

CHURCH WITHOUT DOGMA:

Axioms for computability

Wilfried Sieg
Carnegie Mellon University
Pittsburgh

 2

Abstract: Church’s and Turing’s theses dogmatically assert that an informal notion of effective
calculability is adequately captured by a particular mathematical concept of computabilty. I
present an analysis of calculability that is embedded in a rich historical and philosophical
context, leads to precise concepts, but dispenses with theses.

To investigate effective calculability is to analyze symbolic processes that can in
principle be carried out by calculators. This is a philosophical lesson we owe to Turing. Drawing
on that lesson and recasting work of Gandy, I formulate boundedness and locality conditions for
two types of calculators, namely, human computing agents and mechanical computing devices
(discrete machines). The distinctive feature of the latter is that they can carry out parallel
computations.

The analysis leads to axioms for discrete dynamical systems (representing human and
machine computations) and allows the reduction of models of these axioms to Turing machines.
Cellular automata and a variety of artificial neural nets can be shown to satisfy the axioms for
machine computations.*

0. Background

The subtitle of this essay promises axioms for computability. Such axioms

emerge from a conceptual analysis that begins with a straightforward

observation: whatever we consider to be computable must be associated with

computations that are carried out by some device or other. Consequently, we

have to pay close attention to the nature of the device at hand, when thinking

through the characteristic features that determine (the extension of) its notion of

computability. My analysis builds on work by Turing and Gandy concerning

computations that are carried out by human calculators and discrete machines,

respectively.

I sharpen the informal concepts of computation for these two devices,

specify rigorously their characteristic features, and formulate a representation

theorem for the resulting systems of axioms. A broad methodological point can

be immediately inferred: theses in the standard Church-Turing form are not

needed to connect rigorously defined notions of computability with informally

grasped concepts. It is however crucial to gain a proper understanding of the

canonized connection between these notions, because the significance of logical

results like Gödel’s incompleteness theorems depends on it, as does the centrality

of related issues in the philosophy of mind.

Part 1 articulates three principal Church canons supporting the thesis. For

the canonical argument from confluence I distinguish between support that

 3

derives from examining the effective calculability of number theoretic functions

and support that is obtained through analyzing mechanical operations on

symbolic configurations. The analysis of such operations, when carried out by a

human computer, leads to Turing’s claims in 1936. The arguments for these

claims exploit boundedness and locality conditions that are presented in Part 2.

Against this background I introduce in Part 3 axioms for Turing computors and

Gandy machines, list models, and formulate a representation theorem. That

completes the conceptual analysis. I will conclude with remarks on Gödel,

Turing, and philosophical errors.

1. Church canons1

In a sense, we have to untangle the relation between the concept of

computability and the concept of computability, understanding the first concept

as informally grasped and the second as rigorously defined. If one takes Gödel’s

notion of general recursiveness as the rigorously defined concept and effective

calculability as the informally grasped one, then Church’s Thesis expresses the

relation between this and that concept of computability for number-theoretic

functions: they are co-extensional. To provide a proper perspective for the

broader investigation, I will examine the early history of computability hinted at

in these remarks.

1.1 The thesis. Gödel introduced general recursiveness for number theoretic

functions in his 1934 Princeton Lectures via his equational calculus; he viewed it

as a heuristic principle that the informal concept of finite computation can be

captured by suitably general recursions. Refining and generalizing a notion of

finitistically calculable functions due to Herbrand, Gödel defined a number

theoretic function to be general recursive just in case it satisfies certain recursion

equations and its values can be determined from the equations by simple steps,

namely, replacement of variables by numerals and substitution of complex

1According to the fifth edition of the Shorter OED, canon does not cover just ecclesiastical laws and decrees,
but has also the meaning of “a general law, rule, or edict; a fundamental principle” since the late middle
ages, and that of “a standard of judgement; a criterion” since the early 17th century.

 4

closed terms by their numerical values. When he gave this definition in 1934

Gödel was not convinced, however, that the underlying precise concept of

recursion was the most general one, and he expressed his doubts in conversation

with Church. Nevertheless, Church formulated the thesis a year later for the

first time in print. Here is the classical statement found in the abstract for

Church’s talk to the American Mathematical Society in December 1935:

… Gödel has proposed … a definition of the term recursive function, in a very general sense. In
this paper a definition of recursive function of positive integers which is essentially Gödel's is
adopted. And it is maintained that the notion of an effectively calculable function of positive
integers should be identified with that of a recursive function, since other plausible definitions
of effective calculability turn out to yield notions that are either equivalent to or weaker than
recursiveness.

Between Church’s conversations with Gödel in 1934 and the formulation

of the above abstract in 1935 some crucial developments had taken place in

Princeton. Kleene and Rosser had done significant quasi-empirical work,

convincing themselves and Church that all known effective procedures are λ-

definable. Kleene had discovered his normal-form theorem and established the

equivalence of Gödel’s general recursiveness with µ-recursiveness. Finally,

Church and Kleene had proved the equivalence of λ-definability and general

recursiveness. All these developments are alluded to in Church’s abstract, and

they are interpreted as supporting the thesis, which was then, and is still now,

principally defended on two grounds. First there is the quasi-empirical reason:

all known calculable functions are general recursive. This point, though

important, is clearly not decisive and will be taken up in the broader context of

section 2.3. Second, there is the argument from confluence: a variety of

mathematical computability notions all turn out to be equivalent. This second

important point is however only convincing, if the “confluent” notions are of a

quite different character and if there are independent reasons for believing that

they capture the informal concept. Both Church and Gödel tried to give such

independent reasons in 1936. Let me sketch their considerations.

1.2 Semi-circles. Church and Gödel took the evaluation of a function in some form

of the equational calculus as the starting point for explicating the effective

calculability of number theoretic functions. Church generalized broadly: an

 5

evaluation is done in a logical calculus through a step-by-step process, and the

steps must be elementary. Functions whose values can be computed in this way

are, Church argued, general recursive. Gödel made a penetrating observation

without giving an argument: the rules of the equational calculus are part of any

adequate formal system of arithmetic, and the class of calculable functions is not

enlarged beyond the general recursive ones, if the formal system is

strengthened. This absoluteness of the notion was pointed out in a Postscriptum

to 1936 for transfinite extensions of type theory and in the Princeton Bicentennial

lecture ten years later for extensions of formal set theory. Gödel formulated the

significance of his observation in the lecture as follows:

 Tarski has stressed … the great importance of the concept of general recursiveness (or Turing
computability). It seems to me that this importance is largely due to the fact that with this
concept one has for the first time succeeded in giving an absolute definition of an interesting
epistemological notion, i.e., one not depending on the formalism chosen. (Gödel 1946, p. 150)

But what is the argument for Church’s claim, and what could it be for Gödel’s? If

one uses the strategic considerations underlying the proof of Kleene’s normal-

form theorem, it is in both cases easily established that the functions calculable in

the broader frameworks are general recursive, as long as the steps in the logical

systems are elementary, formal, … well, general recursive. Church turned the

elementary steps explicitly into general recursive ones, whereas Gödel could not

but exploit the formal character of the theories at hand through their recursive

presentation.

Taken as principled arguments for the thesis, Gödel’s and Church’s

considerations rely on a hidden and semi-circular condition for steps. Hilbert and

Bernays moved this step-condition into the foreground when investigating

calculations in deductive formalisms and reckonable functions (regelrecht

auswertbare Funktionen). They imposed explicitly recursiveness conditions on

deductive formalisms and showed that formalisms satisfying these conditions

have as their calculable functions exactly the general recursive ones. In this way

they provided mathematical underpinnings for Gödel’s absoluteness claim and

for Church’s argument, but only relative to the recursiveness conditions: the

 6

crucial one requires the proof predicate of deductive formalisms, and thus the

steps in formal calculations, to be primitive recursive!2

The work of Gödel, Church, Kleene and Hilbert & Bernays had intimate

historical connections and is still of deep interest. It explicated calculability of

functions by exactly one core notion, namely, calculability of their values in logical

calculi via (a finite number of) elementary steps. But no one gave convincing and

non-circular reasons for the proposed rigorous restrictions on the steps that are

permitted in calculations. The question is, whether this stumbling block for a

deeper analysis can be overcome. The answer lies in a motivated, general

formulation of constraints on steps.

1.3 Symbolic processes. Church reviewed in 1937 the two classical papers by

Turing and Post, which had been published in 1936. When comparing Turing

computability, general recursiveness, and λ-definability he claimed “the first [of

these notions] has the advantage of making the identification with effectiveness

in the ordinary (not explicitly defined) sense evident immediately…” After all,

Church reasoned, “To define effectiveness as computability by an arbitrary

machine, subject to restrictions of finiteness, would seem to be an adequate

representation of the ordinary notion, …” The finiteness restrictions require that

machines occupy only a finite space and that their working parts have finite size.

Turing machines are obtained from such finite machines by further “convenient

restrictions,” but “these are of such a nature as obviously to cause no loss of

generality”. Church then observed, completely reversing Turing’s sequence of

analytic steps, “a human calculator, provided with pencil and paper and explicit

instructions, can be regarded as a kind of Turing machine”. He was obviously

captured by the machine image and saw in it the reason for the deep interest of

Turing’s computability notion. In sum, we have arrived at three Church canons in

support of the thesis, namely, (i) the confluence of notions, (ii) the step-by-

recursive-step argument, and (iii) the immediate evidence of the adequacy of

Turing’s notion.

2 These investigations are carried out in the second supplement of their Grundlagen der Mathematik, volume
II.

 7

In his reviews Church failed to recognize two crucial aspects of a dramatic

shift in perspective. One aspect underlies the work of both Turing and Post,

whereas the other is distinctively Turing’s. The first aspect becomes visible when

Turing and Post, instead of considering schemes for computing the values of

number theoretic functions, look at identical symbolic processes that serve as

building blocks for calculations. In order to specify such processes Post uses a

human worker who operates in a symbol space and carries out, over a two-letter

alphabet, exactly the kind of operations a Turing machine can perform. Post

expects that his formulation will turn out to be equivalent to the Gödel-Church

development. Given Turing’s proof of the equivalence of his computability

notion with λ-definability, Post’s formulation is indeed equivalent.

Post asserts that “Church’s identification of effective calculability with

recursiveness” should be viewed as a “working hypothesis” in need of

“continual verification”. In sharp contrast, Turing attempts to give an analytic

argument for the claim that these simple processes are sufficient to capture all

human mechanical calculations. Turing exploits for his reductive argument broad

constraints that are grounded in limitations of relevant capacities of the human

computing agent. This is the second aspect of the novel perspective that made for

genuine progress, and it is unique to Turing’s work.

2. Computors

It is ironic that Post when proposing his worker model at no place used the fact

that a human worker does the computing, whereas Turing who seems to

emphasize machine computations examined explicitly human computations. Call

a human computing agent who proceeds mechanically a computor; such a

computor operates on finite configurations of symbols and, for Turing,

deterministically so. The computer hovering about in Turing’s paper is such a

computor; computers in our contemporary sense are always called machines.

Wittgenstein appropriately observed about Turing’s machines that these machines

 8

are humans who calculate.3 But how do we step from the calculations of

computors to Turing machine computations?

2.1 Preliminary step. When Turing explores the extent of the computable

numbers (or, equivalently, of the effectively calculable functions), he starts out

by considering two-dimensional calculations “in a child’s arithmetic book”. Such

calculations are first reduced to computations of string machines, and the latter

are then shown to be equivalent to computations of a letter machine. Letter

machines are ordinary Turing machines operating on one letter at a time,

whereas string machines operate on finite sequences of letters. In the course of

his reductive argument Turing formulates and uses broadly motivated

constraints. The argument concludes as follows: “We may now construct a

machine to do the work of the computer [computor in our terminology]. … The

machines just described [string machines] do not differ very essentially from

computing machines as defined in § 2 [letter machines], and corresponding to

any machine of this type a computing machine can be constructed to compute

the same sequence, that is to say the sequence computed by the computer.”

(Turing 1936, pp. 137-8)

For the presentation of Turing’s argument it is best to consider the

description of Turing machines as Post production systems. This is most

appropriate for a number of reasons. Post introduced this description in 1947 to

establish that the word-problem of certain Thue-systems is unsolvable. Turing

adopted it in 1950 when extending Post’s results, but also in 1954 when writing a

wonderfully informative and informal essay on solvable and unsolvable

problems. In addition, this description reflects directly the move in Turing’s 1936

to eliminate states of mind for computors4 in favor of “more physical

counterparts”. Finally and most importantly, it makes perfectly clear that Turing

3 It is exactly right for Turing to look at human computations given the intellectual context that reaches back
to at least Leibniz: the Entscheidungsproblem in the title of his 1936 paper asked for a procedure that can be
carried out by humans; the restrictive formal conditions on axiomatic theories were imposed in
mathematical logic to ensure intersubjectivity for humans, on a minimal cognitive basis.
4 Turing attributes states of mind only to human computers; machines have corresponding “m-
configurations”.

 9

is dealing with general symbolic processes, whereas the restricted machine

model that results from his analysis almost obscures that fact.

2.2 Boundedness and locality. The constraints Turing imposes on symbolic

processes derive from his central goal of isolating the most basic steps of

computations, that is, steps that need not be further subdivided. This objective

leads to the normative demand that the configurations, which are directly

operated on, must be immediately recognizable by the computor. This demand and

the evident limitation of the computor’s sensory apparatus motivate most

convincingly two central restrictive conditions:

(B) (Boundedness) A computor can immediately recognize only a bounded

number of configurations.

(L) (Locality) A computor can change only immediately recognizable

configurations.5

 Calculability of
number-theoretic

functions

Calculability by
computor satisfy-
ing boundedness
and locality

conditions

 Computability by

string machine

Computability by
letter machine

 Turing’s Thesis Equivalence proof

1 2

Diagram 1

5 The boundedness and locality conditions are violated in Gödel’s equational calculus: the replacement
operations naturally involve terms of arbitrary complexity. I.e., the shift from arithmetic calculations to
symbolic processes is absolutely crucial.

 10

Turing’s considerations leading from operations of a computor on a two-

dimensional piece of paper to operations of a letter machine on a linear tape are

represented schematically in diagram 1: Step 1 indicates Turing’s analysis,

whereas 2 refers to Turing’s central thesis asserting that the calculations of a

computor can be carried out by a string machine.

This remarkable progress has been achieved by bringing in, crucially and

correctly, the computing agent who carries out the mechanical processes. Yet

Turing finds the argument mathematically unsatisfactory as it involves an appeal

to intuition in support of the central thesis, i.e., the ability of “making

spontaneous judgments, which are not the result of conscious trains of

reasoning”. (Turing 1939, pp. 208-9) What more can be done?

2.3 Generalizations. At least two kinds of inductive support can be given for the

quasi-empirical claim that all known effective procedures are general recursive

or Turing computable. Turing provided in his paper one kind, by showing that

large classes of numbers are indeed machine computable; Post suggested

providing in his 1936 a second kind, by reducing ever-wider formulations of

combinatory processes (as production systems) to his worker model.6 This

inductive support can be strengthened further through considering more

general symbolic configurations with associated complex substitution

operations.7 In the spirit of this approach we can ask with Post, when have we

gathered sufficient support to view the thesis as a natural law?

Gödel and Church faced in their analysis of effective calculability the

stumbling block of having to define the elementary character of steps, rigorously

and without semi-circles. Turing and Post faced at this point, it seems, a problem

akin to that of induction. However, their fundamental difficulties are really the

same and can be pinpointed more relevantly and quite clearly, as they are

related to the looseness of the above restrictive conditions and the

corresponding vagueness of the central thesis. These difficulties would be

6 Post of course did provide such reductions in his 1943 whose origins go back to investigations in the very
early 1920s; see note 18 of Post’s paper.
7 In Sieg and Byrnes 1996 that is done for K-graphs and K-graph machines; this is a generalization of the
work on algorithms by Kolmogorov and Uspensky.

 11

addressed by answering the questions, What are symbolic configurations? What

changes can mechanical operations effect? – Even without giving rigorous

answers, some well-motivated ideas can be formulated for computors: (i) they

operate deterministically on finite configurations; (ii) they recognize only a

bounded number of different kinds of patterns (in these configurations); (iii) they

operate locally on exactly one of the patterns8; (iv) they assemble the next

configuration from the original one and the result of the local operation.

Exploiting these ideas I will attack the problem with a familiar tool, the axiomatic

method.

However, before formulating the axioms for Turing computors, I discuss

yet another sense of “generalization” that is relevant here. Gandy proposed in

his 1980 a characterization of machines or, more precisely, discrete mechanical

devices. The latter clause was to exclude analogue machines from consideration.

The novel aspect of Gandy’s proposal was the fact that it incorporated

parallelism in perfect generality. Gandy used, as Turing did, a central thesis: any

discrete mechanical device satisfying some informal restrictive conditions can be

represented as a particular kind of dynamical system. Instead, I characterize a

Gandy machine axiomatically based on the following idea: the machine has to

recognize all the patterns (from a bounded set) in a given finite configuration, act

on them locally in parallel, and assemble the results of these local computations

into the next configuration. As in the case of Turing computers, the

configurations are finite, but unbounded; the generalization is simply this: there

is no fixed bound on the number of patterns that such configurations may

contain. To help the imagination a bit, the reader should think of the Post-

presentation of a Turing machine and the Game of Life as typical examples of a

Turing computor and Gandy machine, respectively.

8 Every finite configuration contains exactly one of the patterns.

 12

3. Axiomatics9

The axioms are formulated for discrete dynamical systems and capture the

above general ideas precisely; they should be viewed as determining classes of

“algebraic structures” of which particular models of computation are

instantiations. In the first subsection the general mathematical set-up for the

axioms is discussed, whereas the specific principles for Turing computors and

Gandy machines are formulated in the second subsection. The axioms for Turing

computors are motivated by the restrictive conditions for human computing.

The axioms for Gandy machines are to capture the characteristic features of finite

machines (performing parallel computations). The restrictive conditions are

motivated by purely physical considerations: the uncertainty principle of

quantum mechanics justifies a lower bound on the size of distinguishable

“atomic” components, and the theory of special relativity yields an upper bound

on signal propagation. Together, these conditions justify boundedness and

locality conditions for machines in the very way sensory limitations do for

computors.

3.1 Patterns & local operations. We consider pairs <D,F> where D is a class of

states and F an operation from D to D transforming a given state into the next

one. States are finite objects and are represented by non-empty hereditarily

finite sets over an infinite set of atoms. Such sets reflect states of computing

devices just as other mathematical structures represent states of nature.

Obviously, any ∈-isomorphic set can replace a given one in this reflective role,

and so we consider structural classes D, i.e., classes of states that are closed under

∈-isomorphisms. What invariance properties should the state transforming

operations F have, i.e., how should the F-images of ∈-isomorphic states be

related? These and other structural issues will be addressed now.

For the general set-up we notice that any ∈–isomorphism between states

is an extension of some permutation π on atoms. Letting π(x) stand for the result

9 I hope the overall structure of the considerations will be clear from this informal presentation; for
mathematical details Gandy 1980 and Sieg 2002B should be consulted.

 13

of applying the ∈-isomorphism determined by a permutation π to the state x,

the requirement on F fixes the dependence of values on just structural features of

a set, not the nature of its atoms: F(π(x)) is ∈-isomorphic to π(F(x)), and this

isomorphism must be the identity on the atoms occurring in π(x); we say that

F(π(x)) and π(F(x)) are ∈-isomorphic over π(x) and write F(π(x)) ≅π(x) π(F(x)). Note

that we do not require F(π(x)) = π(F(x)); that would be far too restrictive as new

atoms may expand the state x, and it should not matter which new atoms are

chosen. The requirement F(π(x)) ≅ π(F(x)), on the other hand, would be too

loose, as we want to guarantee the physical persistence of atomic components.

Now we turn to patterns and local operations. If x is a given state, regions

of the next state are determined locally from particular parts for x on which the

computor can operate.10 Boundedness requires that there are only finitely many

different kinds of such parts, i.e., each part lies in one of a finite number of

isomorphism types that are also called stereotypes. A maximal part y for x of a

certain stereotype is a causal neighborhood for x, briefly y∈Cn(x); we call the

elements of Cn(x) also patterns. Finally, the local change is effected by a

structural operation G that works on unique causal neighborhoods. The values

of G are in general not exactly what we need in order to assemble the next state,

because the configurations may have to be expanded and that expansion

involves the addition and coordination of new atoms. To address that issue we

introduce determined regions Dr(z,x) of a state z; they are ∈-isomorphic to G(y)

for some causal neighborhood y for x (and must satisfy a technical condition on

the “newness” of atoms).

3.2 Axioms & a theorem. Recalling the boundedness and locality conditions for

computors, we define M = <S; T, G> to be a Turing Computor on S, where S is a

structural class, T a finite set of stereotypes, and G a structural operation on ∪T,

if and only if, for every x∈S there is a z∈S, such that

10 A connected subtree y of the ∈-tree for x is called part for x, briefly y<*x, if y≠x and y has the same root as
x and its leaves are also leaves of x.

 14

(LC.0) (∃!y) y∈Cn(x),

(LC.1) (∃!v ∈ Dr(z,x)) v≅xG(cn(x)),

(GA.1) z = (x\Cn(x)) ∪ Dr(z,x).

 (∃!y) is the existential quantifier expressing uniqueness; in (LC.1), cn(x) denotes

the unique causal neighborhood guaranteed by (LC.0). (As in the case of Gandy

Machines below, LC abbreviates local causation, whereas GA stands for global

assembly.) – The state z is determined uniquely up to ∈–isomorphism over x. A

computation by M is a finite sequence of transition steps involving G that is

halted when the operation on state z yields z as the next state. A function F is

(Turing) computable if and only if there is a Turing computor M from whose

computation results one can determine – under a suitable encoding and decoding

– the values of F for any of its arguments. A Turing machine is easily seen to be

a Turing computor.

Generalizing these considerations to graph machines, for example, one

notices quickly complications. When several new atoms are being introduced in

the image of some causal neighborhood as well as in the next state, the new

atoms have to be structurally coordinated. That can be achieved by a second

local operation and a second set of stereotypes. Causal neighborhoods of type 1

are parts of larger neighborhoods of type 2 and the overlapping determined

regions of type 1 must be parts of determined regions of type 2, so that they fit

together appropriately. (Determined regions “overlap”, if the intersection of

their sets of new atoms is non-empty.)

For machines that carry out parallel computations, we thus need in

addition to the finitely many stereotypes and the structural operation working

on them a second set of stereotypes together with a second structural operation,

which allow the machine to assemble the determined regions. This is reflected

by separating the principles for Gandy machines into two kinds (as we did for

Turing computors), those of Local Causation (LC) and those of Global Assembly

(GA): M = <S; T1, G1, T2, G2> is a Gandy machine on S, where S is a structural

 15

class, Ti a finite set of stereotypes, Gi a structural operation on ∪Ti, if and only if,

for every x∈S there is a z∈S, such that

(LC.1):(∀y∈Cn1(x)) (∃!v∈Dr1(z,x)) v≅xG1(y);

(LC.2):(∀y∈Cn2(x)) (∃v∈Dr2(z,x)) v≅xG2(y);

(GA.1): (∀C) [C ⊆ Dr1(z,x)) & ∩{Sup(v)∩A(z,x)| v∈C} ≠ ∅ →

(∃w∈Dr2(z,x)) (∀v∈C) v<*w];

(GA.2): z = ∪Dr1(z,x).

A(z,x) consists of the new atoms that have been introduced into z, i.e., A(z,x) =

Sup(z)\Sup(x). Thus, the condition ∩{Sup(v)∩A(z,x)| v∈C} ≠ ∅ in (GA.1)

expresses that the determined regions v in C have common new atoms, i.e., they

overlap. The restrictions for Gandy machines, as those for Turing computors,

amount to boundedness and locality conditions. They are justified directly by

two physical limitations, namely, a lower bound on the size of atoms and an

upper bound on the speed of signal propagation. With these remarks I actually

completed the foundational work and can describe now some important

mathematical facts for Gandy machines.

The central facts are these: (i) the state z following x is determined

uniquely up to ∈–isomorphism over x, and (ii) Turing machines can effect such

transitions. The proof of the first fact contains the combinatorial heart of matters

and uses crucially the first global assembly condition. The proof of the second

fact is rather direct. Only finitely many finite objects are involved in the

transition, and all the axiomatic conditions are decidable. Thus, a search will

allow us to find z. This can be understood as a Representation Theorem: any

particular Gandy machine is computationally equivalent to a two-letter Turing

machine, as Turing machines are also Gandy machines. Indeed, there is a rich

variety of additional models, as the game of life, other cellular automata, and

many artificial neural nets are Gandy machines. (Cf. DiPisapia 2000.)

4. Adequacy & philosophical errors

 16

So what? What have we gained? In very broad terms, taken from Hilbert, we

have gained eine Tieferlegung der Fundamente (a deepening of the foundations)

via the axiomatic method. In a conversation with Church in early 1934, Gödel

found Church’s proposal to identify effective calculability with λ-definability

“thoroughly unsatisfactory”. As a counter-proposal he suggested “to state a set

of axioms which would embody the generally accepted properties of this notion

[i.e., effective calculability], and to do something on that basis”. Perhaps, the

remarks in the 1964 Postscriptum to the Princeton Lectures of 1934 echo those

earlier considerations. “Turing’s work gives,” according to Gödel, “an analysis of

the concept of ‘mechanical procedure’ … . This concept is shown to be equivalent

with that of a ‘Turing machine’.” Gödel did neither elucidate these remarks, nor

did he articulate, what the generally accepted properties of effective calculability

might be or what might be done on the basis of an appropriate set of axioms.

The work on which I reported substantiates Gödel’s remarks in the

following sense: it formulates axioms for the concept “mechanical procedure”

and it shows that this axiomatically characterized concept is computationally

equivalent to that of a Turing machine. Indeed, it does so for two such concepts,

namely when the computing agents are computors, respectively discrete

machines. These considerations use only “generally accepted properties” of the

informal concepts and avoid any appeal to theses, whether central or not. As to

the correctness of the underlying analyses, an appeal to some understanding can

no more be avoided in this case than in any other case of an axiomatically

characterized (class of) mathematical structure(s) intended to mirror broad

aspects of physical or intellectual reality. The general point is this: we don’t have

to face anything mysterious surrounding the concept of calculability; rather, we

have to face the ordinary issues for the adequacy of mathematical concepts, and

these are of course non-trivial!11 From a slightly different and complementary

perspective, the function of the axiom systems for computing devices can be

seen as being similar to that of the axiom systems for the classical algebraic

11 Other examples of such analyses are provided by Dedekind’s work on continuous domains (the reals)
and simply infinite systems (natural numbers).

 17

structures like groups, rings or fields, namely, to abstract the essential aspects

from a wide variety of instances and point to deep structural analogies; they

explain here, by way of the representation theorem, the computational

equivalence of their models.

In the central case under discussion, Turing computability, its adequacy is

still fraught with controversy and often misunderstanding. The controversy

begins with the very question, what the intended informal concept is. For

example, Gödel spotted in 1972 a “philosophical error” in Turing's work,

assuming that Turing’s argument in the 1936 paper was to show that “mental

procedures cannot go beyond mechanical procedures”. He considered the

argument as inconclusive. Indeed, Turing does not give a conclusive argument

for Gödel’s claim, but it has to be added that he did not intend to argue for it.

Even in his work of the late 1940’s and early 1950’s that deals explicitly with

mental processes, Turing does not argue, “mental procedures cannot go beyond

mechanical procedures”.

Mechanical processes are, in this later work, still made precise as Turing

machine computations; machines that might exhibit intelligence have in contrast

a more complex structure than Turing machines. Conceptual idealization and

empirical adequacy are being sought for quite different purposes, and Turing is

trying to capture clearly what Gödel found missing in the would-be analysis of a

broad concept of humanly effective calculability, namely, “… that mind, in its

use, is not static, but constantly developing”. The real difference between

Turing’s and Gödel’s views, it seems, is Gödel’s belief that it is “a prejudice of our

time” that “[t]here is no mind separate from matter”. This is reported by Wang.

Gödel expected, also according to Wang, that this prejudice “will be disproved

scientifically (perhaps by the fact that there aren’t enough nerve cells to perform

the observable operations of the mind)”. Clearly, Turing did not share these

expectations.

There are many fascinating issues concerning physical and mental

processes that may or may not have adequate computational models. They are

empirical, conceptual, mathematical … well, indeed, richly interdisciplinary.

 18

Steps towards their clarification or resolution will be most illuminating. Why, let

me ask, are we interested so deeply in computations? – One answer might be,

we want to determine states from other states, be they mathematical, physical or

mental; and we want to do that effectively and in a sharply intersubjective way

that makes use of adequate symbolic representations.

References

Church, A.
1936 An unsolvable problem of elementary number theory; American Journal of

Mathematics 58, 345-363; reprinted in Davis 1965.
1937 Review of (Turing 1936); Journal of Symbolic Logic 2, 40-41.

Davis, M.
1965 (ed.), The Undecidable, Basic papers on undecidable propositions, unsolvable problems

and computable functions; Raven Press, Hewlett, New York.

De Pisapia, N.
2000 Gandy Machines: an abstract model of parallel computation for Turing Machines, the Game of

Life, and Artificial Neural Networks; M.S. Thesis, Carnegie Mellon University, Pittsburgh.

Gandy, R.
1980 Church’s Thesis and principles for mechanisms; in: The Kleene Symposium (edited by J.

Barwise, H.J. Keisler and K. Kunen, North-Holland, 123-148.

Gödel, K.
1934 On undecidable propositions of formal mathematical systems; in: Collected Works I, 346-

371.
1936 Über die Länge von Beweisen; in: Collected Works I, 396-399.
1946 Remarks before the Princeton bicentennial conference on problems in mathematics; in:

Collected Works II, 150-153.
1986-
2003 Collected Works, volumes I – V; Oxford University Press.

Hilbert, D. and P. Bernays
1939 Die Grundlagen der Mathematik II; Springer Verlag, Berlin.

Kolmogorov, A.N. and V.A. Uspensky
1958 On the definition of an algorithm; Uspekhi Mat. Nauk 13 (Russian), 1958; English

translation in: AMS Translations, 2, 21 (1963), 217-245.

Post, E.
1936 Finite combinatory processes. Formulation I. Journal of Symbolic Logic 1, 103-5.
1943 Formal reductions of the general combinatorial decision problem; American Journal of

Mathematics, 65 (2), 197-215.
1947 Recursive unsolvability of a problem of Thue; Journal of Symbolic Logic 12, 1-11.

 19

Sieg, W.
1994 Mechanical procedures and mathematical experience, in: Mathematics and Mind (A.

George, ed.), Oxford University Press, 71-117.
1997 Step by recursive step: Church’s analysis of effective calculability, Bulletin of Symbolic

Logic 3, 154-80.
2002A Calculations by man and machine: conceptual analysis; Lecture Notes in Logic 15, 390-

409.
2002B Calculations by man and machine: mathematical presentation; in: In the Scope of Logic,

Methodology and Philosophy of Science, volume one of the 11th International Congress of
Logic, Methodology and Philosophy of Science, Cracow, August 1999 (P. Gärdenfors, J.
Wolenski and K. Kijania-Placek, eds.), Synthese Library volume 315, Kluwer, 247-262.

Sieg, W. and J. Byrnes
1996 K-Graph machines: generalizing Turing’s machines and arguments; in: Gödel ’96 (P.

Hajek, ed.), Lecture Notes in Logic 6, Springer Verlag, 98-119.

Turing, A.
1936 On computable numbers, with an application to the Entscheidungsproblem; Proc.

London Math. Soc., series 2, 42, 230-265; reprinted in Davis 1965.
1939 Systems of logic based on ordinals; Proc. London Math. Soc., series 2, 45, 161-228;

reprinted in Davis 1965.
1950 The word problem in semi-groups with cancellation; Ann. of Math. 52, 491-505.
1954 Solvable and unsolvable problems; Science News 31, 7-23; reprinted in Collected Works of

A.M. Turing: Mechanical intelligence, (D.C. Ince, ed.), North-Holland, 1992.

* This essay is based on two papers published in 2002, but whose methodological considerations I would
like to bring out more distinctly. I presented versions of this essay under the title Beyond Church Canons in
the Distinguished Lecture Series (Haverford College, October 2002), in the Annual Lecture Series at the
Center for Philosophy of Science (University of Pittsburgh, January 2004), at the Colloquium of the IHPST
(Sorbonne, May 2004), as well as at the Colloquium of the Department of Philosophy (University of
Florence, November 2004). For detailed discussions of the origins and developments of computability, see
also Sieg 1994, 1997 and the rich literature that is referred to.

