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1. Introduction. 

There are varieties of explanatory forms in the sciences. Two forms that are commonly examined 

are deductive and probabilistic explanations.  (Two classic 20th century treatises on the philosophy 

of scientific explanation are R.B.Braithewaite’s [1953] and E.Nagel’s [1961]. Also, see A.Koslow’s 

[2019, chapter 8].)  In sections 2 and 3 we examine, respectively, how a deductive or a probabilistic 

explanation adds value to the theory providing the explanation. And we examine how an explanation 

differs from a mere prediction in this regard.  In section 4 we apply this analysis to respond to a 

challenge posed by Glymour [1970] regarding Bayesian confirmation of new theories using old data.  

In section 5 we consider additional criteria for distinguishing explanations from mere predictions, 

which addresses why an explanation carries different cognitive value than does a mere prediction. 

 

2.  Deductive-Nomological1 [D-N] explanations.   

2.1 Three kinds of D-N explanations.   

Nagel’s first illustration of the deductive model of explanation is a derivation of an elementary 

arithmetic generality: A derivation of the generality that the sum of the first k odd integers is the 

perfect square k2. What is being explained here, the explanandum, is a specific arithmetic law that 

applies to each of infinitely many cases.  The explanation is a deduction of that law from a set of 

more general mathematical laws that serve as the premises of a logical argument.2 

 

A more ambitious version of this kind of explanation is found in §9 of David Hilbert’s [1971] 

familiar model of Euclidean plane geometry E using a field of algebraic numbers A: the countable 

set of numbers arising from finitely many applications of addition, subtraction, multiplication, and 

division, along with recursion over |Ö(1+w)2|, starting with the integer w = 1.  In Hilbert’s model, all 

of traditional Euclidean plane geometry E is explained (i.e., derived) with this approach, including 

                                                        
1 We follow common usage that scientific laws are more than mere “accidental” generalizations, and the phrase 

‘nomological universals’ designates the added status. See, e.g., Nagel [1961] Section 4.1. 
2 We imagine that explanation might run as follows.  Use the more general arithmetic law that the sum of the 

first k positive integers, 1 + 2 + … + k, equals k(k+1)/2 to show that the sum of the first k positive odd integers, 

∑ (2𝑛 + 1),)*+
,-.  equals 2[∑ 𝑛)*+

,-+ ] + k  =  2[(k-1)k/2] + k  =  k2. 
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the parallel postulate.  In this model, Euclidean points A, B, …, are identified with ordered pairs of 

algebraic numbers (x, y).  Lines a, b, … are identified with ratios of triples of algebraic numbers (u : 

v : w), where not both u = 0 = v.  To say that the point (x, y) lies on the line (u : v : w) means that ux 

+ vy + w = 0, etc.  Then Euclidean plane geometry E, the explanandum, is shown to be relatively 

consistent with a countable model of algebraic numbers A, which entails E under the translation 

scheme noted above.  

 

A third kind of deductive explanation is illustrated by a species of what Peirce ([1901] – chapter 11 

in the collection [1955]) calls abduction.  Here is the deductive form of abduction: A surprising fact 

F is noted.  F cannot be explained based on settled background assumptions, which contributes to 

F’s status as a surprise.   Hypothesis H is proposed to explain F, where H is comprised of lawlike 

generalities that, together with settled background assumptions provide a deductive explanation of 

F.  Then H is made worthy of further assessment, e.g. H is now worthy of testing with new, 

experimental data, because of its value as a potential explanation of F.  

 

What is gained by such deductive explanations?  The answer depends upon which question is asked.  

If the underlying question is, e.g., how to determine the sum of the first k odd integers, the deductive 

explanation may include a schema for computation.  If the underlying question is about consistency 

of, e.g., Euclidean plane geometry, the deductive explanation may show relative consistency, just as 

Hilbert showed using a reduction of Euclidean geometry to another mathematical theory whose 

primitives, algebraic numbers, do not include geometric concepts. And as a bonus, computational 

methods in the reducing theory, e.g., the determinant of n linear equations in n variables, can be used 

in higher dimensional geometry to identify the dimension and the volume of the parallelotope 

determined by those n-linear equations: where the parallelotope is the induced mapping of the n-

dimensional unit square.  And the same deductive explanation can provide the answer to more than 

one of these questions.   

 

If the question is in the form “Why the surprising fact F?” then H is a candidate for a deductive 

explanation and, so, H rises to the status of being a test-worthy hypothesis.  H might also allow 

prediction of a future F-episode, which provides one schema for testing H.  It is our purpose in this 

paper to understand the value of such deductive explanations noting that, in each of these three 

cases, the value provided by a deductive explanation does not require uncertainty about the 

explanandum.  
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2.2  Explanation and prediction: a necessary condition for an explanation.  

Important for our purposes, however, is to distinguish an explanation from a mere prediction (or 

post-diction).  In the case of an explanation, at least one of the premises essential to the derivation of 

the explanandum is lawlike or nomic. The contrast is between a generalization, e.g.,  G: All A’s are 

B’s, and the enhanced claim that G also is lawlike.   

 

We follow Braithewaite’s and Nagel’s proposals for distinguishing these as follows.  A necessary 

condition N for a generalization G to rise to the status of a lawlike assertion is that  

[N] Either G is a postulate of a theory T or is explained within that theory.   

That is, as a necessary condition for G to serve as a law in an explanation that, e.g., a specific A is a 

B, is the requirement, N that G is a consequence within T of some higher level lawlike 

generalizations, or is fundamental to T.  (The postulates of T are assumed lawlike.)  Otherwise, if G 

fails this condition, it provides merely for a prediction that a particular A also is a B.  But then G 

does not explain the A-B pattern.  Then it merely provides reason to predict that an A is a B. 

 

When considering empirical theories, N is not a sufficient condition for lawlikeness, as is illustrated 

using an example voiced by Russell ([1921], Lecture 5) in connection with his concerns about non-

uniqueness of causes.  (See, also Braithwaite’s [1953], pp. 306-8, discussion of this example.).  Here 

is Russell’s example , adapted to our purposes.   

 

We seek an explanation for why the workers at a late 19th Century Factory #1 go to lunch at 

approximately noon on workdays.  The intended explanation is a derivation of this pattern of 

behavior from two lawlike generalizations, H and P: 

 H: Factory #1’s horn sounds at about noon on workdays.  

and  P: Workers at Factory #1 know it is lunchtime when they hear the factory horn.   

 

Russell’s example presumes a commonsense background theory T1 of Industrial Organization that 

includes these two generalizations, H and P, as lower level generalizations about Factory #1.  

(Hence, each of H and P satisfies condition N.)  Theory T1 quantifies over various classes of 

factories, their methods of communicating, and workers.  By design, the factories in a class have a 

similar organization.   

 

Suppose that this “Russellian” background theory T1 includes the assumption that Factory #2 is 

organized for communicating lunch times to its workers just as is Factory #1. The two factories 

belong to the same class.  Their clocks and horns are locally powered and independently coordinated 
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with a common local time.  Assume, further, that the background assumptions for the example 

include the commonplace fact of where the factories are located, and that Factory #2 is located 50 

miles to the north of Factory #1.  The two factories are located well out of the range of the other’s 

horns.  But then, as Russell noted, T1 also entails the following generalization H’. 

H’  On workdays, the workers at Factory #1 go to lunch when the horn sounds at Factory #2. 

 

Modified slightly from Russell’s original point, the generalization H’ also satisfies the condition N 

for lawlikeness, as it too is a deductive consequence of theory T1.  But unlike the lawlike 

generalizations H and P, intuitively, H’ is not lawlike.  Though H’ is adequate for predicting when 

workers at Factory #1 go to lunch on a typical workday, it fails to satisfy relevant subjunctive 

conditionals that also are required, we believe, if a generalization is to serve as an explanation.  We 

formulate one such subjunctive conditional as follows: 

S.  If the horn at Factory #2 were to sound at time t within the ½ hour interval     

     11:45 AM to 12:15 PM, then the workers at Factory #1 would go to lunch at time t.   

 

There are at least two relevant ways we understand that background theory T1 defeats the 

subjunctive conditional, S.  Based on T1, we expect that each of the following obtains: 

First, if on a workday, by an intervention, the horn at Factory #2 is made to sound at 11:45 

AM, then the workers at Factory #1 do not go to lunch at about 11:45, though they may still 

go to lunch at about noon that day.   

Second if, on a workday, unknown to the workers at Factory #1 their horn is deactivated, 

but the horn at Factory #2 sounds at noon, as usual, then the workers at Factory #1 do not go 

to lunch at about noon that day.  In those circumstances, we expect that workers at Factory 

#1 experience a delay in going to lunch.  

 

Note how these two cases differ.  The first intervention involves directly modifying the event that is 

a premise of H’ (namely, that the horn sounds at Factory #2 at time t) without modifying the event to 

be explained.  Background theory T1 entails that the conclusion to the generalization H’ fails.  The 

second case is to intervene by modifying an event that we believe correctly explains why the 

workers at Factory #1 go to lunch at about noon (namely, that the horn sounds at Factory #1 at about 

noon), without modifying the event that serves as the purported explanation in the dubious account 

H’.  That is, in the second case, without intervening on the operations of the horn sounding at 

Factory #2 at about noon, but by intervening to prevent the horn at Factory #1 from sounding at 

about noon, we alter the normal lunchtime behavior of the workers at Factory #1.   
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Of course, these evaluations of what would be the consequences of the imagined interventions 

depend upon the particulars of the background theory T1.  For instance, if instead the background 

theory T2 includes an assumption that each intervention that makes the horn at one factory sound at a 

time t also makes the horn at the other factory sound at the same time t, then H’ would satisfy the 

requisite subjunctive conditionals.  In that case, we do not see an objection to the assessment that H’ 

provides an explanation, not merely a prediction.  We return to these themes in Section 5.   

 

3. Probabilistic Explanations. 

Next, we discuss explanations that involve probabilities.  We follow, e.g., Hempel [1965], chapter 

12.3, in distinguishing Deductive-Statistical [D-S] from Inductive-Statistical [I-S] explanations.3  

 

D-S explanations are a species of D-N explanations where the explanandum E is a statistical law, 

and the explanation is a derivation of E from observations and some higher-order laws, at least one 

of which also is statistical.  A D-S explanation appeals to the mathematical laws of probability 

among other laws. For instance, consider the elementary Hardy-Weinberg law for the stable 

recurrence relation, over successive generations after the first, of expectations for proportions of 

alleles and genotypes of a dichotomous Mendelian trait. This law is a deductive consequence (using 

the laws of conditional probability) of the basic Mendelian laws for a trait that does not mutate, is 

not sex-linked, and has random mating.  (See Hardy [1908].)  For our purposes in distinguishing 

mere predictions from explanations, there are no new issues raised by D-S explanations that are not 

already evident with D-N explanations.  We illustrate this, further, in section 5 (below). 

 

I-S explanations, however, involve a different form, with the following a canonical schema. 

As before, the proposition to be explained is the explanandum E, and the premises for the argument 

are laws L1, …, Ln and observations O1, …, Om, where at least one of the laws is statistical, i.e. a 

probability distribution, perhaps indexed with a parameter.  To say that these laws and observations 

explain E is to claim that there is a sound inductive inference that concludes E from these laws and 

observations.  And, for our discussion here, further, we distinguish two varieties of inductive 

inference: 

                                                        
3 Here, we do not address cases of Direct Inference: see Levi [1980], Chapter 12.  In Direct Inference, the 

premise of the reasoning is a statement of a chance distribution over outcomes on a kind of trial, and the 

conclusion is a conditional credence distribution for outcomes on an instance of that kind of trial. 
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 Probabilistic Inductive Inference [PII]  The inductive inference in question is formulated as 

a function solely of the “posterior” conditional probability: P( E | L1, …, Ln, O1, …, Om).  That is, the 

laws and observations explain E provided that, e.g., the conditional probability P( E | L1, …, Ln, O1, 

…, Om) is sufficiently high.  

 

We note that PII inductive explanations admit an evident comparative relation using the criterion of 

positive/negative relevance.  Given {L1, …, Ln, O1, …, Om}, say that Om+1 is positively (respectively, 

negatively) relevant to E provided that  

P(Om+1 | E, , L1, …, Ln, O1, …, Om} > (respectively, < ) P(Om+1 | L1, …, Ln, O1, …, Om}. 

Then    P( E | L1, …, Ln, O1, …, Om, Om+1)  > (respectively, < ) P( E | L1, …, Ln, O1, …, Om) 

if and only if  

E is positively (respectively, negatively) relevant to Om+1, given {L1, …, Ln, O1, …, Om},  

This concept of comparative probabilistic inductive inference is the subject of Glymour’s [1980, 

chapter 3] problem of “old data,” which we address in Section 4. 

 

A second kind of I-S explanation uses decision-theoretic principles to formulate rules of inference 

for concluding E from {L1, …, Ln, O1, …, Om}.  We call these Decision Theoretic Inductive 

Inference [DTII].  For example, in response to the question Whether E? a Bayesian DTII rule uses a 

cognitive expected utility to rank the three epistemic options: to accept E, to reject E, or to suspend 

judgment about E. (See Levi [1980] chapter 2, for the development of one such program.)  

 

What makes the utility cognitive rather than, say, economic, is that the options are formulated as 

epistemic acts (what to believe) rather than in terms of, e.g., the monetary cost of acting on that 

belief.  The outcomes of the epistemic decision are assessed according to scientific goals in coming 

to believe a proposition, E.  They are not assessed by, e.g., the monetary costs for applying E in 

order to solve a practical problem.  These cognitive goals include these familiar considerations: 

valuing true beliefs over false ones; valuing more informative answers to questions over less 

informative ones (including the scope of application of an hypothesis as an aspect of 

informativeness); and valuing the explanatory power of a theory.   

 

Let the cognitive choice be between two rival hypotheses E1 and E2.  Allowing that other epistemic 

considerations are roughly equal between these two, suppose that E1 explains some significant 

relevant phenomenon whereas E2 does not.   Then E1 carries greater expected cognitive utility than 

E2.  The preferred option is to conclude E1 rather than E2 even if the conditional credences, given       
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{L1, …, Ln, O1, …, Om} are equal: Even if P(E1| L1, …, Ln, O1, …, Om) = P(E2| L1, …, Ln, O1, …, 

Om), still E1 is the preferred conclusion. 

 

4. Confirming a new theory with old evidence. 

Clark Glymour’s influential [1980] monograph, Theory and Evidence, contains a provocative 

Chapter 3, Why I Am Not a Bayesian, that poses what has become known in the Philosophy 

literature as the problem of old evidence.  Glymour proposes the following puzzle: Suppose E stands 

for evidence known at the time a new theory T is proposed.  In the historical example that Glymour 

uses, we are to reason from the perspective of an informed physicist in 1915.  Evidence E is the 

surprising advance of the perihelion of Mercury – accepted and well known since at least 1865 and 

surprising relative to Newtonian theory.  Its advance was in excess of Newtonian prediction by 

about 43” per century.  T is Einstein’s then novel General Theory of Relativity [GTR], which in its 

1915 published form accounted for the advance of the perihelion.   

 

From within an idealized Bayesian perspective, let probability P1915(×) represent the physicist’s 

unconditional degrees of belief, and let P1915(× | ×) be her/his associated conditional probability 

function.  Glymour challenges a PII Bayesian account of theory confirmation as follows.  Show that, 

given Einstein’s 1915 explanation, the probability of GTR is thereby increased.  Glymour assumes 

the answer is to show that E is positively relevant to GTR:  P1915(GTR | E) > P1915(GTR).  But since E 

is already known, presumably P1915(E) =1. Then how can E support any change in the probability of 

the theory GTR?  A simple calculation shows P1915(GTR | E) = P1915(GTR and E)/P1915(E) = 

P1915(GTR).  So, Glymour claims, Einstein’s 1915 explanation of E by GTR cannot serve as 

confirmation of GTR.  This Glymour takes to be a fault in Bayesian analysis. 

 

Here, we do not review the details of the Philosophy literature spawned by this elegant example.  

But there is a central theme running through a large swath of the would-be Bayesian replies to 

Glymour’s challenge.  We point to Howson (1991) as making that theme clear.  Rather than taking 

P1915(×) as the appropriate credence function for formalizing Einstein’s contribution, instead 

substitute a modified credence, P*1915(×), which uses a revised corpus of background assumptions 

that does not include E.   So, P*1915(E) < 1.  The idea then is that Einstein’s contribution is 

represented as establishing P*1915(E | GTR) » 1.  If N stands for the rival Newtonian Theory, then 

also P*1915(E | N) < 1.  Assuming, as reasonable, that 0 < P*1915(GTR), P*1915(N) < 1, an elementary 

calculation establishes the desired confirmation.  Then, P1915*(GTR | E) > P1915*(GTR).   
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Glymour (1980, pp. 87-91) anticipated this rebuttal and, we think cogently, argued that an appeal to 

a “counterfactual” credence, P*1915(×), revised from an historically accurate P1915(×), does not work.  

We know of no theory of belief revision that answers the central question: What degrees of belief, 

circa 1915, should a physicist have held on the counterfactual supposition that deleted what was 

known, then, for 50 years about the conflict between a Newtonian model of our solar system and the 

orbit of Mercury around the sun?  As the historical record makes plausible, Einstein revised his 

formulation of GTR until it would explain E.  (See Earman and Glymour [1978], p. 300.)  Then, in 

Peircean terms, Einstein’s 1915 contribution is abductory for GTR, and not confirmatory of GTR.       

          

To better understand our response to the old evidence problem, perhaps a bit of background on 

Bayesian analysis is useful at this point.  Our Bayesian analysis starts with a person who (at least 

hypothetically) makes a decision. The decision might be on cognitive issues (What theory to 

believe?) or on financial issues (What stock to buy?).  Central to Bayesian theory is that decision 

making follows the criterion of maximizing subjective utility. When the decision maker faces 

uncertainty about something crucial to the decision, then and only then do probabilities enter the 

analysis.  Thus, in cases where uncertainty is not the driving issue, utilities are far more important to 

Bayesian analysis than are probabilities.  We propose this as the appropriate perspective to adopt 

when trying to understand the old evidence problem.  In brief, our proposal is that Einstein’s new 

1915 explanation of the old evidence E by theory GTR increases the utility of GTR.  Einstein’s 1915 

contribution does not change a Bayesian analysis of the probabilistic credence (circa 1915) of GTR. 

   

In order to apply this line of analysis to Glymour's case, let us suppose that the decision maker in 

question is a physicist (circa 1915) wanting to understand Mercury’s orbit around the Sun.  

Newtonian theory does not explain the advance, and attempts to save Newtonian theory by 

postulating additional planetary masses did not succeed.5  By contrast, GTR offers a much better 

explanation.  But that explanation is in the form of an abduction, not a prediction.  So, Einstein’s 

1915 explanation contributes to the cognitive value of GTR, but not to an increase in its posterior 

probability – even assuming it is meaningful to assign personal probabilities to whole theories.  

Indeed, our analysis does not depend on whether or not one tries to answer the question whether it is 

meaningful to assign probabilities to theories. 

                                                        
5 See Jeffreys [1973], pp. 170-171, and Levenson [2015] for discussions of the historical account about the 
failure to defend Newton  by speculating an unobserved planet, Vulcan, orbiting between Mercury and the 
Sun.  The combination of Newton Theory and the Vulcan hypothesis provided an abductory explanation for 
the observed advance of Mercury’s perihelion.  However, that theory also entailed failed predictions, at odds 
with GTR, that were refuted by evidence known by 1915. 
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In order to appreciate the lawlike status of GTR (circa 1915) note that it offered predictions in the 

form of subjunctives relating to other phenomena, (e.g. the “bending of light”) that were subject to 

test with the 1919 Dyson-Eddington expedition.  Circa 1915, these predictions show that GTR had 

lawlike status.  Post 1920, with the addition of the 1919 observations, those predictions added to the 

utility of GTR by establishing its added scope, regardless whether one argues, also, that those 

observations increased the posterior probability of GTR. 

 

Did Einstein's 1915 explanation offer any advice to this physicist on which theory to use in general?  

Newton's calculations are simpler.  But Einstein's might be better, as they are more accurate.  If the 

problem is mere prediction (not explanation) of a mundane event on the surface of the earth – such 

as pertaining to loads on a traffic bridge – then use Newton.  But if you want to know about the 

effects of a black hole on its surrounding masses, then Einstein's model looks relevant.  That 

Mercury is the closest planet to the Sun is a hint that it is particularly the right kind of situation 

where Einstein's model will excel. What was to be learned from Einstein's 1915 work is the 

usefulness of GTR as an abductory explanation for some phenomena that elude explanation from the 

rival, Newtonian Theory. 

 

5. Subjunctive conditionals and probabilistic explanations 

5.1 A probabilistic version of Russell’s example 

In order for an empirical theory to have explanatory utility, taken together with the settled background 

assumptions, it must support a derivation of relevant phenomena, must not contradict relevant 

background knowledge, and also include generalizations that answer relevant subjunctive questions.  

We discuss these aspects of explanation within a probabilistic version of Russell’s example.   

 

In this variant, we consider two rival statistical theories, denoted as 𝑇+1  and 𝑇21 , which parallel their 

deductive versions, T1 and T2, of section 2.2.  Theories 𝑇+1  and 𝑇21  agree on some (unconditional) 

probabilistic generalizations:  For instance, each of these two theories assigns high probability to the 

events that the horns at Factories #1 and #2 sound at noon on workdays, and then the workers at the 

two factories go to lunch.  They differ about some conditional predictions. For instance, theory 𝑇+1  

models the factory horns as operating nearly independently of each other given the time of day.  

Theory 𝑇21  models the horns as conditionally dependent, regardless the time of day. 
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We formalize the differences between the probabilities assigned by these two theories as follows. 6  

Let Hi be a Bernoulli random variable that indicates whether or not the horn at Factory #i sounds on 

a particular workday.  Let Li  be the time at which the workers at Factory #i go to lunch.  And let Ci 

be the clock time that the horn at Factory #i sounds on the condition that Hi = 1.  Both theories agree 

that, normally the horns at the factories sound simultaneously at noon and the workers go to lunch.  

Both theories treat the factories similarly in this way and assign probabilities:    

P(H1 = H2 = 1) = 1-e,  

And for i = 1, 2,   P(Ci = Li = noon | Hi = 1) = 1-d     

where d and e are small positive quantities.  It then follows that the two theories agree on the high-

probability, conditional prediction:  Given the horn sounds at Factory #2, then it is noon and the 

workers at Factory #1 go to lunch: P(L1 = noon | H2 = 1) ³ (1-d)(1-e). 

 

Nonetheless, according theory 𝑇+1,	if the horn at Factory #i fails to sound by noon or very shortly 

thereafter, regardless whether or when the horn at the other factory sounds, the workers at Factory #i 

eventually get restless and go to lunch at some time after noon, say, within the interval 12:10 PM – 

12:20 PM.  Theory 𝑇+1	assigns conditional probabilities in accord with the “Russellian” background 

assumptions about the local configuration of the factories’ horns.  It allows the horn at one factory to 

fail while the other factory’s horn continues to operate.  Though there may be scenarios where horns 

at both factories fail for a common reason, e.g., when there is a region-wide power failure, 

nonetheless according to 𝑇+1	that joint failure is rare.  For i ¹ j, theory 𝑇+1	proposes:  

e  <  P1(Hi = 0 | Hj = 0)  £  2e. 

And since workers respond only to the horn they hear, 

  P1 (L1 ³ 12:10 PM | H1 = 0) = P1 (L1 ³ 12:10 PM | H1 = 0 and H2 = 1) » 1. 

Then, theory 𝑇+1	supports the subjunctive conditional prediction that,  

Were the horn at Factory #1 to fail (H1 = 0) while the horn at Factory #2 were to sound as  

usual (H2 = 1, C2 = noon), then the workers at Factory #1 would not go to lunch at noon.   

 

The second theory 𝑇21 , which we view as controversial, also assigns high probability to the events of 

the horns at both factories sounding simultaneously at noon on workdays, and that the workers go to 

lunch when the horn at their respective factory sounds.  But 𝑇21	includes conditional probabilities that 

the horns operate as fully dependent variables:  For times, t, 11:45 AM < t < 12:15 PM:    

                                                        
6 We use subscripts on the probability function to indicate a difference between the two theories.  Where 

the theories assign the same probabilities, we avoid adding a subscript. 
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P2(Horn at Factory #1 sounds at time t |  Horn at Factory #2 sounds at time t) » 1 

P2(Horn at Factory #1 fails to sound at time t |  Horn at Factory #2 fails to sound at time t) » 1 

Then, the following subjunctive conditional prediction offered by Theory 𝑇21  is not supported by 𝑇+1 . 

If 10 minutes before noon the horn at Factory #2 were to sound, then workers at Factory #1 

would go to lunch 10 minutes early, at 11:50AM.   

 

Advocates of 𝑇21  might use the conflicts in assessments of these two subjunctive conditionals to cast 

doubt on the “Russellian” background assumptions: Duhemian underdetermination applies here 

since we are contemplating what amounts to a crucial experiment for testing 𝑇+1  versus 𝑇21.7  How to 

proceed?   

 

According to these theories, as d and e are very small quantities, it is highly improbable that an 

investigator will see a situation where H1 ¹ H2, as contemplated in the first of these two subjunctive 

conditionals, or see a situation where C2 is earlier than noon, as contemplated in the second.  Both 

theories agree that the situation for testing either subjunctive conditional is a rare event.  Then, it is 

important to examine the opportunity for an experimental intervention that creates an otherwise 

improbable event, but one that is relevant to testing the predictions associated with the subjunctive 

conditionals.  Before giving the details in the factory example, we should be clear about what we 

mean by observations and interventions. 

 

5.2  Observations and Interventions. 

A familiar constraint in framing a decision problem for an agent is to distinguish states from options 

of choice.  States are objects of uncertainty for the agent.  We distinguish two categories of decision 

problems: (i) decisions where all the agent’s options are probabilistically independent of the states, 

and (ii) decisions where states are probabilistically dependent on some of the agent’s options.  As 

we explain below, this distinction is relevant to our view about which subjunctive conditionals 

lawlike generalizations are required to address. 

 

Consider the first category of decisions.  As an illustration, suppose the decision is about which 

observations to make in order to learn a state of Nature: this is an epistemic problem.  For example, 

suppose the decision is about how many siblings to observe in order to learn the genotype of a 

random F2 offspring that results from a self-fertilizing hybrid F0 plant.  Then the agent’s background 

                                                        
7 See P. Duhem’s [1916] well known criticism of “crucial experiments.” 
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(Mendelian) theory stipulates a joint probability distribution over the genotypes of the F2 generation.  

Moreover, the agent assesses independence between the choice of how many siblings to observe and 

the distribution over F2 genotypes.  (Of course, her/his probability for the genotype of the randomly 

selected F2 offspring need not be independent of possible observations made on the siblings.)   

 

What is important for our discussion here is that when there is probabilistic independence between 

states and choices, then also the agent has a coherent unconditional joint probability distribution on 

observations of random variables defined with those states.8  Let X and Y be random variables whose 

values are determined by the states.  Let the decision problem be of the first kind (i), i.e., where the 

agent assesses states and choices as independent.  So, the agent holds an unconditional joint 

distribution P over X and Y.  Then she/he may address subjunctive conditionals of the form: If 

random variable X were to satisfy, X = x, then what would be the uncertainty about Y?  The answer 

is P(Y | X =x).  And if the agent’s decision is whether to observe variable X, because of the 

independence of states and choices, then also P(Y | X =x) is the agent’s opinion about Y were she/he 

to choose to observe X and learn that X = x.    This is our account of how to assess subjunctive 

conditionals with decisions of the first category: what we call the case of observations   Lawlike 

generalities are required to support subjunctive conditionals with decisions that involve observation 

variables. 

 

By definition, the second category of decisions (ii) involve some extent of “act/state dependence,” 

including what economists call cases of “moral hazard.”  Then, the agent’s uncertainty about states 

of Nature may depend upon which option she/he chooses.  If as in a controlled experiment, the agent 

has the option to intervene and directly to fix the value X = x, then her/his uncertainty about Y given 

the choice to fix X = x may well differ from her/his uncertainty about Y when, also, there is the 

opportunity to choose merely to observe X and then to learn that X = x.   In cases of intervention, we 

use the conditional probability distribution, P(Y | fix X = x) to assess the subjunctive conditional: 

What would be the uncertainty about Y were the agent to intervene and to fix X=x?   

 

In contrast with the foregoing analysis of subjunctives conditionals for category (i) decisions, in 

category (ii) decisions we do not grant coherence of an unconditional joint probability over random 

variables defined by states of Nature.  Our reasons for this difference relate to the admittedly 

                                                        
8 In Savage’s [1954] theory, all decision problems are of this first kind.  In his decision theory, states and options 

are probabilistically independent. 
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controversial issue about whether to allow the agent probabilistic uncertainty about her/his current 

choices.9  We find compelling Savage’s position that while contemplating a decision problem, the 

agent’s uncertainty about what to choose is not representable through the values of her/his personal 

probability function, which guides decision making.  Thus, when deciding on an experiment design, 

we do not recognize as meaningful for the experimenter an unconditional probability for, e.g., P(fix 

X=x).   Hence, when contemplating a category (ii) decision about whether or not to fix X = x, the 

agent has no unconditional probability for the state X = x. This is because the event  “X = x” is 

coextensive with the union of the two disjoint events {fix(X= x), do not fix(X=x)}. Of course, our 

position here is consistent with the agent having well defined personal probabilities about some 

future decisions she/he might face, and more controversially and given the fallibility of memory, 

also about some past decisions that he/she made.   

 

This prohibition against unconditional probability distributions over states in category (ii) decisions 

means that a subjunctive conditional of the form: “What would be the uncertainty for Y given that 

X=x is fixed?” is assessed directly by the parallel conditional probability distribution, P(Y | fix X=x), 

which values are not determined by the conditional probability distribution P(Y | X =x) that arises 

from unconditional probabilities that are well defined in category (i) decisions.  Then, in order to 

defend the lawlike status of a generality in category (ii) problems, specifically in order to provide 

analysis of relevant subjunctive conditionals when interventions are introduced as the conditioning 

event, the agent’s credences require more conditional probabilities than are determined by 

unconditional credences. 

 

5.3 Interventions in the Factory Example. 

Theory 𝑇+1  incorporates relevant predictions in experiments that introduce interventions 

(“experimental treatments”) on the operations of factory horns. The interventions are of two kinds:  

One kind of intervention compels a factory horn to sound at a designated time.  The other kind of 

intervention prevents the horn from sounding at a designated time.  According to the “Russellian” 

background, and as supported by 𝑇+1  if, for instance, an intervention silences the horn at noon at 

Factory #i, then the workers at that factory react to the absence of the horn and go to lunch 

                                                        
9 For some background on this controversy, see Levi [2007].  For a contrary position to the one we endorse 

here, see Jeffrey [1965].  In Jeffrey’s theory, there is no corresponding difference in the decision theoretic 

assessments for what here are called “options” and “states.”  In Jeffrey’s theory each proposition is assigned 

both a probability and a utility. 
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somewhat later than normal that day.  That is, given an intervention where the horn at Factory #i is 

silenced at noon, then 𝑇+1  stipulates the following workers’ behaviors. 

P(Hi = 0  | intervene at noon to prevent the horn sounding at Factory #i )  =  1  

and            P(Li  >  noon | intervene at noon to prevent the horn sounding at Factory #i)  =  1. 

So, if one contemplates an intervention in which the horn at Factory #1 fails to sound at noon, while 

there is no intervention made on the horn at Factory #2, we achieve a test case for one of the 

relevant subjunctive conditionals that is necessary for determining whether it is 𝑇+1  or 𝑇21  that 

explains the workers’ ordinary lunchtime behaviors.  Likewise, 𝑇+1  contemplates an intervention that 

compels the horn at Factory #2 to sound earlier than noon, while leaving unchanged the operation of 

the horn at Factory #1. This affords a test of the second subjunctive conditional prediction on which 

the two theories disagree.   

 

What this example illustrates is an important methodological result: Rival theories may also raise 

controversies about what counts as the settled background assumptions for an inquiry.  The 

possibility of experimental interventions permits empirical testing of rival predictions of some 

relevant subjunctive conditionals, independent of what may be these controversial background 

assumptions.  That is, in order to assess the explanatory content of the two rivals, 𝑇+1  and 𝑇21 , 

experimenters may be able to sidestep a concomitant disagreement about what to admit as the 

background assumption regarding, e.g., the organization of the factories.  

 

If, in accord with the “Russellian” background assumptions, the experimenter can intervene to 

prevent the horn at Factory #1 from sounding at noon, while the horn at Factory #2 operates 

normally, then we have devised a test of the 𝑇+1  prediction that the workers at Factory #1 have a 

delayed lunch that day, while the workers at Factory #2 go to lunch as usual, at noon.  And if that 

prediction accords with the workers’ behavior, then 𝑇+1  satisfies the requirement of supporting at 

least this subjunctive conditional.   

 

On the other hand, it might turn out that the intervention fails.  The experimenter might be unable to 

implement the experimental design of intended “treatments” to the two horns.  It might be that each 

attempt to silence the horn at Factory #1 also silences the horn at Factory #2.  Each attempt to sound 

the horn early at one factory also sounds the horn simultaneously at the other factory.  Then the 

advocates of 𝑇21  gain momentum for their proposal to revise the “Russellian” background 

assumptions about how the two horns are controlled.  Then Theory 𝑇+1  does not succeed in 
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supporting a subjunctive prediction that we take to be necessary for explaining, rather than merely 

predicting, the workers’ lunchtime behavior. 

 

We summarize:  In general, a probabilistic theory needs to specify the joint distributions for a set of 

relevant variables.  Such joint distributions are specified conditional on all of the background 

information assumed by the theory.  The relevant variables, whose joint distributions are to be 

specified, include both passively observed variables and intervention variables that are set 

deliberately – if any exist .  When interventions are feasible, they permit empirical testing of some 

subjunctive conditional predictions that (we propose) are necessary in order for a theory to provide 

scientific explanations, and thereby gaining added cognitive utility over rival theories that merely 

predict (passive) observables.  

  

5.4 Equilibria and Subjunctives. 

No doubt, the reader will recognize there is a simple causal structure in the elementary probabilistic 

versions 𝑇+1  of Russell’s example of the two factories, as reviewed in Section 5.1: The sounding of a 

factory horn shortly before noon is a direct cause of those factory workers recognizing that it is 

lunchtime. Under normal conditions, these causes have a common cause, e.g. the time of day.  

However, given the common cause, the direct causes are independent.  Hence, given the state of the 

horn at Factory #1, the operation of the horn at Factory #2 is independent of the behavior of the 

workers at Factory #1.  That causal structure is made evident through, e.g., the directed statistical 

graphs used in the elegant, important contemporary theories of causal inference created by Pearl 

[2003] and Sprites, Glymour and Scheines [2001].  However, scientific laws do not presume a 

causal structure.  We illustrate with the Hardy-Weinberg Law, an instance of a D-S explanation. 

 

The Hardy-Weinberg Law provides necessary and sufficient conditions for stable recurrence of 

expectations for genotypes through successive generations.  Its form is an equilibrium in 

expectations for genotype proportions over successive generations, not as a causal mechanism for 

achieving those genotype proportions.   

 

For simplicity, we deal with an elementary case of a dichotomous Mendelian trait.  Each organism 

in the population carries two genes for a given trait, each of which may be either the dominant allele 

form A, or the recessive form a.  Thus, there are three genotypes: the homozygous dominant form 

AA, the hybrid form Aa, and the homozygous recessive form aa.  Under basic Mendelian theory, 

the dominant form AA and the hybrid form (Aa) are phenotypically indistinguishable.  However, 

that assumption is not required for deriving the Hardy-Weinberg Law, below. 
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Suppose at generation F0, the population proportions of these three genotypes types are, 

respectively, <x0,y0,z0>.  Let p0 be the proportion of dominant genes in the F0 population, and q0 the 

proportion of recessive genes.  That is, p0 = (2x0+y0)/2.  And so q0 = (y0+2z0)/2.  Assume random 

mating and the absence of selectivity for the three phenotypes.10  This includes assuming that there 

is no sex-linkage for the trait, and no selective advantage among the genotypes for the trait.  Then by 

deductive reasoning from these elementary probabilistic assumptions, it follows that he expected 

proportions of genotypes in the F1 generation is given by  <x1,y1,z1>, satisfying x1 = p0
2 =  x0

2 + x0y0 

+ (y0/2)2,  z1 = q0
2 = z0

2 + z0y0 + (y0/2)2,  and y1 = 2p0q0 = y0(1-y0/2) + 2x0z0.  Thus, the expected 

proportion of dominant genes in the F1 population, p1, satisfies p1 = (2x1+y1)/2 = (2p0
2+2p0q0)/2 = 

p0(p0+q0) = p0, which is stationary from the previous generation. And, by the Law of Conditional 

Expectations,11 this recurs for the expectation of gene proportions in the F2 and subsequent 

generations.   

 

But this result does not establish recurrence of the expectations of the three genotype proportions 

between the F0 and F1 generations. The Hardy-Weinberg Law identifies necessary and sufficient 

conditions for recurrence of the expectations for three genotypic proportions.  The Hardy-Weinberg 

condition [*] for this recurrence between one generation, say the jth generation, Fj, and its subsequent 

generation Fj+1, is that the parental generation, Fj, satisfies:  

[*]     yj
2 = 4xjzj.    

 

This equality may fail for the F0 generation, which then is not in Hardy-Weinberg equilibrium.  But 

under the stated assumptions (random mating, etc.) it obtains for the expectations in the F1 

generation where  y1
2 = 4p0

2q0
2 = 4x1z1.    Hence, under the stated assumptions, the expectations 

relating the F1 and F2 generations, and (again by the Law of Conditional Expectations) also the 

expectations relating genotypic proportions in subsequent generations after F1, satisfy the Hardy-

Weinberg condition [*]. 

 

                                                        
10 The assumption of random mating is not satisfied, for instance, in Mendel’s classic experiments with pea 

plants.  Pea plants are self-fertilizing – pollen is not randomly scattered -- which feature was essential for 

Mendel’s experimental design. Then, over successive generations, the two homozygous types are absorbing 

and the hybrid type is transient. 
11 Specifically, by the Law of Total Probability, expectations and conditional expectations for bounded random 

variables X and Y satisfy, E[X] = E[ E[X|Y] ]. 
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Next, we use a de Finetti diagram, Figure 1 (below) to represent the Hardy-Weinberg Law.  (See 

Edwards [2000] for a general discussion of this technique.)  A population is individuated by its 

proportions for the three genotypes.  The state-space for these genotype proportions is represented 

by the probability simplex over three states, with extreme points, <1,0,0>, <0,1,0> and <0,0,1> .  

Each population proportion is represented by a unique point in this state space.  Condition [*] for 

recurrence of the expectations of genotype proportions in successive generations is depicted in 

Figure 1 by the convex (quadratic) curve of genotypic ratios.  

 
Figure 1 

Hardy-Weinberg equilibrium in a de Finetti diagram 

 

A “prior” distribution over the points on this curve corresponds to a (de Finetti) exchangeable 

distribution over sequences of genotypes from a hypothetically infinite sequence of draws, one from 

each generation.  This probabilistic model provides a basis for answering some subjunctive 

conditional questions, in accord with the constraint for lawlikeness that we require. 

 

Q: Were the population proportion in generation Fj, pj for the dominant allele A to drift to a new 

value, for instance, suppose that pj = ¼  ¹  p0  = ½, what would be the expected genotype 

proportions in subsequent generations after the jth?   

 

The populations that satisfy a subjunctive condition of the form pj = xj + yj/2 = c (for 0 < c < 1) are 

represented in the de Finetti diagram by a vertical line with lower endpoint on the bottom face of the 

simplex, < c, 0, (1-c) >, and upper endpoint either <0, 2c, (1-2c)>, if c < 1/2, or (2c-1, 2(1-c), 0) if c 

> ½, which is on one or the other of the upper faces of the simplex.  By the Hardy-Weinberg Law 
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we derive that, for a population that satisfies the new condition, pj = c and conditions of random 

mating, etc., then beginning with generation Fj+1 the expected proportions for the three genotypes are  

<c2, 2c(1-c), (1-c)2>.  Note this makes the process Markovian in that the answer to the expected 

proportions in generations subsequent to the jth does not depend upon the population’s prior 

historical state.  The value of p0 is irrelevant.  This, then, answers the subjunctive conditional 

question using an ordinary derivation from the Hardy-Weinberg Law.   

 

Figure 2, below, graphs the Hardy-Weinberg solution, for c = ¼, as the intersection of the vertical 

line (p = ¼), which depicts all the populations that satisfy the antecedent of the subjunctive 

conditional, and the Hardy-Weinberg Law [*].  That point of intersection is  <1/16, 3/8, 9/16>.   

 
Figure 2 

Graph of populations with gene proportion p = ¼ 

 

Though the Hardy-Weinberg Law fixes expectations for the three proportions of genotypes in 

subsequent generations once the new condition p = c is satisfied, it does not provide the causal 

probabilistic dynamics (as might be given with an acyclic directed graph) for how this equilibrium is 

achieved.  Each population that satisfies the new condition, p = ¼ in the example of Figure 2, 

achieves the same equilibrium in expectations for proportions of genotypes in subsequent 

generations.  In Figure 2, each population that falls on a given vertical line achieves the same 

equilibrium after one generation.   

 

We do not claim that the Hardy-Weinberg Law is inconsistent with a “causal” theory.  One might 

also provide the causal statistical dynamics for how the population proportions move in time through 
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the state-space.  The conclusion we argue for here is that causal structure is not necessary for a law 

to be explanatory.   

  

5.5 Counterfactual Conditionals 

In augmenting Braithewaite’s and Nagel’s condition N for lawlikeness with an additional 

requirement, that in order for a generalization to explain and not merely to predict an outcome, we 

require the generalization to support reasoning with subjunctive conditionals – either relating to 

hypothetical interventions or to possible observations.  However, we do not require that for a 

generalization to be a law also that it support counterfactual conditional reasoning.   

 

To make the point explicit with Russell’s example of the two factories, we require that intervening 

to make the horn at Factory #2 sound at 11:45 is appropriate for testing the subjunctive offered by 

Theory 𝑇21 ,  

“If the horn at Factory #2 were to sound at 11:45 AM, the workers at Factory #1 would then 

go to lunch earlier than usual.”   

Since we expect this subjunctive to fail, we expect the problematic generalization to fail the 

necessary condition for lawlikeness.   Namely, we expect that though the generalization  

“The workers at Factory #1 go to lunch when the horn at Factory #2 sounds”  

may be useful for prediction, it does not support the relevant subjunctive conditional; hence, we 

expect it does not pass muster as an explanation, since it fails being lawlike.   

 

But we have not required as test for lawlikeness that a generalization also supports counterfactual 

conditional reasoning.  We do not require support for conditionals of the form: “Yesterday, had the 

horn at Factory #2 sounded at 11:45 then the workers at Factory #1 would have gone to lunch 

early.”  By stipulation, the antecedent to this conditional is known to be false: It is accepted that, 

yesterday, the horn at Factory #2 sounded at noon, as usual.  The antecedent for this conditional is 

inconsistent with the decision maker’s background knowledge.  So, the conditional probabilities of 

section 5.2 do not apply, since conditional probability is not defined relative to an inconsistent set of 

assumptions.   

 

In order to apply those conditional probabilities to the specific event in question, the decision maker 

needs to revise her/his background assumptions.  She/he has to remove (to “contract”)  the 

assumption that the horn at Factory #2 sounded at noon yesterday, in order to make logical space for 

a hypothetical event.  But the intelligibility of that maneuver is precisely what Glymour questions in 

connection with the attempt to show that (circa 1915) Einstein’s new explanation for old data 
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conforms to a case of Bayesian credal confirmation of GTR.  And we agree with Glymour’s 

skepticism about the intelligibility of such a revision in the settled assumptions about Mercury’s 

orbit. 

 

There may be specialized circumstances where is it evident how to carry out a revision of settled 

background knowledge so as to “test” a counterfactual conditional.  For instance, there may be no 

controversy accepting the counterfactual that, though in fact there was no drift in the gene frequency 

between the F0 and F1 generations, say 1/2 = p0 = p1, had there been drift to p1 = ¼, then the 

expectations for the F2 genotypes would have been at the values <1/16, 3/8, 9/16>.   The answer in 

this case can rest on the assumption of exchangeability in the statistical model.  Then the 

counterfactual question about a past event is treated as an ordinary subjunctive question about the 

outcome of a future event whose value is not fixed by background assumptions.  It may be that in 

legal settings counterfactual reasoning of this kind is required in order to resolve issues of liability 

about specific grievances.  (See, e.g., Stern and Kadane [2019].)   

 
However, we are skeptical of a general theory of counterfactual conditionals.  For instance, suppose 

that there is no genetic drift in the F1 generation – say ½ = p0 = p1 – but there is observed drift in the 

F2 generation, with p2 = 1/4.   How to evaluate the counterfactual conditional that, had there been 

drift in F1 to p1 = 1/3, then there would have been a second instance of drift in F2, with p2 = 1/4, 

matching the F2 value that was observed?12  Our view is that there does not yet exist a functioning 

account of counterfactual reasoning that rises to the level needed for making testing counterfactual 

conditionals into a well-formed criterion of lawlikeness. 

 
6. Summary 

In this essay we explore the idea that a scientific theory T may gain in cognitive value for us when 

we learn that T explains a specific event E, even though E is already known.  One of our concerns is 

to understand how an explanation differs in value from a mere prediction.  For that purpose, we 

explore probabilistic explanations that support various forms of reasoning with subjunctive 

conditionals: involving antecedents to conditionals that use either interventions on, or observations 

of random variables.  We allow that the event E that is explained by T may already be known but, as 

in cases of Peircean abduction, E may be surprising because we do not understand it.  In such a case 

there is no puzzle how old data may play a role in increasing the value of a novel theory.  This 

                                                        
12.  This example illustrates the ongoing dispute about the so-called “Recovery” postulate in the AGM (1985) 

theory of belief revision.  See Levi [2004] for helpful discussion. 
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contrasts with the puzzle of “old data” posed by Glymour where, instead, the challenge is to show 

that the novel explanation of old data by a new theory increases the probability or “credence” for 

that new theory.   
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