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Forbidden Fruit: When Epistemological
Probability may not take a bite of the
Bayesian apple

TEDDY SEIDENFELD

1 Elementary Probability Theory and some of its Bayesian
fruits

1.1
Unconditional Probability P(e) is governed by three axioms:

Axiom 1 PZe) is real-valued function defined over an algebra

0<P(s)<1

Axiom 2 For the sure event S, P(S) =1
Axiom 3 (additivity) For disjoint events, where A N B = @ then

P(A U B) = P(A) + P(B)

Conditional Probability P(e|e) is governed by two additional axioms:
Axiom4 P(A N B) = P( A|B) x P(B) = P(B|A) X P(A).
Axiom 5 For each B # @, P(e|B) is an unconditional probability.

(Aside)  Axiom 5 is of concern primarily when the conditioning event,
B, is null. That is, when P(B) = 0 Axiom 4 fails to insure that
P(#|B) is an unconditional probability satisfying Axioms 1-3. For
discussion of some of the controversial aspects of the received
theory’s solution to this problem using regular conditional dis-
tributions, see my [Seidenfeld, 2001]

Let {Hy, Hy, ..., Hy} be a partition into n-many pairwise disjoint and mu-
tually exhaustive states.
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The Law of Total Probability asserts
P(A)= ) P(ANH) M
i

which follows by additivity from the elementary identities:

A = ANS
AN[HUHU... UH,]
T»DEHH_CT»DEN”_C.ZCT»DEL

By the principal axiom governing conditional probability, (1) yields
P(A) =) P(AIH;) x P(H)) @
i

Here, P(Ale) is called (a version of) the likelihood function.

A familiar Bayesian formulation of this law is as:

unconditonal probability equals expected likelihood
P(A) = L;P(AH) x P(H)).

Then, unconditional probability P(A) is constrained as a convex function of
conditional probability P(Ale) over a partition for the argument (e).

It is a short step from this result to Bayes’ Theorem. By the principal axiom
of conditional probability, when P(A) # 0.

P(EIA) = EE% MVEE

And by an application of the previous law:

_ P(AH) x P(H)
Y P(AlH;) x P(H);)

An easy calculation then yields:

PiH|A) — _ P(AHy)  P(H:) 3)
P(H,|A) P(AlHy) ~ P(Hy)

1.2 Conditionalisation and three Bayesian fruits of these probability
laws

Levi’s account of why Bayes’ Theorem creates interest in conditional probabil-
ity is that the conditional probability, P(e|H), is the answer to an important
hypothetical question:
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“What would your probability function be were your current
knowledge augmented with (consistent) H?”

Conditionalisation then fixes Bayesian inference, as follows. In response to
the question what your uncertainty would be regarding rival hypotheses,
H; and Hj, were you to learn that A, Bayes’ theorem provides a helpful
algorithm:

P(H,|A) PA|Hy)  P(Hi)

P(H,/A) ~ P@AH,) " P(H,)

It is summarized by the familiar Bayesian mantra

posterior odds = likelihood ratio X prior odds.

This mantra is particularly useful when the rivals H; and H; are simple
statistical hypotheses so that the likelihood function P(Als) is fixed by non-
controversial inference rules, e.g., Direct Inference. Here are three important
fruits of Bayesian conditionalisation:

1% product: Eliminate nuisance parameters by averaging the likelihood
function.

Suppose that, in order to make the likelihood function simple
— in order to apply Direct Inference — additional parameters
Ji are specified beyond the composite hypothesis H that is
the investigator’s focus of interest. These nuisances J; can be,
eliminated by an application of the conditional version (2) of -~
(2), given H,

P(AIH) = M P(AIH, J;) x P(Ji|H) )

2" product: Composite data may be evaluated in any order computation-
ally advantageous for the inference.

Suppose that the composite data are the pair (4, B) and that
these are independent given the statistical hypothesis H, i.e.

P(A, BIH) = P(A|H) x P(B|H)

or equivalently
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P(AH, B) = P(A|H) and P(B|H, A) = P(B|H)

then
P(H|A,B) o« P(AJH) % P(B|H) x P(H)
« P(A|H) x P(H|B)
o« P(B|H) x P(H|A)

3" product: The likelihood ratio equals the ratio of posterior odds to prior
odds.

PAlH:) _ P(HilA) . P(H1)
P(A|H)  P(Hz|A) ~ P(Hy)

So, the distribution of the likelihood ratio, viewed before the
data are collected, is one perspective on how informative an ex-
periment will be in changing the prior to the posterior. Unless
the distribution of the likelihood ratio is the degenerate, con-
stant = 1, the experiment has positive probability of generating
evidence that, were itlearned, would change the investigator’s
mind.

A familiar likelihood based index of information that measures how much
a probability distribution Q differs from a distribution P, both defined on
a space (, is Kullback-Leiber Information:

KL(Q,P) = M log *%_ Q) >0

Set P to the “prior” and Q to the “posterior” given data X = x, with both
distributions over the common space © of the parameter of interest. Then:

P(x6)
P(x)

KL(posterior, prior) = M log — _ P(OIx)
0

This change is 0, i.e., there is no information gained in going from the prior
to the posterior if and only if P(x]e), the likelihood function with respect to
the parameter 0, is constant. Thus, unless an experiment is almost sure
to produce irrelevant information, as indexed by a constant likelihood, the

expected information gain in going from the prior to the posterior is strictly
positive.
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2 Epistemological Probability [EP] Theory and some of its
original features

2.1 Epistemological Probability Theory and Direct Inference
(Historical Aside 1) Henry Kyburg's original theory of Epistemological
Probability [EP] dates, I believe, from the final chapter in his 1956
Columbia University doctoral thesis ([Kyburg, 1956]), which was a
study of the Keynesian School of probability, titled Probability and In-
duction in the Cambridge School. Its first full-dress, public appearance
was in his [Kyburg, 1961] book, Probability and the Logic of Rational
Belief. Even as recently as ten years ago, at a conference on Keynes at
Wake Forest, Kyburg promoted EP as his preferred interpretation of
Keynesian probability theory [Kyburg, 1995], where interval-valued
probability provides a formal treatment of Keynes’ important idea
that not all (rational) probability judgments are comparable.

The canonical form of an EP statement is: EP(¢(s); K) = [p, q], where:
e EP is an interval-valued probability, [p, q]
e that an individual s, bear property ¢ — written ¢(s);
e given background knowledge K that includes
— the frequency information that between p and q percent of the
members of the reference set R bear ¢

—~ the knowledge that individual s is a member of R

— and for each rival reference set R’ to which s is known to belong,
K contains no stronger frequency information about ¢ -

— and except for larger sets R’ (D R) to which s is known to belong,
K contains no different frequency information about ¢.

In Levi’s terms, each EP statement is an instance of Direct Inference:

from the knowledge of frequencies [p, 4] of ¢ in a population R
and that s € R to an interval valued probability [p, q] that ¢(s).

2.2 Epistemological Probability Theory and Inverse Inference

What is entirely original to EP is how the interplay of the strength and
difference clauses for fixing the winning reference class R yields important
cases of statistical Inverse Inference derived from Direct Inference.

from an interval valued probability [p, q] that ¢(s).

to an interval valued probability [p, g] of ¢ in a population R.
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EXAMPLE 1. Suppose that we have a scale on which to weigh objects.
Our scale is calibrated so that, within its functioning range, if an object
of y-units mass is weighed, the readings are distributed as X ~ N(u,1); a
Normal distribution with unit variance and mean p.

We weigh an 1878 Indian Head penny on our scale and observe that
X = c. Thisreading is a sample of one from the population of measurements
taken with scales of this calibration. Our background knowledge K is
otherwise uninformative about the distribution of weights of 1878 Indian
Head pennies, of which about 5.8 million were minted.

What is the EP for statements of Inverse Inference about u? For instance,
what is EP(c -2 < p < ¢ +2|X = ¢, K)? The key to EP’s original treatment of
this problem is to focus on special pivotal properties ¢,(e) of readings from
such scales.

* ¢,(X) obtains for X if and only if |u — X| < #(r > 0)

The special feature of pivotal properties is that the percent of X-readings
that satisfy them is known exactly, based solely on K.

EP(-r<u-X<#K)=[0D,,d" ],

where @’ is the probability that a N(0, 1) variate has its value in the interval
[-7,7]. For instance, EP(-2 < p — X < 2|K) = [.95, .95].
By the Strength rule, this yields a precise EP Inverse statement

EP(-2 < u—c<2lX =¢,K)~ [.95,.95]

or
EP(c-2<u<c+2|X =¢K)~[95,.95]

EXAMPLE 2. Suppose that, as before, we have our scale with which to
weigh objects. Our scale is calibrated so that, within its range, if an object
of p-units mass is weighed, the separate readings X; of the same object
are identically and independently distributed [iid] X; ~ N(y, 02), a Normal
distribution with mean u and unspecified variance 0?. We take n readings
% = (x1,...,xn) of our 1878 penny. What is the EP(c—2 < u < c+2|%, K)? This
problem is importantly different from the first because, though u remains
the parameter of interest, in this version o2 is a nuisance parameter whose value
we do not know.

Again, there is a special (Student’s t) pivotal property to deal with the
inference about y in the absence of knowledge of 0.

. -X
¢(X) obtains if and only if _n.mml_ <r
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o L (X=%) . .
where X = Y7, X; and $? = LMM.M%: For instance, with n = 2 and

r = |X; — X3]/2, we have

EP(Xpin < pu< N:SR_M\ K)=[5,.5]

And by EP’s Strength rule for determining the reference class in a Direct
Inference, we conclude the Inverse EP statement

EP(xmin < p < XmaxlX = %, K) = [.5,.5].

(Historical Aside 2) Though Kyburg developed this mode of Inverse
reasoning to show how Keynes’ 1921 theory of probability — a theory
that allowed (logical) probability to take non-real values —might be in-
terpreted inside a theory of interval-valued probability, in fact, EP re-
ally is a wonderful and fully principled generalization of R.A.Fisher’s
1930 enigmatic proposal of fiducial probability.

In what I think was the last of 3 rounds of correspondence exchanged
with Kyburg, during Fisher’s last year of life, Fisher began his letter,

After a long while I have now succeeded in obtaining your
book on Rational Belief. So far it seems to be as good as I
had hoped, which would be high praise. (14 May, 1962)

But also Kyburg was mildly criticized by Fisher in a way that I suspect
no other had ever been. In a 13 January 1962 letter to the Canadian
Statistician D.A.Sprott, Fisher wrote,

Do you know the name of H. Kyburg of the Rockefeller In-
stitute 21, N.Y.? His line seems to be abstract symbolic logic,
but he has recently caught fire on the fiducial argument and
indeed may be exaggerating its importance”

During his long and influential career, Fisher showed no restraint
criticizing many for failing to appreciate the importance to Statistics of
fiducial reasoning. (See, e.g., [Fisher, 1973], section IIL.3.) But, Kyburg
was singled out, and is unique among Fisher’s targets I believe, for
having committed the other error!

3 When Epistemological Probability may not go Bayesian!
3.1 EP Theory and Statistical Inference with Nuisance Parameters

Approximately 28 years ago, in an article Direct Inference, I. Levi demon-
strated that EP does not satisfy Bayesian conditionalisation ([Levi, 1974]).
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Levi’s counterexample highlighted some anti-Bayesian features of the Strength
rule: the rule to give priority to reference sets that yield precise, i.e. nar-
rower probability intervals.

EXAMPLE 3 (Levi, 1977). Suppose we know that Petersen (denoted s) is a
Swedish resident of Malmo. We are interested in the EP that he is a Protes-
tant. Our rational corpus of knowledge includes the following frequency

facts about the two competing reference sets: Swedes, and residents of
Malmo.

o We know that 90% of Swedes are Protestants.
o But all we know about Malmo is that either

Hj : 85% of Malmo's residents are Protestant
or H; :91% of Malmo’s residents are Protestant
or Hj :95% of Malmo’s residents are Protestant

with a resulting known frequency interval [.85,.95] of % Protestant.

So,
EP(¢(s);K) = [.9, 9]

because the Strength rule allows the larger reference set (Swedes) to win
over the rival reference set of Malmo's residents, whose frequency interval
for the property in question is less informative [.85, .95].

However, EP theory also entails the following statements

EP(¢(s); Hy, K) = [.85,.85]
EP(¢(s); Hp, K) = [.91,.91]
EP((s); Hs, K) = [.95,.95]
EP(¢(s); Hy V Hz, K) = [.9,.9]
EP((s); Hy V Hp, K) = [.9, 9]
EP(¢(s); Hy V Hy V Hz, K) = [.9, 9]

Each of the last three of these six EP statements results by an application

of the Strength rule, which picks the larger reference class (Swedes) for

determining the Epistemological Probability that Petersen is a Protestant.
The contradiction that results is with our first elementary law:

P((s)) = ), Pp(s)IH:) x P(H)

There is no prior distribution P(H;) over these three simple statistical hypotheses
that satisfies all six EP values. In other words, EP theory does not follow the
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Bayesian law that there exists a prior, P(H;), against which one may average
the likelihood function.

The second Bayesian version of this law is that we may eliminate nuisance
parameters J; by an application of the rule:

P(AIH) = Y, P(AIH, i) x P(H{H)

If, to the contrary, EP theory followed this law, then in good Bayesian style,
we could eliminate nuisance parameters by averaging them with other EP
probabilities.

In our second example of EP inference, where X ~ N(u, 0%), p is the
parameter of interest, and 02 is the nuisance parameter. A Bayesian elimi-
nation of o2 can go like this:

plulf) = s p(ulE, 2 D)p(0)

EP theory provides precise probabilities for each of the terms on the right-
hand side of this equation. But it does not take a bite of the Bayesian apple!
This calculation is invalid. Instead, (Example 2) a direct Student’s pivotal
duplicates the conclusion of this Bayesian inference.

In the previous case, then, EP theory gets to the same place it would were
it Bayesian. But that is not always possible, as the next example illustrates.

EXAMPLE 4 (The Behrens-Fisher problem). Let X = (Xq1,...,X1n) and
X, = (X21, .. ., Xon) be independent iid samples respectively from the two

Normal distributions: N(u1,0%) and N(ua, 03). The parameter of interest is

6 = 1 — p2. The nuisance parameter isé& = mw\ about which we have no

frequency information.

_ A Bayesian elimination of the nuisance parameter is as follows. Let

X= Avmr vmmv

p(61%) = H P15, EW(EDP(E)

Again, there are pivotal variables available for EP to derive precise [nverse
probabilities for each of the two terms on the right side of this equation.
However, as EP theory is not Bayesian, the calculation from right to left is
invalid.

Alas, there is no direct pivotal available, analogous to Student’s t-pivotal,
to solve the left-hand side. It appears that EP theory here is missing the
pleasures of this Bayesian fruit. EP theory could take a bite of this Bayesian
apple, but it does not.
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However, the conflict between EP theory and these Bayesian laws is
not merely a case of EP theory missing out some Bayesian consequences
of what it already entails. We cannot graft onto EP theory these missing
Bayesian conclusions, as the next example illustrates.

EXAMPLE 5 (The Hollow Cube). We are interested in the volume V of a
hollow cube. We have available two sources of experimental data. We may
accurately f{ill the hollow cube with a liquid of density, 1-unit mass/unit
volume, and weigh that on our scale of known precision, resulting in the
random variable X; ~ N(V, 1) Alternatively, we may cut a rod of density
1-unit mass/unit length, to the edge of the cube and weigh that on our scale:
Xr ~ N(VY3,1).

As in Example 1, with either observation taken alone, there is an Inverse
EP statement about the unknown V: With X; = x; then EP entails that
V ~ N(x,1). With Xg = xg then EP entails that V'3 ~ N(xg, 1).

Though it is invalid by EP standards we may try to use the 2" set of
Bayesian laws to combine the two observations. There are three approaches:

p(Vixe, xr) o  p(xr|V) X p(xrlH) X p(V)
o p(xL|V) X p(Vlxg)
< p(xrlV) X p(Vl]xr)

EP theory does not entail a precise prior p(V) for use in the first line. More-
over, there is no direct pivotal method using (X;, Xg). At bottom, this is
because there is no common 1-dimensional sufficient statistic for V that
summarizes the 2-dimensional data.

But by the preceding results, EP theory entails precise (point-valued)
probabilities for each term in the 2 and 3™ lines, above. But they may not
be added to EP theory. These yield contradictory results! This is because the
Bayes-model associated with the 2" line carries a precise, different prior for
V than does the Bayes-model associated with the 3" line. Thus, EP theory
must not take this bite of the Bayesian apple as a method for combining
composite data.

I do not know the full EP solution to the problem of the Hollow Cube.
I conjecture that, because there are so many competing pivotal variables
available for inference about V each yielding a different interval EP solution,
the resulting EP interval estimates about V are vacuous, or nearly so. For
example, in addition to the two pivotal variables relating to the inference of
Example 1, each of which uses only one of the two observations, also there
is the pivotal variable [(X; + Xg) — (V + V!/?)], which is pivotal based on
the fact that the random variable (X, + Xg) has a normal distribution N(V +
V173,2). These three pivotal variables generally result in competing, precise
statistical statements about V' that prevent each other, by EP’s Difference rule.
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The open challenge I see to EP theory highlighted by the Hollow Cube
problem is how to combine a variety of statistical data, data that do not
admit a common sufficient statistic. It appears that with a variety of ev-
idence, within EP theory, an increase in the variety of evidence available
may decrease the informativeness of the resulting statistical conclusions.
This fact provides transition to a discussion of the third and final Bayesian
law in Section 1 of this essay concerning the informational value of new
evidence. That law says, as measured by any one of a large family of indices
of statistical Information:

unless an experiment is almost sure to produce irrelevant evi-
dence, it carries a positive expected Information gain comparing
the posterior Information with the prior Information.

In short, that law promises that changes in expected Information that result
from conditionalization on new evidence will not go down, and will go up
unless the data are irrelevant, as judged by the likelihood. EP theory does
not partake in this Bayesian Tree of Knowledge. Is that ignorance a state of
statistical bliss for EP?

3.2 EP theory and Dilation of interval valued probabilities.

The final contrast I want to draw is with a rival position that, like EP,
uses interval-valued probability rather than real-valued probability, but
unlike EP it incorporates Bayesian conditionalization. 1. Levi's Indeterminate
Probabilities [IP] provides an ideal version of such a rival theory ([Levi,
1974]). In it a rational agent’s degrees of belief are represented by a convex
set of p of probabilities. The agent obeys conditionalization in the sense that
the corresponding set of conditional probabilities {P(e|[) : P € p} answers
the question, "

What would your probability be were your current knowledge
augmented with (consistent) H?

In these two rivals, EP and IP Theories, by contrast with the original
(Bayesian) theory, one entirely new aspect of the agent’s uncertainty of an
event E is captured by the range of the probability interval for E. For
example, in this new sense there is maximal uncertainty about E when the
probability interval is the vacuous [0, 1] range, and in this same sense that
uncertainty is reduced when the probability interval for E shrinks to, say,
[4,.7].

The anomalous phenomenon concerning this sense of uncertainty, on
which I close this essay is called dilation (See [Seidenfeld, 1993] and [Herron,
1997]). Let experiment E carry possible outcomes {ey, ..., e,}. Let p be a
non-empty convex set of probabilities. And let B be some event of interest.
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DEFINITION 6. E dilates the set of probabilities for B just in case, for
i=1,.
N.:hvwa_mo < N.&ﬁswav < mn@w@v < m:nswﬁm_sv

In words, when dilation occurs, under conditionalization the hypothet-
ical new evidence is sure to increase the uncertainty of B, in the sense just
described.

EXAMPLE 7 (A Heuristic Example of Dilation). Let P*(e) denote the upper
probability and let P.(e) denote the lower probability with respect to the set
. Suppose that A is a highly uncertain event. That is P*(A) — P.(A) = 1. Let
{H, T} indicate the flip of a fair coin with outcomes independent of A. That
is, P(A, H) = P(A)/2 for each P € p. Define event B by, B = {(A, H), (A%, T)}.
The situation is depicted by the familiar 2x2 table:

H H
A B B
Af B B

Note that B is pivotal-like! That is, it follows, simply, that P(B) = .5 for each
P € p. B carries no uncertainty in the novel sense of uncertainty common to
EP and IP.
But
0 = P.(B|H) < P.(B) = P"(B) < P*(B|H) =~

and
0 =~ P.(B|T) < P.(B) = P*(B) < P*(BIT) =

Thus, regardless how the coin lands, the conditional probability for event
B dilates to a large interval, from a precise value of .5. In the novel sense
of uncertainty relevant to IP, the uncertainty for B increases for certain by
conditionalizing on the outcome of the {H, T} experiment. Thus, within
Indeterminate Probability theory, where conditionalization obtains, new evi-
dence may increase uncertainty for sure.

In [Seidenfeld, 1993] Theorem 4.1, we show that only the density-ratio
model for statistical uncertainty among neighborhood models is immune
to dilation. In that sense, dilation is not rare within IP theory.

Though I have not here reported the decision theory that goes together
with the theory of Indeterminate Probabilities, it should not be surprising
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- that a decision maker will try to avoid learning evidence that dilates prob-

abilities. I am ready to argue that such a decision maker will pay to avoid
dilation! Then, for such a decision maker, the new evidence carries negative
value.

By contrast, dilation is an impossibility within EP theory, and for the very

- same reason that it resists conditionalization! The Strength rule, which is

the culprit that prevents EP from being Bayesian, also is the reason that EP is
immune to dilation! Within EP theory, the evidence that causes dilation for
Indeterminate Probability theory, is made innocuous by strength. Simply put,
those problematic data are treated as irrelevant! This raises the question
whether ignorance of certain Bayesian methods may indeed result in a state
of bliss concerning statistical inference!
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