately
recognize.
A second boundedness condition concerns “internal states” reflecting the computor’s experience:
(B.2) There is a fixed bound on the number of internal states a computor can be in.
For a given computor there are consequently only boundedly many different combinations of sym-
bolic configurations and internal states. His behavior is taken to be deterministic, i.e., it has to satisfy
a determinacy condition:
(D) A computor’s internal state together with the observed configuration fixes uniquely the next compu-
tation step and the next internal state.
Thus, he can carry out at most finitely many different operations. The operations are restricted by
locality conditions.
(L.1) A computor can change only elements of an observed symbolic configuration.
A second locality condition allows a computor to turn attention to a configuration “close” to the one
he had been observing.
(1..2) 4 computor can shift attention from one symbolic configuration to another one, but the new observed
configuration must be within a bounded distance of the immediately previously observed configuration.

5Turing machines were represented as production systems, of course, by Post in his superb paper
“Recursive unsolvability of a problem of Thue” (1947). This representation is also used in Davis’
classical textbook Computability and Undecidability.

16There is a certain conventionality to determine “the” sub-configuration at this point, as a number
of different ones may be observable; cf. (Sieg & Byrnes 1996), pp. 103-6.
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(D) (Determinacy) The immediately recognizable (sub-)configuration determines
uniquely the next computation step (and id).

Turing argued that the number theoretic functions calculable by such a computor
are also computable by a Turing machine. Thus, Turing’s assertion that effec-
tive calculability can be identified with machine computability is the result of a
two-part analysis: the first part yields the boundedness condition for symbolic
configurations and the locality condition for mechanical operations; the second
part argues for the claim that every number theoretic function calculable by a
computor, satisfying these conditions, is computable by a Turing machine. As we
shall see, this latter part has to be broken into two separate steps.

The above restrictive conditions on computors are given quite informally. In
order to formulate them precisely and make their investigation possible, it seems
that the symbolic configurations must be specified; they were taken by Turing to
be linear. Here is the starting-point of Turing’s considerations together with a
dimension-lowering step:

Computing is normally done by writing certain symbols on paper. We
may suppose this paper is divided into squares like a child’s arithmetic
book. In elementary arithmetic, the two-dimensional character of
the paper is sometimes used. But such a use is always avoidable, and I
think that it will be agreed that the two-dimensional character of paper
is no essential of computation. I assume then that the computation
is carried out on one-dimensional paper, i.e. on a tape divided into
squares.!”

In his further reductive argument Turing constructed machines that mimic the
work of computors on linear configurations. These more general machines are
best seen as allowing the replacement of finite strings on the tape by finite strings.
Calling such machines string machines and standard Turing machines letter ma-
chines, the assertion rigorously established by Turing is this: computations of
string machines can be carried out by letter machines.!® Turing’s considerations
make plausible the claim of his Central Thesis: computations carried out by
a computor satisfying the boundedness and locality conditions can be directly
simulated by a string machine. Computations of a string machine, in turn, can
provably be mimicked by a letter machine. The diagram below represents these
reflections graphically and relates them to the standard formulation of Turing’s
Thesis.

Step 1 in the diagram is given by conceptual analysis, whereas step 2 indicates
the application of the Central Thesis. The equivalence proof justifies an extremely

Y7(Turing 1936), p. 135. _

¥ Turing observed: “The machines just described do not differ very essentially from computing
machines as described in §2, and corresponding to any machine of this type a computing machine can
be constructed to compute the same sequence, that is to say the sequence computed by the computer
[in my terminology: computor].”
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simple description of computations that is most useful for mathematical investi-
gations, from the construction of a universal machine and the formulation of the
halting problem to the proof of the undecidability of the Entscheidungsproblem.
It should be underlined that step 2, not the equivalence proof, is for Turing the
crucial one that goes beyond the conceptual analysis; for me it is the problematic
one that requires further reflection.

In order to make Turing’s Central Thesis, quite in Post’s spirit, inductively more
convincing, it seems sensible to allow larger classes of symbolic configurations
and more general operations on them. Turing himself intended, as we saw, to give
an analysis of mechanical procedures on two-dimensional configurations already
in 1936. In 1953 he considered even three-dimensional configurations and me-
chanical operations on them, starting out with examples of puzzles: square piece
puzzles, puzzles involving the separation of rigid bodies or the transformation
of knots, i.e., puzzles in two and three dimensions. He viewed Post production
systems as linear or substitution puzzles. As he considered them as puzzles in
“normal form”, he was able to formulate a suitable version of “Turing’s Thesis”:

Given any puzzle we can find a corresponding substitution puzzle
which is equivalent to it in the sense that given a solution of the one
we can easily find a solution of the other ... A transformation can be
carried out by the rules of the original puzzle if and only if it can be
carried out by substitutions ... 1°

Turing admits that this formulation is “somewhat lacking in definiteness” and
claims that it will remain so; he characterizes its status as lying between a theorem
and a definition: “In so far as we know a priori what is a puzzle and what is
not, the statement is a theorem. In so far as we do not know what puzzles are,
the statement is a definition which tells us something about what they are.” Of

19(Turing 1953), p. 15.
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course, Turing continues, one could define puzzle by a phrase beginning with “a
set of definite rules”, or one could reduce its definition to that of computable
function or systematic procedure. A definition of any of these notions would
provide one for puzzles. Neither in 1936 nor in 1953 did Turing characterize
mathematically more general configurations and elementary operations on them.
I want to describe briefly one particular attempt to do just that, by Byrnes and
me in our (1996).

Our approach was influenced by Kolmogorov & Uspensky’s work on algo-
rithms and has three distinct components: the computor operates on certain
finite connected and labeled graphs, we call K(olmogorov)-graphs; K -graphs con-
tain a unique distinguished element that corresponds to the scanned square of
a Turing machine tape; the operations substitute neighborhoods of the distin-
guished element by appropriate other neighborhoods and are given by a finite
list of generalized Post production rules. Though broadening Turing’s original
considerations, we remain within his general analytic framework and establish
that letter machines can mimic K-graph machines. Turing’s Central Thesis is
turned into the thesis that K-graph machines can do the work of computors
directly. As a playful indication of how human algorithms can be carried out
straightforwardly by K-graph machines, Byrnes and I programmed a K-graph
machine to do ordinary, two-dimensional column addition. In sum, a much more
general class of symbolic configurations and operations on them is considered,
and the central thesis for K -graph machines seems even more plausible than the
one for string machines.

The separation of informal conceptual analysis and mathematical equivalence
proof is essential for recognizing that the correctness of Turing’s Thesis (taken
generically) rests on two pillars; namely, on the correctness of boundedness
and locality conditions for computors, and on the correctness of the pertinent
central thesis. The latter asserts explicitly that computations of a computor can
be mimicked directly by a particular kind of machine. However satisfactory
one may find this line of analytic argument, there are two weak spots: the
looseness of the restrictive conditions (What are symbolic configurations? What
changes can mechanical operations effect?) and the corresponding vagueness
of the central thesis, We are, no matter how we turn ourselves, in a position
that is methodologically still unsatisfactory. To make a step towards a more
satisfactory stance, I shall first take a detour through Gandy’s analysis of machine
computations, abstracting further away from particular types of configurations
and operations, and'then'return to this central methodological issue in section 5.

§4. By (parallel) machine. It has been claimed frequently that Turing analyzed
computations of machines. That is historically and systematically inaccurate, as
my exposition should have‘made quite clear. Only in 1980 did Turing’s student
Robin Gandy characterize machine computations. Gandy focused on “discrete
mechanical devices”, as opposed to possibly more general physical devices; he
excluded, in particular, analogue machines from consideration. The two physical
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conditions characteristic for such devices are a lower bound on the size of their
atomic parts (or simply “atoms”) and an upper bound on the speed of signal
propagation. This justifies Gandy’s contention that states of such machines “can
be adequately described in finite terms.”® Calculations are taken to proceed
in discrete and uniquely determined steps. Consequently, Gandy claims that
these devices can be viewed, in a loose sense, as digital computers. The central
and novel aspect of Gandy’s analysis is the fact that it incorporates parallelism
and covers cellular automata directly. This is of real interest, because cellular
automata do not satisfy the locality condition (L); after all, the configurations
affected in a single computation step are potentially unbounded.

Gandy’s characterization—some details are presented in the Appendix—is
given in terms of discrete dynamical systems (S, F), where § is the set of states
and F governs the system’s evolution. More precisely, .S is a structural class, i.e.,
a subclass of the hereditarily finite sets HF over an infinite set U of atoms that
is closed under e-isomorphisms, and F is a structural operation from S to S,
i.e., a transformation that is, roughly speaking, invariant under permutations of
atoms. These dynamical systems have to satisfy four restrictive principles. The
first principle pertains to the form of description and states that any machine M
can be presented by such a pair (S, F), and that M’s computation, starting in
an initial state x, is given by the sequence x, F (x), F(F(x)),.... Gandy for-
mulates three groups of substantive principles, the first of which—The Principle
of Limitation of Hierarchy—requires that the set theoretic rank of the states is
bounded, i.e., the structural class S is contained in a fixed initial segment of the
HF hierarchy. Gandy argues that it is natural or convenient to think of a ma-
chine in hierarchical terms, and that “for a given machine the maximum height
of its hierarchical structure must be bounded”.?! The second of the substantive
principles—The Principle of Unique Reassembly—claims that any state can be
“assembled” from “parts” of bounded size; its proper formulation requires care
and a lengthy sequence of definitions. The informal idea, though, is wonderfully
straightforward: any state of a concrete machine must be built up from (finitely
many different types of) off-the-shelf components. Clearly, the components have
a bound on their complexity. Both of these principles are concerned with the
states in §; the remaining third and central principle—The Principle of Local
Causality—puts conditions on (the local determination of) the structural opera-
tion F. It is formulated by Gandy in this preliminary way: “The next state, Fx,
of a machine can be reassembled from its restrictions to overlapping ‘regions’ s
and these restrictions are locally caused.” It requires that the parts from which
F (x) can be reassembled depend only on bounded parts of x.

Gandy’s Central Thesis is naturally formulated as the claim that any mechanical
device can be represented as a dynamical system satisfying the above principles.
As to the basic set-up John Shepherdson remarked: “Although Gandy’s principles

0Cf, (Gandy 1980) p.126, but also pp.135-6. For a more detailed argument see
(Mundici & Sieg 1995), section 3.
21(Gandy 1980), p. 131.
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were obtained by a very natural analysis of Turing’s argument they turned out to
be rather complicated, involving many subsidiary definitions in their statement.
In following Gandy’s argument, however, one is led to the conclusion that that
is in the nature of the situation.”?? — Nevertheless, in (Sieg & Byrnes 1999b) a
greatly simplified presentation is achieved by choosing definitions appropriately,
focusing sharply on the central informal ideas, and using one key suggestion made
by Gandy in the Appendix to his paper. This simplification does not change at all
the form of presentation. The subsidiary definitions are streamlined significantly,
however, and of the four principles used by Gandy only a restricted version of the
principle of local causality is explicitly retained. It is formulated in two separate
parts, namely, as the principle of Local Causation and that of Unique Assembly.
The separation reflects the distinction between the local determination of regions
of the next state and their assembly into the next state. The resulting modified set-
up is focused resolutely on the dynamics of processes: the static build-up of states
from simple parts is no longer of concern; rather, the machines have to recognize
patterns in a given state and act on them! That there are only a finite number
of such patterns is justified directly by the two physical limitations appealed to
above, namely, the lower bound on the size of atoms and the upper bound on the
speed of signal propagation.

Before giving a synopsis of an even more simplified version of parallel compu-
tations, let me point to the crucial new methodological difference with Gandy’s
set-up. I no longer take a Gandy machine to be a dynamical system (S, F) (satisfy-
ing Gandy’s principles), but rather a structure M consisting of a structural class .S
of states together with two kinds of patterns and operations on (instantiations of)
the latter; these patterns and operations underlie also Gandy’s principle of local
causality. Given any dynamical system (D, F), where D need not be a structural
class and F need not be a structural operation, F is now called computable in par-
allel if, and only if, there is a Gandy machine M on Sp that determines a sequence
of states zg, z1, z3, . .. €-isomorphic to the successive states x, F(x), F(F(x)),...
for each x in D.?* In general, a Gandy machine M on a structural class S includes
then, first of all, a finite set Ty of stereotypes, i.e., isomorphism classes of parts of
a state x, and an associated structural function Gy. Gp operates on “maximal”
parts or causal neighborhoods for x, abbreviated by Cn(x), to yield determined
regions of some state z out:of which the next state can be assembled; the regions
are said to be locally caused. Dri(z, x) denotes the set of determined regions.

The first principle (LC.1) states that every element of Cny(x) yields a deter-
mined region or, to putitin‘Gandy’s words, that every cause has an effect. Indeed,
the principle guarantees also that the effects are unique by requiring that deter-
mined regions of z are identical, when they are €-isomorphic over x; otherwise
there would not be, as Gandy put it, “any bounds on the number of distinct re-
gions which arise from a given causal neighborhood”.?* A second finite set T3 of

22(Shepherdson 1988), p. 586.
28p is obtained from D by closing under €-isomorphisms.
24(Gandy 1980), p. 139,
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stereotypes together with its associated structural operation G, play a significant
role in the assembly of the next state and have to satisfy the analogue of (LC.1):
every element of Cn,(x) yields a determined region in Dry(z, x), without requir-
ing uniqueness; this is principle (LC.2). The determined regions in Dr|(z, x) are
the building blocks of the next state and not only cover the next state, but fit
together suitably, when they overlap, i.e., have new atoms in common. Here T»
and G, come in, as they provide local information concerning overlaps. That is
expressed by principle (GA.1): for any collection C of regions from Dri(z, x)
with common new atoms there must be a w in Dr,(z, x), such that all elements
of C are parts of w. The final principle, (GA.2), requires that the next state
be obtained as the union of the determined regions in Dri(z,x). A quintuple
(S T, G1, T2, Gy) is called a Gandy Machine M on S if and only if for every
x € S thereisa z € S, such that the local causation conditions (LC.1-2) and the
global assembly conditions (GA.1-2) are all satisfied; precise formulations are
given in the Appendix.

Gandy established in his paper as the central mathematical fact that the se-
quence of states of such a system is Turing computable (to within €-isomorph-
ism). The proof relies on a lemma stating that, for every x € S, Dr (z, x) and z
are unique up to €-isomorphism over x.>* The next state is thus computable by a
Turing machine (via an exhaustive search). It may be that Gandy machines can
be simplified further, for example, by a graph theoretic presentation or a category
theoretic description.?® But what is needed most, in my view, is their further
mathematical investigation, e.g., for issues of complexity and speed-up, and their
use in significant applications, e.g., for the analysis of DNA computations or of
parallel distributed processes. The latter was done by De Pisapia in his (2000)
for many important kinds of artificial neural networks.”’” The consequence is
that artificial neural nets of these varieties can be simulated by Turing machines.
Analogous results are obtained, using quite different techniques, by Siegelmann

n (1998).

However, the most difficult and subtle aspect of Gandy machines, namely the
addition of new atoms, is not used at all for these neural nets, as they have a fixed
number of nodes. So there are two obvious questions: “Is there a natural subclass
of Turing computable functions in which these neural nets lie?”, and “Are there
mental processes for whose representation this aspect of Gandy machines might

25The argument as given in Gandy is not quite correct; details can be found in (Sieg 2000).

26 A graph theoretic presentation was proposed in (Byrnes & Sieg 1996). On the topic of a category
theoretic definition Gandy wrote in his (1980}, p. 147: “The heavy use made of restrictions . . . suggests
that a treatment using concepts analogous to those of sheaf theory or topos theory might be worth
developing. However, it seems to me that the concepts from category theory which would be necessary
would be too abstract to allow one to use them (as we have used the more concrete notions of set
theory) as a justification for the main thesis of this paper.” Perhaps this issue should be revisited
twenty years after its original formulation. A starting-point can be found in (Herron 1995).

Y"De Pisapia considered in particular ANNs with Hebbian learning and the backpropagation
algorithm. Here is a possibility for rich interaction with classical and contemporay work in the
foundations of mathematics, namely, the formalization of analysis in very weak formal frameworks.
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be crucial?”. These are appealing and important questions, but let me turn back
to the central methodological issue I set out to address.

§5. Methodological point. The analysis offered by Turing was radically new in
1936 and yet, as I argued, contiguous with the work of Gédel, Church, Hilbert
& Bernays, and others. In particular, it was just a step away from Gédel’s con-
siderations in the spring of 1934: Turing analyzed in a novel and convincing
way the processes underlying computations (say in Godel’s equational calculus),
but—and that is crucial here—he provided also a basis for further reflections
along Godelian lines. What do I have in mind with this last remark? In a
conversation with Church in early 1934, Gédel found Church’s proposal to iden-
tify effective calculability with A-definability “thoroughly unsatisfactory”. As a
counter-proposal he suggested “to state a set of axioms which would embody the
generally accepted properties of this notion (i.e., effective calculability), and to do
something on that basis”.?® Godel did not articulate what the generally accepted
properties of effective calculability might be, or what might be done on the basis
of an appropriate set of axioms.

The sharpened version of Turing’s work and a thorough-going re-interpret-
ation of Gandy’s approach allow us to fill in the blanks of Gédel’s suggestion;
this resolves, in my view, the methodological issue raised at the end of section 3.
Let me bring out the central points for Gandy machines. First, the definition of a
Gandy machine is an “abstract” mathematical definition that embodies generally
accepted properties of parallel computations;? the axiomatic conditions enforce,
for any Gandy machine, that the state immediately following a given state x can
be obtained (uniquely up to €-isomorphism over x ) from the determined regions.
Second, Gandy machines share with groups and topological spaces the general
feature of abstract axiomatic definitions, namely, that they admit a wide variety
of different interpretations.’® Third, the central fact, that the computations of
any Gandy machine can be simulated by a letter machine, is best understood as a
representation theorem for the axiomatic notion. With these broad observations in
the background, I will recast now the earlier considerations for Turing computors
in such a way that they parallel those for Gandy machines.

Let (D, F) be a discrete dynamical system; the operation F is called computable
if, and only if, there is a Turing computor M on Sp that determines a sequence

2That is reported by Church in a letter to Kleene of November 29, 1935; cf. my (1997), pp. 159-160.

1n (Lamport and Lynch) it is asserted that “the theory of sequential computing rests upon
fundamental concepts of computability that are independent of any particular computational model.”
In contrast, it is claimed, no such fundamental concepts underlying distributed computing have yet
been developed. That is followed by some informal observations (p. 1166): “Underlying almost all
models of concurrent systems is the assumption that an execution consists of a set of discrete events,
each affecting only part of the system’s state. Events are grouped into processes, each process being a
more or l&ss coy sopletely sequenced set of events sharing some common locality in terms of what part
of the state they affect. For a collection of autonomous processes to act as a coherent system, the
processes must be synchronized.”

3In my paper (1996) I tried to argue for the distinctive character of “abstract definitions.”
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of states zg, 7, Z2, . . . E-isomorphic to the successive states x, F (x), F(F(x)), ...

for each x in D. A Turing computor M on § is given by a triple (S; T, G),
where S is a structural class of states, T a finite set of patterns or stereotypes,
and G the corresponding structural operation modifying instantiated patterns.
Every state is required by (C.0) to contain exactly one observed configuration,
its sole causal neighborhood, denoted by en(x). The remaining axioms for
Turing computors are similar to those for Gandy machines. First, the observed
configuration cn(x) of state x yields a unique determined region of any possible
next state z; that is expressed by principle (LC.1). Second, denoting the uniquely
fixed determined region of z by dr(z, x), the next state is obtained as the union of
x\ en(x) and dr (z, x). Thisis the assembly condition (GA.1). The next state z is
determined uniquely up to €-isomorphism over x. Looking back at the informal
conditions on Turing computors, one notices readily that the boundedness and
locality conditions are satisfied by M. Note also, that the principles for a Turing
computor are satisfied by string and K -graph machines. A suitable representation
theorem can be established, showing that computations of any model of these
principles can be simulated by a letter machine.

The axiomatic approach captures the essential nature of computation processes
in an abstract way. The difference between the two types of calculators I have
been describing is reduced to the fact that Turing computors modify one bounded
part of a state, whereas Gandy machines operate in parallel on arbitrarily many
bounded parts. The representation theorems guarantee that models of the axioms
are computationally equivalent to Turing machines in their letter variety. In
any event, these considerations remove any appeal to theses, whether central or
not. They fit the bill of Turing’s appealing intuitive puzzle-approach and satisfy
Godel’s demand for an axiomatically characterized notion. Indeed, they give
proper content to Gddel’s enigmatic remark—discussed in segtion 2—stating:
“Turing’s work gives an analysis of the concept of ‘mechanical procedure’ ... .
This concept is shown to be equivalent with that of a “Turing machine’.” As to the
correctness of the analysis, an appeal to intuition in Turing’s sense can no more
be avoided in this case than in any other case of an axiomatically characterized
mathematical structure that is intended to model broad aspects of reality.”!

In the case under discussion this is fraught with controversy and often mis-
understanding. For example, Godel spotted a “philosophical error” in Turing’s
work, assuming that Turing’s argument in the 1936 paper was to show that “men-
tal procedures cannot go beyond mechanical procedures.”? Not surprisingly, he

31 The argument in section 9 of (Turing 1936)—that was analyzed above—is characterized as “a
direct appeal to intuition”; Turing discusses his concept of intuition at greater length in section. 11
of his 1939 paper on ordinal logics. — A second significant example of such an axiomatic analysis,
“modeling broad aspects of reality”, was given by Dedekind for the continwum; cf. my (1997),
pp- 173-4. :

32[n his Note from 1972; that is also reported with some additional comments in (Wang 1974),
pp. 324-6.
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considered the argument as inconclusive. Indeed, Turing does not give a conclu-
sive argument for Godel’s claim, but it has to be added that he did not intend
to argue for it. Even in his work of the late 1940’s and early 1950’ that deals
explicitly with mental processes, Turing does not argue that “mental procedures
cannot go beyond mechanical procedures.” Mechanical processes are still made
precise as Turing machine computations; in contrast, machines that might exhibit
intelligence have a much more complex structure.’® Conceptual idealization and
empirical adequacy are being sought now for different purposes, and Turing is
trying to capture quite clearly what Godel found missing in the analysis of (a
broader concept of humanly) effective calculability, namely, “ ... that mind, in
its use, is not static, but constantly developing.” The real difference between
Turing’s and Godel’s views, it seems, is Godel’s belief that it is “a prejudice of
our time” that “[t]here is no mind separate from matter.” This is reported by
Wang.** Godel expected also, according to Wang, that this prejudice “will be
disproved scientifically (perhaps by the fact that there aren’t enough nerve cells to
perform the observable operations of the mind).” Clearly, Turing did not share
that expectation.

APPENDIX

This appendix provides some details for Gandy machines. Their states are non-
empty hereditarily finite sets over an infinite set U of atoms. A class' S of states
is called structural, if S is closed under €-isomorphisms. The lawlike connec-
tions between states are given by structural operations F on S, i.e., from S to S.
Structural operations satisfy the condition:3* for all permutations 7 on U and all
x € S, F(x™) is c-isomorphic over x™ to F(x™). “x is e-isomorphic over z to
y” means that the €-isomorphism between x and y is the identity on sup(z), ie.,
the atoms in the transitive closure of z; I use the abbreviation “x 22, y”.

If x is a given state, regions of the next state are Jocally determined. Thus it
is important to describe suitable substructures of x on which operations can be
performed. Proper subtrees y of the e-tree for x are called parts for x, briefly
y <* x, if they are specified as follows:* y # x and y is a non-empty subset of

{v|3z)(v <*zAzEx)}U{r|r € x}

BTuring’s speculations are described most carefully and compared thoroughly with early work by
Newell and Simon in (Colvin 1997).

34(Wang 1974), p. 326. There one finds also this elaboration: “More generally, G5del believes that
mechanism in biology is a prejudice of our time which will be disproved. In this case, one disproval,
in Gddel’s opinion, will consist in' 2 mathematical theorem to the effect that the formation within
geolggical times of a human body by the laws of physics (and any other laws of a similar nature),
starfing from a random distribution of the elementary particles and the field, is about as unlikely as
the separation by chance of the atmosphere into its components.”

35For motivation of this particular condition see p. 154 of (Sieg & Byrnes 1999b).

371 am deviating quite consciously from Gandy’s terminology; my “part” (is more general than,
but) corresponds roughly to “located subassembly” in (Gandy 1980) and to “subassembly” in (Sieg
& Byrnes 1999b). The reader should also compare it to Gandy’s C*, p. 136. Gandy remarks: “If one
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If the non-empty subset in this e-recursive definition consists at each stage of
exactly one element, y is a path through x. Paths through x are of the form {r}",
for a natural number » and some atom r. A collection C of parts for x is a cover
Jor x just in case for every path y through x thereisa z € C, such that y is a path
through z.

The local operations are given by a structural operation Gy that works on
parts y for x. Each y lies in one of a finite number of isomorphism classes
(or stereotypes).” So let Ty be a fixed, finite class of stereotypes: a part for x
that is a member of a stereotype of T is called, naturally enough, a Ty -part
for x. A Ty -part y for x is a causal neighborhood for x given by Ty, briefly
y € Cny(x),3® if there is no Ty -part y* for x such that y is e-embeddable into
y*. Gy operates on such causal neighborhoods. The values of Gy, however,
are in general not exactly what is needed for the assembly of the next state.
For that purpose, we introduce defermined regions of a state z obtained from
causal neighborhoods for x : v € Dri(z, x) if and only if v <* z and there is
ay € Cni(x), such that Gy(y) =, v and sup(v) N sup(x) C sup(y). The last
condition for Dr; guarantees that new atoms in Gy(y) correspond to new atoms
in v, and that the new atoms in v are new for x. If one requires Gy to satisfy
similarly sup(Gi(y)) Nsup(x) C sup(y), then the condition “Gy(y) =, v” can
be strengthened to “Gy(y) =, v”. The new atoms are thus always taken from
U \ sup(x). Note that the number of new atoms introduced by Gy is bounded,
ie., |sup(G1(y)) \ sup(x)| < n for some natural number » (any x € S and any
causal neighborhood y for x). The determined regions have to be assembled into
the next state, and for that, a second structural operation G, and a second set
T, of stereotypes are needed. Finally, we have all the 1ngred1ents of a Gandy
Machine.

DerNITION. M = (S; Ty, Gy, T2, G) is a Gandy Machine on S, where S is a
structural class, T; a finite set of stereotypes, G; a structural operation on (the
elements of) T3, if and only if, for every x € S thereis a z € S, such that

(LC.1) (Vy € Cni(x))(Bw € Dri(z,x)) v =, Gi(y)

(LC.2) (Vy € Cny(x))(3v € Dry(z,x)) v =, Galy)

(GA.1) (VC)C C Dri(z,x) AN {sup(v)NA(z,x)jlv e C} # 0 —
(3w € Dry(z,x)) (Vv € C) v <* w];®

(GA.2) z =JDr(z,x).

considers y as a tree of its €-chains, then u C* y implies that u is a subtree with the same vertex as
».” The relation is defined by the condition (35 C Te(y))u =y T s.

3TThis operation is an operation on x and y, as it introduces, possibly, new atoms—new for x.
It has in this very weak sense a “global” aspect; however, as it is a structural operation, the precise
choice of the atoms does not matter at all.

3 Causal neighborhoods are of course implicitly dependent on the set Tj of stereotypes.

¥In Gandy’s set-up the finiteness of the C has to be forced axiomatically; here it is a trivial
consequence of the finiteness of Dr. Furthermore, principle (GA.1) forces a fixed upper bound on
the number of determined regions that have new atoms in common.
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LC stands for Local Causation, whereas GA abbreviates Global Assembly; A(z, x)
abbreviates sup(z) \ sup(x). By a slight abuse of language a z satisfying the
conditions is denoted by M (x). That is justified by the central fact established
by Gandy: Dr(z, x) and z are unique up to €-isomorphism over x.*° This is the
systematic background for the next definition.

DerniTioN. Let (D, F) be any discrete dynamical system; F is called com-
putable in parallel if and only if there is a Gandy machine M on Sp, such that for
eachx € D : F(x) =, M(x).

The second assembly condition implies that Dr;(z, x) is a cover for z. The cen-
tral fact for Gandy’s proof, establishing the Turing computability of the sequence
of states, is formulated now in my setting as follows:

TueoreM. Let M be (S; Ty, Gy, Tz, G2) as above and x € S; if there are z and
z’ in S satisfying prlnClples (LC.1)-(L.C.2), (GA.1), and such that Dr(z, x) and
Dry(z’, x) cover z and z’, then Dr (z, x) =, Dri(z’, x).

Now I formulate analogous conditions for Turing Computors.

DerNITION. M = (S; T, G) is a Turing Computor on S, where S is a structural
class, T a finite set of stereotypes, and G a structural operation on T, if and only
if, for every x € § thereisa z € S, such that

(LC.0) (3ly)y € Cn(x)
(LC.1) (3w <* 2) v =, Glen(x));
(GA1) z = (x \ en(x)) Udr(z, x).

en(x) and dr(z, x) denote the sole causal neighborhood of x, respectively the
determined region of z.
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