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We study the representation of sets of desirable gambles by sets of probability mass 
functions. Sets of desirable gambles are a very general uncertainty model, that may be 
non-Archimedean, and therefore not representable by a set of probability mass functions. 
Recently, Cozman (2018) has shown that imposing the additional requirement of even 
convexity on sets of desirable gambles guarantees that they are representable by a set 
of probability mass functions. Already more that 20 years earlier, Seidenfeld et al. (1995) 
gave an axiomatisation of binary preferences—on horse lotteries, rather than on gambles—
that also leads to a unique representation in terms of sets of probability mass functions. To 
reach this goal, they use two devices, which we will call ‘SSK–Archimedeanity’ and ‘SSK–
extension’. In this paper, we will make the arguments of Seidenfeld et al. (1995) explicit 
in the language of gambles, and show how their ideas imply even convexity and allow 
for conservative reasoning with evenly convex sets of desirable gambles, by deriving an 
equivalence between the SSK–Archimedean natural extension, the SSK–extension, and the 
evenly convex natural extension.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Over the last few decades, imprecise probability theory has taken an increasingly more prominent role in the field of 
reasoning and decision making under uncertainty. Imprecise-probabilistic uncertainty models extend classical probability 
theory by allowing for incomplete assessments, thereby creating a well-established theory that can deal with indecision 
and robustness. The decision theoretic foundations of such a theory were laid by C. A. B. Smith (1961) [24] and I. Levi 
(1974) [13]. Among more recent developments, [19–21,25] focus on a theory of “desirability”, which is the topic of this 
paper.

Sets of desirable gambles [17,20,25] generalise many of the other existing theories, such as closed and convex sets 
probabilities, coherent lower previsions, and belief functions. A set of desirable gambles D is a set of gambles—which 
are real-valued maps on the finite possibility space �—that the subject strictly prefers to the status quo indicated by 0. 
A gamble is commonly interpreted as an uncertain reward: if the subject has the gamble f on �, then after the actual 
outcome of the experiment turns out to be ω ∈ �, her capital is changed by the—possibly negative—payoff f (ω), described 
in a predetermined linear utility scale. Coherent sets of desirable gambles are more expressive than closed and convex 
sets of probabilities. When we surrender the closedness condition, the connection between convex sets of probabilities 
and coherent sets of desirable gambles becomes more intricate. But even when the set of probabilities is only convex—
and not necessarily closed—there will be coherent sets of desirable gambles that cannot be expressed using such sets of 
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Fig. 1. A gamble f on the binary possibility space � = {h, t}.

Fig. 2. An Archimedean set of desirable gambles D A and non-Archimedean set of desirable gambles Dn−A .

probabilities: that is because sets of desirable gambles do not satisfy an Archimedean condition, and are therefore not 
always representable by real numbers.

Example 1. Consider the experiment of tossing a coin, so the possibility space � is equal to the binary set {h, t}, where h
stands for ‘heads’ and t for ‘tails’. The set of gambles on � is a two-dimensional linear space under point-wise addition and 
point-wise scalar multiplication, so any gamble f can be depicted graphically as a point in the plane as in Fig. 1.

In this example we will contrast an Archimedean set of desirable gambles D A := {gambles f : f (h) + f (t) > 0} with a 
non-Archimedean one Dn−A := D A ∪ {gambles f : f (h) + f (t) = 0 and f (h) > f (t)}, as depicted in Fig. 2.

If the subject’s beliefs are described by the set of desirable gambles D A then she finds desirable any gamble f whose 
uniform expected value 1

2 ( f (h) + f (t)) is greater than 0: she believes that the coin is fair. On the other hand, if she uses the 
larger Dn−A as her set of desirable gambles, then in addition she finds desirable any gamble f with uniform expected value 
of 0 but whose payout in heads is greater than in tails: we take this to represent a belief that the coin is infinitesimally 
biased towards heads, but not by any real amount. While D A is represented by the uniform probability on �, we will 
see that the set of desirable gambles Dn−A cannot be (two-way) represented by any real-valued probability. This will be 
evidenced by the fact that D A satisfies a certain Archimedean condition, which Dn−A fails to satisfy, as we will point out 
informally in Example 4, and formally in Section 3. ♦

In this paper, we will be concerned with the representation of a set of desirable gambles by a set of probabilities. By 
being ‘representable by a set of probabilities’, we could mean two different things: a one-way and a two-way representation. 
A one-way representation of a set of desirable gambles D is a representation that does not completely determine D , but 
instead will determine a sub- or superset of D . In the subset-variant, a representation of D is a set of probability mass 
functions R(D ) with the property that, if every element p of R(D ) assigns a (strictly) positive p-expectation E p to some 
gamble f —so E p( f ) > 0 for all p in R(D )—, then f is desirable. A one-way representation that satisfies this property is 
called ‘almost agreeing’. Blackwell & Girshick [2, Theorem 4.3.1] give necessary conditions on partial preference relations—
which are equivalent to ‘coherence’ for sets of desirable gambles—for the existence of an almost agreeing representation. If 
E p( f ) > 0 for every p in R(D ), then such a representation implies that f ∈ D , but the set {gambles f : (∀p ∈ R(D ))E p( f ) >

0} may be a strict subset of D , as Blackwell & Girshick [2, P. 119] show by means of an example. R(D ) lets us determine all 
the gambles in the interior of D , but will be incapable of determining whether a gamble on the boundary of D is actually 
desirable or not. Such a representation may be useful if we are interested only in determining the interior of D .

If we want to retrieve the complete set D , including its possible non-Archimedean behaviour on its boundary, an almost 
agreeing representation will be insufficiently expressive. Because of this, we are often interested in a representation R(D )

that also respects the converse relation, namely if f ∈ D , then E p( f ) > 0 for all p in R(D ). This is the defining property of 
the superset-variant of a one-way representation of D , which is a set of probability mass functions R(D ) whose elements p
assign (strictly) positive p-expectations to every desirable gamble: for every f in D and every p in R(D ), the p-expectation 
E p( f ) is strictly positive. Not every coherent set of desirable gambles D will have such a representation; we will call 
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Fig. 3. An open set of desirable gambles D two sets of desirable gambles D ′ and D ′′ that are not open.

the ones that have such a representation ‘extendible to a probability’. A set of desirable gambles D being coherent and 
extendible to a probability, however, does not guarantee that we can retrieve D using its (one-way) representation R(D ): 
as shown using an example by Cozman [4]—which we will repeat in Example 7—there are sets of desirable gambles D and 
f /∈ D for which E p( f ) > 0 for all p in R(D ).

In this paper, we want to combine the two one-way representations mentioned above, and are interested in more 
stringent conditions on D that guarantee that R(D ) is actually a two-way representation of D : we want to be able to 
retrieve D by R(D ). This requires that E p( f ) > 0 for all p in R(D ), if and only if f ∈ D .1

Example 2. The set of desirable gambles D A from Example 1 is represented by the singleton R(D A) = {pu} consisting 
of the uniform probability pu on � = {h, t}. More specifically: R(D A) is a two-way representation. Indeed, we have that 
f ∈ D A ⇔ f (h) + f (t) > 0 ⇔ E pu ( f ) > 0, for any gamble f .

The set of desirable gambles Dn−A is also represented by the same R(Dn−A) = {pu}, but this is only a one-way al-
most agreeing representation. Indeed, if E pu ( f ) > 0 then f belongs to D , but not vice versa: For instance the gamble 
f = ( f (h), f (t)) = (1, −1) has a zero uniform expectation 1

2 (1 − 1), but belongs nonetheless to Dn−A . ♦

This picture becomes more complex once we allow for representing sets of probabilities R(D ), instead of singletons. 
Such a set R(D ) represents a set of desirable gambles D that is no longer a half-space. If a set of desirable gambles D
is representable by a set of probabilities, there might be multiple representing sets of probabilities. However, there is one 
unique largest set of representing probabilities, which is always convex. If D is an open set, then its representing convex set 
of probabilities is a closed set, but more sophisticated situations are possible. Being two-way representable is important for 
computational aspects: general sets of desirable gambles are mostly difficult to handle from a computational point of view, 
but convex sets of probabilities, being Archimedean objects, are easier; see Quaeghebeur [16]. We are therefore looking for 
additional requirements on sets of desirable gambles to guarantee that they are two-way representable by a convex (but 
not necessarily closed) set of probabilities.

Example 3. To illustrate the fact stated above, consider the set of desirable gambles D := {gambles f : f (h) > 0 and f (t) >
0} on the possibility space � = {h, t}, as indicated in Fig. 3 above. This D is (two-way) represented by the set of probability 
mass functions {ph, pt}, which consists of the two degenerate probability mass functions ph and pt given by ph(h) = 1 −
ph(t) = 1 and pt(t) = 1 − pt(h) = 1. To see this, consider any gamble f on �, and infer that indeed (∀p ∈ {ph, pt})E p( f ) >
0 ⇔ (E ph ( f ) > 0 and E pt( f ) > 0) ⇔ ( f (h) > 0 and f (t) > 0) ⇔ f ∈ D . The set {ph, pt} is not convex since it does not 
include any probability mass function pα = αph + (1 − α)pt whose probability for heads is α, for any α in (0, 1).

But D is also (two-way) represented by the simplex R(D ) = � of all probability mass functions on �: indeed, for any 
gamble f in D and any probability p in � we have that E ( f ) = p(h) f (h) + (1 − p(h)) f (t) > 0. So we have found two 
different two-way representations: {ph, pt}, and the unique largest �.

Contrast these conclusions with the sets of desirable gambles D ′ := {gambles f : f (h) > 0 and f (t) ≥ 0} and D ′′ :=
{gambles f : f (h) ≥ 0 and f (t) > 0}, indicated in Fig. 3. While D is an open set of desirable gambles, the sets D ′ and 
D ′′ are not open, and this is exemplified by the fact that their representing sets of probabilities are not closed: The set 
R(D ′) = {p ∈ � : 0 < p(h) ≤ 1} represents D ′ and the set R(D ′′) = {p ∈ � : 0 ≤ p(h) < 1} represents D ′′ . As R(D ′) and R(D ′′)
are convex but not closed sets of probabilities, they are not generated by a finitely many extreme points. ♦

We see that the boundary of a set of desirable gambles will play a crucial role in the question whether or not it is 
two-way representable by a set of probabilities. In order to regulate the boundary behaviour, Seidenfeld et al. [21] have 
introduced a continuity condition—which we will refer to as ‘SSK–Archimedeanity’—for partial preference orders, in order 
to ensure representability by a set of probabilities. Translated to our setting, SSK–Archimedeanity requires that adding a 
desirable gamble to an almost-desirable gamble, which is the limit of a converging sequence of desirable gambles, should 
result in a desirable gamble. We refer to Section 3 for a more detailed discussion.

Example 4. Consider the sets of desirable gambles D A and Dn−A defined in Example 1. We will show that D A is an SSK–
Archimedean set of desirable gambles, and Dn−A not, confirming our intuitions from Example 1. For D A , any almost-

1 We use this occasion to correct Seidenfeld et al. [20, Theorem 1.i and Theorem 2.i] which should read as one-way almost agreeing representations.
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Fig. 4. An SSK–Archimedean set of desirable gambles that is not evenly convex set—viewed from three different angles.

desirable gamble g has a non-negative uniform expectation E pu (g) ≥ 0, while any desirable gamble h has a positive uniform 
expectation E pu (h) > 0. Adding them results in a gamble f := g +h whose uniform expectation E pu ( f ) = E pu (g) + E pu (h) >
0 is positive, whence f belongs to D A . Since this is true for any choices of g and h, we conclude that indeed D A is an 
SSK–Archimedean set of desirable gambles.

On the other hand, for Dn−A , note that the gamble g = (g(h), g(t)) = (−1, 1) is almost-desirable (as it is the limit of 
the converging sequence of gambles ((−1 + 1

n , 1 + 1
n ) : n ∈N) whose uniform expectation 1

n is positive), so adding it to the 
desirable gamble h = (1, −1) ∈ Dn−A should result in a desirable gamble f := g + h = 0, which does not belong to Dn−A . 
This confirms that, indeed, Dn−A is not an SSK–Archimedean set of desirable gambles. ♦

Loosely speaking, the reason why there is no two-way representation for Dn−A in Example 4 is because Dn−A is 
“too large”: we say that it is not ‘extendible to a probability’. As we will discuss in Section 3, this is exactly what SSK–
Archimedeanity can pick up.

Not being extendible to a probability is not the only reason why a set of desirable gambles can be non-representable by 
a (set of) probabilities. Indeed, it may happen that a set of desirable gambles D is extendible to a probability, but that it 
still is not ‘regular’ enough to have a two-way representation. It will turn out in Section 3.3 that this type of regularity is 
exactly ‘even convexity’.

Example 5. In this example we will informally introduce a failure of even convexity, while being SSK–Archimedean. This 
example is due to Cozman [4], and we discuss it in more detail in Section 3.3, more specifically in Example 7. Consider a 
ternary possibility space, and the set of desirable gambles indicated in Fig. 4.

While this set of desirable gambles is SSK–Archimedean—and therefore is extendible to a probability—it fails to be 
represented by a set of probabilities, as we will see in Section 3.3. The reason for this is that the ray through the gamble 
indicated by a white dot is a ‘non-exposed extreme’ ray of gambles. Loosely speaking, that this ray is extreme means that 
no gamble of this ray is a convex combination of gambles on other rays, and that this ray is non-exposed means that we 
cannot uniquely isolate it using a hyperplane. We will show in this paper that this is the only type of failure—having a 
non-exposed extreme ray—for an SSK–Archimedean set of desirable gambles to be represented by a set of probabilities. ♦

The results of our paper add to the following literature. Quite recently, Cozman [4] has given an axiomatisation of sets 
of desirable gambles that guarantees a two-way representation. He shows that any evenly convex coherent set of desirable 
gambles—that is, a coherent set of desirable gambles that is an arbitrary intersection of affine open half-spaces—is uniquely 
represented by a convex set of probabilities, and he gives an elegant equivalent requirement in terms of gambles. Very re-
cently, De Cooman [8] added to this with a discussion of Archimedeanity in general Banach spaces. Interestingly, he obtains 
results for arbitrary dimensions, and also for more than binary choices, modelled by imprecise choice functions introduced 
by Seidenfeld, Kadane and Schervish [12,23]. In particular, De Cooman [8] obtains a very strong representation result for 
evenly convex sets of desirable gambles, and derives even a representation result for evenly convex choice functions from it. 
In this paper, we are after a similar result, but specialised to a finite dimension, which lays bare a tighter connection with 
SSK–Archimedeanity, and uses more familiar concepts from convex analysis [18] such as exposed rays.

Almost 25 years earlier, in 1995, Seidenfeld et al. [21] gave an axiomatisation of binary preferences and showed that 
it admits a unique representation in terms of convex sets of probabilities. Since binary preferences are closely related to 
sets of desirable gambles, Seidenfeld et al. [21]’s requirement must be similar to that of even convexity. There is however a 
difference: Seidenfeld et al. [21]’s options between which the subject must state her preferences, are horse lotteries, instead 
of gambles, but Cozman [4] has shown that their ideas can be straightforwardly used for gambles as well. Roughly speaking, 
and after translating results to sets of desirable gambles, here we show that any coherent set of desirable gambles that (i) 
satisfies SSK–Archimedeanity, in the same vein as Cozman [4], and (ii) is the result of a particular extension, which we will 
refer to as ‘SSK–extension’, is uniquely represented by a convex set of probabilities.

In this paper, we will make the arguments of Seidenfeld et al. [21] explicit in the language of gambles. One reason for 
doing so, is to be able to directly compare our results with Cozman [4]’s. There is another, maybe more compelling reason 
for doing so: doing conservative inference [see De Cooman [7] for an overview and connection with logical inference] 
is surprisingly easy with sets of desirable gambles. Given a consistent assessment A that consists of gambles that the 
subject finds desirable, there is always a unique smallest (least informative) coherent set of desirable gambles E (A) that 
includes A. This smallest coherent extension E (A) is called the natural extension [9,17,25]. We will add SSK–Archimedeanity 
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as an optional rationality requirement, and find the unique smallest coherent and SSK–Archimedean set of desirable gambles 
EArch(A)—which we call the SSK–Archimedean natural extension, and characterise the conditions under which it is coherent. 
We will do the same for even convexity, leading to the evenly convex natural extension Ee.c.(A). Quite interestingly, we will 
show that the evenly convex natural extension is equal to the SSK–extension of a set of desirable gambles that is extendible 
to a probability, which shows that the ideas of SSK–extension in Seidenfeld et al. [21], and of even convexity in Cozman [4], 
amount to the same result.

This paper is structured as follows. In Section 2, we review the rationality requirements of sets of desirable gambles, 
and show how they are connected with partial preferences. We use this connection in Section 3 to translate the require-
ment of SSK–Archimedeanity to our setting of sets of desirable gambles. In Section 3.1 we investigate some order-theoretic 
properties of SSK–Archimedean sets of desirable gambles, leading to the SSK–Archimedean natural extension in Section 3.2. 
We review Cozman [4]’s example of a coherent and SSK–Archimedean but not evenly convex set of desirable gambles in 
Section 3.3, showing that SSK–Archimedeanity is not sufficient to obtain a two-way representation. We add the new result 
that it is necessary, however. The missing link—namely, even convexity focused on convex cones—is the subject of Sec-
tion 3.4. Our simpler way to obtain even convexity from an SSK–Archimedean set of desirable gambles will be explained in 
Section 4. Because we need the notion of indifference for the SSK–extension, Section 4.1 reviews how indifference can be 
reconciled with desirability, leading to the definition of the SSK–extension in Section 4.2. We connect this extension with 
even convexity in Section 4.3, leading to the evenly convex natural extension in Section 4.4.

2. Sets of desirable gambles

Consider a finite possibility space �. We will assume throughout that � contains n ∈N distinct elements. A real-valued 
map on � is a gamble. The set of all gambles is denoted by L , which is an n-dimensional linear space under point-
wise addition of gambles, and point-wise scalar multiplication of a gamble with a real number. We attach the following 
interpretation to gambles. A gamble f is an uncertain reward: If the actual outcome turns out to be ω in �, then the 
subject’s capital is changed by the—possibly negative—amount f (ω), described in a linear utility scale.

A set of desirable gambles is a subset of L . It is meant to be the set of all the gambles that the subject (strictly) prefers 
to the status quo indicated by 0. This is the constant gamble that yields 0 in every outcome, so it leaves the subject’s 
capital unchanged whatever happens. Sets of desirable gambles were used by Seidenfeld et al. [20], generalising the work 
of Blackwell & Girshick [2, P. 118], and later extensively, for instance by Walley [25,26], De Cooman and Quaeghebeur [9], 
and Quaeghebeur [17].

2.1. Coherence

Not every set of desirable gambles reflects a rational belief. For example, any gamble f �0—by which we mean f (ω) < 0
for all ω—can never be desirable, since it makes the subject lose capital. We collect these gambles in L�0. On the other 
hand, any gamble f � 0—by which we mean f (ω) > 0 for all ω in �—will be desirable, since the subject’s capital will 
increase certainly. These gambles are collected in L�0.

Only coherent sets of desirable gambles will be used to describe rational beliefs:

Definition 1 (Coherent set of desirable gambles). Let R>0 be the set of all (strictly) positive real numbers. A set of desirable 
gambles D is called coherent if for all f and g in L , and λ in R>0:

D1. 0 /∈ D ;

D2. L�0 ⊆ D ;

D3. if f ∈ D then λ f ∈ D ;

D4. if f , g ∈ D then f + g ∈ D .

We collect all the coherent sets of desirable gambles in D.

Axioms D3 and D4 make a coherent set of desirable gambles D a convex cone: D = posi(D ), where posi is the ‘positive 
hull operator’ defined as2

posi(A) :=
{ m∑

k=1

λk fk : m ∈ N, f1, . . . , fm ∈ A, λ1, . . . , fm ∈R>0

}
for any A ⊆ L .

So any convex cone D that includes the (interior of the) positive orthant L�0, and does not include 0 is a coherent set 
of desirable gambles. This implies that D has nothing in common with the point-wise negative orthant L�0: otherwise, if 

2 posi describes the defining property of convex cones: a set A is a convex cone if and only if posi(A) = A.
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some f �0 would belong to D , then − f �0 so − f ∈ D by Axiom D2, whence 0 = f + (− f ) ∈ D by Axiom D4, which would 
contradict Axiom D1. This is the notion of coherence that Cozman [4] uses, and is a particular instance of the coherence 
discussed by De Cooman and Quaeghebeur [9].

The collection D of all coherent sets of desirable gambles is therefore equal to the collection of all the convex cones 
that include L�0 and does not include 0. This is an intersection structure: for any collection of coherent sets of desirable 
gambles D ⊆ D, their intersection 

⋂
D is a coherent set of desirable gambles: 

⋂
D ∈ D. This is what allows for conservative 

reasoning with sets of desirable gambles. Consider a subset A ⊆ L of gambles that the subject assesses to be desirable, i.e., 
prefers to 0. Such a set A is called an assessment. If we do conservative reasoning, we will look for the implications of this 
assessment using coherence only: we will look for E (A) := ⋂{D ∈ D : A ⊆ D }. If A ⊆ D for at least one coherent D , then 
E (A) is again a coherent set of desirable gambles because D is an intersection structure. Since E (A) is the least informative 
(smallest) coherent set of desirable gambles that includes A, it is called the natural extension of A. The unique smallest 
coherent set of desirable gambles is given by L�0; it is equal to the natural extension E (∅) of no assessment. L�0 is 
therefore called the vacuous set of desirable gambles, indicated by Dv. For more information, we refer to [7,17,20,25].

It is easy to make conservative inferences using sets of desirable gambles. It turns out that, when a given assessment A
can be extended to a coherent set of desirable gambles, then the smallest such extension—its natural extension—is given by

E (A) = posi(A ∪ L�0). (1)

Such an assessment A can be coherently extended precisely when

({0} ∪ L�0) ∩ posi(A) = ∅, (ANP)

and this requirement is called avoiding non-positivity. We refer to De Cooman & Quaeghebeur [9] for a proof of both state-
ments.

We collect the maximal elements of D—that is, the undominated elements of the partial order of coherent set of desirable 
gambles D ordered by ⊆—in D̂:

D̂ := {D ∈ D : (∀D ′ ∈ D)D 
⊂ D ′}.
As shown by Couso & Moral [3] and De Cooman & Quaeghebeur [9], any coherent set of desirable gambles D is maximal 

if and only if

(∀ f ∈ L \ {0})( f ∈ D or − f ∈ D ). (2)

Interestingly, any coherent set of desirable gambles D is dominated by a maximal one; see [9] for a proof. This yields [9, 
Corollary 4] a (two-way) representation of coherent sets of desirable gambles: for any coherent set of desirable gambles D , 
it holds that

D =
⋂

{D ′ ∈ D̂ : D ⊆ D ′}, (3)

so that the collection {D ′ ∈ D̂ : D ⊆ D ′} of maximal sets of desirable gambles, is a representation of D .

2.2. Partial preferences

Every set of desirable gambles corresponds uniquely to a preference relation ≺ on L , which is a vector ordering on L , 
meaning that it satisfies f ≺ g ⇔ λ f + h ≺ λg + h, for all gambles f , g and h, and all positive real numbers λ. Given a set 
of desirable gambles D , the corresponding preference relation is given by f ≺ g ⇔ g − f ∈ D for all gambles f and g , and 
vice versa, given a preference relation ≺, the corresponding set of desirable gambles is given by D = { f ∈ L : 0 ≺ f }. The 
two operations commute.

A set of desirable gambles is coherent if and only if its corresponding preference relation ≺ is a strict partial order—
meaning that it is irreflexive and transitive—that includes �—meaning that f � g ⇒ f ≺ g , for all gambles f and g .

2.3. A slightly stronger notion of coherence

Mostly, for instance in [6,9,17], a slightly stronger notion of coherence is used. They consider any gamble f > 0—by which 
we mean f (ω) ≥ 0 for any ω in � and f (ω) > 0 for some ω in �—automatically desirable, since the subject’s capital can 
never decrease and might increase. These gambles are collected in L>0. Therefore, they use a stronger requirement and 
replaced Axiom D2 by

D′
2. L>0 ⊆ D .

This norm of coherence is less obvious to connect with the work of Cozman [4] and Seidenfeld et al. [21], which is why we 
will refer to Axioms D1–D4 as our notion of ‘coherence’.
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Interestingly, using the stronger variant Axiom D′
2 implies

D5. If f ∈ D and g > f then g ∈ D , for all f and g in L .

Indeed, if g > f then g − f ∈ L>0, which by Axiom D′
2 belongs to D . Assuming that f ∈ D , Axiom D4 implies then that 

g = f + (g − f ) indeed belongs to D .
We could opt to add Axiom D5 as a rationality requirement, and use Axioms D1–D5 as our notion of ‘coherence’. Adding 

it avoids for instance the classification of the set D = { f ∈ L : f (h) > 0 or ( f (h) = 0 and f (t) < 0)} as coherent, which 
may be natural thing to avoid as D contains for instance the gamble f = ( f (h), f (t)) = (0, −1), which is dominated by 0. 
Axiom D5 is closed under arbitrary intersections, so we would still yield an intersection structure, which therefore allows 
for conservative reasoning, too. The expression (1) for the natural extension would then become E (A) = posi({g : (∃ f ∈
A) f ≤ g} ∪ L�0), and the requirement (ANP) would become L≤0 ∩ posi(A) = ∅, where we used the notation L≤0 := { f ∈
L : (∀ω ∈ �) f (ω) ≤ 0} to indicate the set of (pointwise) non-positive gambles, but other than that, the results in our paper 
would remain valid mutatis mutandis. Since omitting Axiom D5 is in line with the choice of Cozman [4] and also of De 
Cooman and Quaeghebeur [9], and yields a more general theory, we opt here to not require Axiom D5 as a standard of 
coherence, but instead stick with Axioms D1–D4 as our notion of ‘coherence’.

3. SSK–Archimedeanity

Seidenfeld et al. [21] introduce a type of Archimedeanity that we will call ‘SSK–Archimedeanity’. They show that SSK–
Archimedeanity is necessary for even convexity in their setting, which is preference relations over horse lotteries. In order to 
use their ideas in the present context, let us spell out here what horse lotteries are. Consider a countable set R of rewards. 
Any real-valued map H on � × R such that

H(ω, r) ≥ 0 for all r in R, and
∑
r∈R

H(ω, r) = 1

for any ω in �, is called a horse lottery. The idea behind a horse lottery H is that it returns, for every outcome ω in �, a 
probability mass function H(ω, · ) over R , and a subject may describe her beliefs about which element ω of � is true by 
specifying a preference relation ≺ over the set of horse lotteries.

In Seidenfeld et al. [21]’s setting SSK–Archimedeanity is expressed as follows. A preference relation ≺ (on horse lotteries) 
is SSK–Archimedean if for every sequence of horse lotteries H1, H2, . . . , that converges to a horse lottery H ,3 every sequence 
M1, M2, . . . , that converges to M , and all horse lotteries J and N:

if (∀k)Hk ≺ Mk and M ≺ N then H ≺ N; (Arch-a)

if (∀k)Hk ≺ Mk and J ≺ H then J ≺ M. (Arch-b)

We will now interpret ≺ as a preference relation on gambles, with corresponding set of desirable gambles D . We will 
call a set of desirable gambles SSK–Archimedean if its corresponding preference relation ≺ satisfies the Equations (Arch-a)
and (Arch-b) above.4

In the context of horse lottery, requirements (Arch-a) and (Arch-b) are not equivalent. However, if Hk , Mk , J and N are 
gambles, it turns out that both expressions are equivalent to each other, and also to the following convenient expression:

Proposition 2. Consider any set of desirable gambles D . Then D is SSK–Archimedean if and only if

cl(D ) + D ⊆ D . (Arch)

Here, the addition A + B of two sets A and B is taken to be the Minkowski addition, defined as

A + B = {a + b : a ∈ A and b ∈ B},
and cl(D ) is the (topological) closure of D . Because L is a metric space, we have that a gamble f belongs to cl(D ) if 
and only if there is a sequence f1, f2, . . . of gambles in D that converges to f . Note that 0 ∈ cl(D ) for any set of desirable 
gambles D that satisfies Axiom D2, whence D ⊆ cl(D ) + D , so the requirement (Arch) specialises to cl(D ) + D = D , for sets 
of desirable gambles D that satisfy Axiom D2.

3 We take this convergence to be point-wise convergence: limk→∞ Hk = H—which we indicate by Hk → H—if and only if limk→∞ Hk(ω, r) = H(ω, r) for 
every ω in � and r in R.

4 The embedding of the horse lotteries in a linear space can be done using the embedding by Hausner [11, Chapter 7]. In this paper, we do not focus on 
this embedding, but we rather use it to translate the idea of SSK–Archimedeanity of Seidenfeld et al. [21] expressed in terms of horse lotteries.
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Fig. 5. The vacuous set of desirable gambles Dv.

Proof of Proposition 2. We first prove necessity. Assume that D is SSK–Archimedean, meaning that its corresponding pref-
erence relation ≺ on gambles satisfies the requirements (Arch-a) and (Arch-b). We need to show that cl(D ) + D ⊆ D , or, in 
other words, that f + g ∈ D for every f in cl(D ) and g in D . So consider any f in cl(D ) and g in D . Then there is a sequence 
f1, f2, . . . of gambles in D that converges to f . Define the sequences of gambles Hk := 0 → H := 0, Mk := fk → M := f , and 
the gamble N := g + f . Since, for every k, fk = Mk is desirable, we have that Hk = 0 ≺ Mk . Similarly, since g = N − M is 
desirable, we have that 0 ≺ N − M , or in other words, M ≺ N . From the requirement (Arch-a), we infer that H ≺ N , or in 
other words, that 0 ≺ g + f , so that indeed g + f ∈ D .

We now turn to sufficiency. Assume that D satisfies cl(D ) + D ⊆ D , meaning that f + g ∈ D for every sequence f1, f2, 
. . . in D that converges to f , and every g in D . We need to show that the corresponding preference relation satisfies the 
requirements (Arch-a) and (Arch-b).

For requirement (Arch-a), consider any sequences of gambles Hk → H and Mk → M and any gamble H . Assume that 
Hk ≺ Mk for all k, and M ≺ N . We need to show that then H ≺ N . To this end, define the sequence of gambles fk :=
Mk − Hk → f := M − H , and the gamble g := N − M . For every k, we have 0 ≺ Mk − Hk = fk , so fk ∈ D . Similarly, we have 
0 ≺ N − M = g , so g ∈ D . By the assumption, we have that f + g ∈ D , or in other words, 0 ≺ f + g , whence 0 ≺ N − H , so 
indeed H ≺ N .

For requirement (Arch-b), consider any sequences of gambles Hk → H and Mk → M and any gamble J . Assume that 
Hk ≺ Mk for all k, and J ≺ H . By considering the gambles fk := Mk − Hk → f := M − H , and the gamble g := H − J , we 
find that indeed J ≺ N using a very similar argument as above. �

If D is coherent, then its (topological) closure is given by cl(D ) = { f ∈ L : (∀ε ∈ R>0) f + ε ∈ D }, so that f ∈ cl(D ) ⇔
(∀ε ∈ R>0) f + ε ∈ D , for any gamble f . We collect all the SSK–Archimedean sets of desirable gambles in the set DArch :=
{D ⊆ L : D satisfies (Arch)}, and the coherent SSK–Archimedean sets of desirable gambles in DArch := D ∩ DArch.

Example 6. The goal of this example is to provide insight in SSK–Archimedeanity by giving explicit examples of coher-
ent SSK–Archimedean and non-SSK–Archimedean sets of desirable gambles. It formally confirms the ideas of Example 4. 
Consider a binary possibility space � = {h, t}.

Let us start with the vacuous set of desirable gambles Dv := L�0; see Fig. 5 for a graphical representation.
A dotted line indicates a boundary that is not included in Dv, and a white dot is a gamble that is not included in Dv. 

Dv is SSK–Archimedean. To show this, note that cl(Dv) = L≥0, which collects the gambles f for which f (ω) ≥ 0 for all ω
in �. Then, for any gambles f in cl(Dv) and g in Dv, indeed f + g ∈ L�0 = Dv.

Let us now move to a more general (but finite) possibility space � = {ω1, ω2, . . . , ωn}. We will give (i) a coherent set of 
desirable gambles that is SSK–Archimedean, and (ii) one that is not.

For (i), given a probability mass function p on � (so p(ωk) ≥ 0 for every ωk in �, and 
∑n

k=1 p(ωk) = 1), we define the 
corresponding set of desirable gambles

D p := { f ∈ L : E p( f ) > 0} (4)

as the set of gambles f with positive p-expectation E p( f ) := ∑n
k=1 p(ωk) f (ωk). We can think of D p as a linear half-space, 

so it is clearly a coherent set of desirable gambles: it is a convex cone that includes L�0 and does not include 0. Because 
it will turn out useful for later reference, we will collect all the probability mass functions in the set �. Fig. 6 shows a 
graphical representation of D p in the binary possibility space {h, t}, where p is the uniform probability mass function on 
{h, t}.

We claim that, for any p in �, the coherent set of desirable gambles D p is SSK–Archimedean. To see this, note that 
cl(D p) = { f ∈ L : E p( f ) ≥ 0}. Consider any f in cl(D p) and g in D p , then E p( f ) ≥ 0 and E p(g) > 0, whence E p( f + g) > 0
so indeed f + g ∈ D p .

As a more general example, consider any coherent set of desirable gambles D that is open, in the sense that D coincides 
with its (topological) interior int(D ). Such a D is SSK–Archimedean. To this end, consider any f in D and g in cl(D ), and 
we will see that f + g belongs to D . Since D coincides with its interior int(D ) = {h ∈ L : (∃δ ∈R>0)h − δ ∈ D }, this means 
that f − δ ∈ D ⊆ cl(D ) for some real δ > 0. Because D is coherent, it is a convex cone, and therefore so is its closure cl(D ), 
meaning that h := f + g − δ ∈ cl(D ). That h belongs to cl(D ) means that h + ε ∈ D for every real ε > 0. By considering 
ε = δ, we find that indeed f + g = h + δ ∈ D .
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Fig. 6. A set of desirable gambles D p corresponding to the uniform probability mass function p = (1/2,1/2).

Fig. 7. A coherent maximal set of desirable gambles D̂ .

For (ii), to give a coherent set of desirable gambles that is not SSK–Archimedean, consider a maximal set of desirable 
gambles D̂ , as described by Equation (2). We can think of a coherent maximal set of desirable gambles as a convex superset 
of a D p that includes a maximally large part of its boundary, without including 0. An example of a coherent maximal set of 
desirable gambles on a binary possibility space is depicted in Fig. 7.

We now prove our claim that any coherent maximal set of desirable gambles D̂ is not SSK–Archimedean. Consider a 
gamble g in D̂ on its boundary, so that (∀ε > 0)g − ε /∈ D̂ . Then g ∈ D̂ and, since g − ε /∈ D̂ , by the characteristic property 
of coherent maximal sets of desirable gambles in Equation (2), we have −g + ε ∈ D̂ for every ε in R>0, so −g ∈ cl(D̂ ). But 
g − g = 0 does not belong to D̂ , by coherence, and therefore indeed D̂ + cl(D̂ ) � D̂ . ♦

3.1. SSK–Archimedeanity and probabilities

Let us make a digression towards probabilities, and state some well-known facts about the connection between coherent 
sets of desirable gambles, lower previsions and sets of probability mass functions. Given any coherent set of desirable 
gambles D , we let its corresponding lower prevision P D be the functional on L that maps every gamble to its supremum 
acceptable buying price:

P D ( f ) := sup{μ ∈ R : f − μ ∈ D } for every gamble f .

So a lower prevision is a real-valued functional. Similarly, its corresponding upper prevision P D is the infimum acceptable 
selling price:

P D ( f ) := inf{μ ∈R : μ − f ∈ D } for every gamble f .

By the coherence of D , we have that P D ( f ) ≤ P D ( f ), for every f in L (see Walley [25, Section 2.3.5]). Moreover, P D and 
P D are related by conjugacy: P D ( f ) = −P D (− f ) for every f in L (see Walley [25, Section 2.3.5] for more information), so 
we may focus on either one of them. One may use P D to retrieve the closure cl(D ) of D : it follows that cl(D ) = { f ∈ L :
P D ( f ) ≥ 0}. Also D ’s (topological) interior int(D ) = { f ∈ L : (∃δ ∈R>0) f − δ ∈ D } can be retrieved using P D : it turns out 
that int(D ) = { f ∈ L : P D ( f ) > 0}. We refer to De Bock [6, Section 2.3] for more information about this.

We call a lower prevision P coherent if there is a coherent set of desirable gambles D such that P = P D . Coherence has 
an equivalent definition directly in terms of P (see, for instance, Walley [25, Section 2.3.3] or Miranda [14, Section 2.1]), but 
this is of no importance in this paper. Given a coherent lower prevision P , we collect in P(P ) the set of probability mass 
functions whose expectation dominates P :
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Fig. 8. The credal set P = {p ∈ � : 1
3 ≤ p(a) ≤ 2

3 and p(b) = p(c)} and its two-dimensional affine hull aff(P).

P(P ) = {p ∈ � : (∀ f ∈ L )P ( f ) ≤ E p( f )} = {p ∈ � : P ≤ E p}, (5)

where we used the notation P ≤ E p to indicate P ( f ) ≤ E p( f ) for all f in L . The set P(P ) is called the credal set. It is a 
closed and convex non-empty set of probability mass functions, and in a one-to-one correspondence with a lower prevision: 
given an arbitrary credal (closed and convex) set of probabilities P, its corresponding lower prevision P P is

P P( f ) := min{E p( f ) : p ∈ P} for every gamble f .

Both operations (of going from P to P(P ) and going from P to P P) commute; see Walley [25, Section 3.3.3] for a proof and 
Miranda & de Cooman [15, Section 2.2.2] for more information.

Note that the interior int(P) of a credal set P may be empty. Indeed, in a ternary possibility space � = {a, b, c}, the set 
{p ∈ � : 1

3 ≤ p(a) ≤ 2
3 and p(b) = p(c)} as indicated in Fig. 8—which is non-empty, closed and convex, and therefore a valid 

credal set—has empty interior. This is because P is a subset of an affine space of lower dimension—of dimension 2 in this 
case. The smallest affine space that includes any set C is its affine hull aff(C). It is given by

aff(C) :=
{ m∑

k=1

λk fk : m ∈N, f1, . . . , fm ∈ C, λ1, . . . , λm ∈R,

m∑
k=1

λk = 1
}
.

It can always be written as aff(C) = { f }+ K , where K is a linear space, and f a point in C ; see Rockafellar [18, Theorem 1.2]. 
When 0 ∈ aff(C), this affine hull is actually its linear hull span(C), so:

aff(C) = span(C) :=
{ m∑

k=1

λk fk : m ∈N, f1, . . . , fm ∈ C, λ1, . . . , λm ∈R
}
.

On the other hand, the relative interior [18, Section 6] of a non-empty convex set in a finite-dimensional space is never 
empty. For any convex set C ⊆Rn , its relative interior ri(C) is defined as the interior of C when C is regarded as a subset 
of its affine hull aff(C), rather than of the complete n-dimensional space:

ri(C) := {x ∈ aff(C) : (∃ε ∈R>0)({x} + εBn) ∩ aff(C) ⊆ C}, (6)

where Bn := {x ∈Rn : |x| < 1} is the Euclidean unit ball in Rn .
If C is non-empty, then so is its relative interior ri(C), whereas the interior int(C) may be empty. When int(C) is non-

empty, then it is equal to its relative interior ri(C). Going back to the example above, we have ri(P) = {p ∈ P : 1
3 < p(a) <

2
3 and p(b) = p(c)}. Because we will need them later on, we will mention the following two useful facts about the relative 
interior, proved by Rockafellar [18]:

Theorem 3 ([18, Theorem 6.1]). Let C be a non-empty convex set in a finite-dimensional space, and x ∈ ri(C) and y ∈ cl(C). Then 
(1 − λ)x + λy ∈ ri(C) for every real λ in [0, 1).

Theorem 4 ([18, Theorem 6.4]). Let C be a non-empty convex set in a finite-dimensional space. Then z ∈ ri(C) if and only if

(∀x ∈ C)(∃μ > 1)((1 − μ)x + μz ∈ C).

Lower previsions—and credal sets—are less expressive than sets of desirable gambles. Given a coherent lower prevision P , 
there may be multiple coherent sets of desirable gambles D such that P D = P , the smallest of which is { f ∈ L : P ( f ) > 0}. 
Moreover, it follows from De Bock [6, Equation (2.8)] that any set of desirable gambles D ′ between int(D ) and cl(D ) has 
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the same lower prevision: P D ′ = P D . This means that lower previsions cannot distinguish between sets of desirable gambles 
with the same interior but different boundaries.

This implies that the credal set P(D ) := P(P D ) based on a coherent set of desirable gambles D (through its lower 
prevision P D ) is given by

P(D ) = {p ∈ � : (∀ f ∈ D )E p( f ) ≥ 0} = {p ∈ � : int(D ) ⊆ D p}, (7)

which is non-empty. This follows from Seidenfeld et al. [20, Theorem 1], and the core of the result was already present 
in Blackwell & Girshick [2, Theorem 4.3.1]. Here we give a short argument focused on our current setting, based on the 
same ideas. Note that P(D ) = {p ∈ � : P D ≤ E p}, using Equation (5). We will first show that P D ≤ E p ⇔ (∀ f ∈ D )E p( f ) ≥ 0, 
establishing the first identity. To this end, infer the following chain of equivalence:

(∀ f ∈ L )P D ( f ) ≤ E p( f ) ⇔ (∀ f ∈ L )0 ≤ E p
(

f − P D ( f )︸ ︷︷ ︸
∈cl(D )

) ⇔ (∀g ∈ cl(D ))0 ≤ E p(g).

This last equivalent statement implies (∀g ∈ D )0 ≤ E p(g). To show that it is also implied by this, consider any g in cl(D ). 
Then g + ε ∈ D for all ε > 0, so that 0 ≤ E p(g + ε) = E p(g) + ε for all ε > 0 by the assumption. But then indeed necessarily 
0 ≤ E p(g).

To prove the second identity, note that indeed (∀ f ∈ D )E p( f ) ≥ 0 ⇔ D ⊆ cl(D p) ⇔ int(D ) ⊆ int(D p) = D p , where the 
first equivalence follows from the definition of D p in Equation (4).

To summarise: given a coherent set of desirable gambles D and any gamble f , we have

f ∈ D ⇒ P D ( f ) ≥ 0 ⇔ (∀p ∈ P(D ))E p( f ) ≥ 0 ⇔ f ∈ cl(D ), (8)

and

f ∈ int(D ) ⇔ P D ( f ) > 0 ⇔ (∀p ∈ P(D ))E p( f ) > 0 ⇒ f ∈ D , (9)

but P(D ) cannot generally reconstruct D : it is no two-way representation of D .
We can use this, and the observation in Example 6 that any D p is SSK–Archimedean, to show that the largest SSK–Archi-

medean coherent sets of desirable gambles are actually the D p :

Proposition 5. The maximal elements of DArch—that is, the elements of DArch that are no strict subset of other elements of DArch—are 
precisely {D p : p ∈ �}. In other words, if we define

D̂Arch := {D ∈ DArch : (∀D ′ ∈ DArch)D 
⊂ D ′}
as the maximal elements of DArch , we have

D̂Arch = {D p : p ∈ �}. (10)

Proof. We will show that Equation (10) holds: we will show (i) that D̂Arch ⊇ {D p : p ∈ �} and (ii) that D̂Arch ⊆ {D p : p ∈ �}.
For (i), to show that any D p belongs to D̂Arch, infer from Example 6 that D p ∈ DArch. We show that it is no strict subset 

of another set of desirable gambles in DArch. To this end, assume ex absurdo that there is some D ′ in DArch such that 
D p ⊂ D ′ . Since D ′ is a coherent set of desirable gambles, it is dominated by a maximal one, say D ′′ ∈ D̂, so D p ⊂ D ′ ⊆ D ′′ , 
and therefore int(D p) ⊆ int(D ′′). But then P(D ′′) ⊆ P(D p), using the second identity in Equation (7). Furthermore, infer 
from Equation (4) that int(D p) = D p , whence P(D p) = {p}, again using the second identity in Equation (7). But D ′′ is a 
coherent set of desirable gambles, so P(D ′′) is non-empty, and therefore P(D ′′) = {p}. Using Equation (9), this would imply 
that int(D ′′) = { f ∈ L : E p( f ) > 0} = D p . In turn, this would imply that int(D ′) = D p , and hence that D ′ contains a part 
of the boundary of D p . To show that this is impossible, consider any g in D ′ on the boundary of D p . Then E p(g) = 0, 
so E p(−g) = 0, whence −g ∈ cl(D p) ⊆ cl(D ′), so by the SSK–Archimedeanity of D ′ , we would infer that g − g = 0 ∈ D ′ , 
contradicting the coherence of D ′ . This proves that D p is no strict subset of another set of desirable gambles in DArch, as 
desired.

For (ii), to show that all the maximal SSK–Archimedean coherent sets of desirable gambles are of this form, assume 
ex absurdo that D̂Arch � {D p : p ∈ �}. Since we have already established that D̂Arch ⊇ {D p : p ∈ �}, this would mean that 
D̂Arch ⊃ {D p : p ∈ �}. We will show that this is impossible. To this end, consider any D in D̂Arch \ {D p : p ∈ �}. Let P(D )

be the credal (closed and convex) set of probability mass functions corresponding with D , given by Equation (7), which is 
non-empty by the coherence of D , and therefore its relative interior ri(D ) is also non-empty. Use Proposition 7 below to 
infer that then D ⊆ D p for all p in ri(D ), so D is dominated by an element of DArch, a contradiction with the fact that D is 
maximal. �
Lemma 6. Consider any coherent set of desirable gambles D that is SSK–Archimedean. Then P D ( f ) > 0 for all f in D .
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Proof. Consider any f in D . Assume ex absurdo that P D ( f ) = 0, then necessarily P D ( f ) = 0. Using the conjugacy of P D

and P D , this would imply that P D (− f ) = −P D ( f ) = 0, so − f ∈ cl(D ) by Equation (8). By the SSK–Archimedeanity of D , 
we would infer that f − f = 0 ∈ D , which contradicts the coherence of D . Therefore indeed P D ( f ) > 0. �
Proposition 7. Every element of DArch is dominated by a maximal element. More precisely: Consider any coherent set of desirable 
gambles D that is SSK–Archimedean. Then D ⊆ D p for every p in the non-empty relative interior ri(P(D )) of P(D ) given by Equa-
tion (7).

Proof. Consider any p∗ in ri(P(D )) and assume ex absurdo that D � D p∗ . This would imply that there is some f in D
such that E p∗ ( f ) ≤ 0. We now use Theorem 4 above to infer that, for any p′ in P(D ), there is a real μ > 1 such that the 
probability mass function p′′ := (1 −μ)p′ +μp∗ belongs to P(D ). By Equation (8) then E p′′ ( f ) ≥ 0 and E p′ ( f ) ≥ 0, so using 
the linearity of the expectation operators, we would infer that

E p′′( f )︸ ︷︷ ︸
≥0

= (1 − μ)E p′( f )︸ ︷︷ ︸
≤0

+μE p∗( f )︸ ︷︷ ︸
≤0

,

whence E p′ ( f ) = 0. Since the choice of p′ in P(D ) was arbitrary, this implies that P D ( f ) = P D ( f ) = 0. This is a contradic-
tion with the fact that P D ( f ) > 0 for all f in D , established in Lemma 6 above. �

This brings us to one of the general claims of this paper that for any coherent set of desirable gambles D , the re-
quirements of SSK–Archimedeanity and SSK–extension are sufficient and necessary for a representation of D in terms of 
probabilities. More precisely, we will show that any coherent set of desirable gambles D that is extendible to a probability 
and is the result of an SSK–extension, is an intersection of D p , with p in D ’s representing set R(D ) of probability mass 
functions. By Proposition 7 we already know that any SSK–Archimedean coherent set of desirable gambles will be a subset 
of intersections of D p , but we will show that, using SSK–extension, we have an equality, which is therefore a two-way 
representation of such sets of desirable gambles.

3.2. SSK–Archimedean natural extension

In this section we want to connect SSK–Archimedeanity to the concept of natural extension, which we discussed in 
Section 2.1. The questions we ask, are “When can a set of desirable gambles be extended to a coherent one that satisfies 
SSK–Archimedeanity?”, and “What does the smallest of these extensions look like?” To answer these, note first that the 
property of being SSK–Archimedean is closed under arbitrary intersections:

Proposition 8. Consider an arbitrary non-empty collection D ⊆ DArch of sets of desirable gambles that are SSK–Archimedean. Then 
their intersection 

⋂
D is a set of desirable gambles that is SSK–Archimedean.

Proof. We need to prove that cl(
⋂

D) + ⋂
D ⊆ ⋂

D. For any arbitrary intersection, we have [see, for instance Dugundji [10, 
Chapter 3, Section 4.5]] that cl(

⋂
D) ⊆ ⋂

D ∈D cl(D ).5 So we infer that cl(
⋂

D) + ⋂
D ⊆ ⋂

D ∈D cl(D ) + ⋂
D.

We will now show the intermediate result that 
⋂

D ∈D cl(D )+⋂
D ⊆ ⋂

D ∈D(cl(D )+ D ). To this end, consider any gamble 
f in 

⋂
D ∈D cl(D ) + ⋂

D. This means that

(∃g,h ∈ L )(∀D ∈ D)(g ∈ cl(D ) and h ∈ D and f = g + h).

Therefore, in particular

(∀D ∈ D)(∃g ∈ cl(D ),∃h ∈ D ) f = g + h,

whence f ∈ cl(D ) + D for every D in D, so indeed f ∈ ⋂
D ∈D(cl(D ) + D ).

We conclude that indeed cl(
⋂

D) + ⋂
D ⊆ ⋂

D ∈D cl(D ) + ⋂
D ⊆ ⋂

D ∈D(cl(D ) + D ) ⊆ ⋂
D ∈D D = ⋂

D, where the last 
inclusion follows from our assumption that every D in D is SSK–Archimedean. �

We have already seen in Section 2.1 that D is an intersection structure—meaning that coherence is closed under (ar-
bitrary) intersections. Therefore, the set DArch is an intersection structure as well: for any collection of coherent and 
SSK–Archimedean sets of desirable gambles D ⊆ DArch, their intersection 

⋂
D is a coherent and SSK–Archimedean set of 

desirable gambles, so 
⋂

D ∈ DArch.

5 If D is a collection of coherent sets of desirable gambles, we actually have an equality: Since there is a gamble that belongs to the relative interior of 
every coherent set of desirable gambles (for instance, the constant gamble 1), we can use Rockafellar [18, Theorem 6.5], which yields this equality. But if 
the collection D consists of sets of desirable gambles that are not necessarily coherent, we only have inclusion.
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We already know from Proposition 5 that D p is SSK–Archimedean and coherent, for every p in �. Therefore, Proposi-
tion 8 implies that L�0 = ⋂{D p : p ∈ �} is a coherent and SSK–Archimedean set of desirable gambles. Since this is the 
unique smallest coherent one, it is also the unique smallest coherent and SSK–Archimedean one.

As we will see, the notion of “extendibility to a probability” will characterise the coherent sets of desirable gambles that 
can be coherently extended to one that satisfies SSK–Archimedeanity:

Definition 9 (Extendibility to a probability). Consider any assessment A ⊆ L . We say that A is extendible to a probability when

(∃p ∈ �) A ⊆ D p. (extendibility)

Lemma 10. Consider any assessment A ⊆ L . If A is extendible to a probability then

(i) A avoids non-positivity;
(ii) E (A) is extendible to a probability.

Proof. Since A is extendible to a probability, we have that A ⊆ D p for some p in �. To show (i) that A avoids non-
positivity (ANP), we need to show that ({0} ∪ L�0) ∩ posi(A) = ∅. Note that D p is a convex cone, so D p = posi(D p), and 
therefore posi(A) ⊆ D p . But 0 nor any gamble f in L�0 has a positive p-expectation: E p(0) = 0 and E p( f ) ≤ 0, so 0 nor f
can indeed not belong to posi(A).

To show (ii) that E (A) is extendible to a probability, note that (i) already implies that A’s natural extension E (A) is 
coherent, which is then the smallest coherent set of desirable gambles that includes A. Since we already know that D p is a 
coherent set of desirable gambles that includes A, we infer that indeed E (A) ⊆ D p . �

Proposition 7 tells us that any coherent and SSK–Archimedean set of desirable gambles is extendible to a probability. But 
there is a closer connection between this property and SSK–Archimedeanity. Indeed, ‘extendibility to a probability’ plays a 
role similar to that of ‘avoiding non-positivity’ (ANP): as it turns out, it expresses the condition under which it is possible 
to extend an assessment to an SSK–Archimedean coherent set of desirable gambles:

Theorem 11. For any set of gambles A ⊆ L , we define the SSK–Archimedean natural extension EArch as6

EArch(A) :=
⋂

{D ∈ DArch : A ⊆ D }.
Consider any assessment A ⊆ L , then the following statements are equivalent:

(i) A is extendible to a probability [i.e., satisfies (extendibility)];

(ii) A is included in a coherent and SSK–Archimedean set of desirable gambles;

(iii) EArch(A) 
= L ;

(iv) The set of desirable gambles EArch(A) is coherent and SSK–Archimedean;

(v) EArch(A) is the smallest coherent and SSK–Archimedean set of desirable gambles that includes A.

When any, and hence all, of these equivalent statements hold, then

EArch(A) = cl(E (A)) + E (A),

where E is the natural extension defined in Equation (1).

Proof. It follows from the fact that DArch is an intersection structure (as a consequence of Proposition 8), the definition of 
EArch(A), and the fact that L is not a coherent set of desirable gambles, that the four statements (ii)–(v) are equivalent. 
Next, we prove that (i)⇔(ii).

To show that (i)⇒(ii), it suffices to note that D p is a coherent and SSK–Archimedean set of desirable gambles, as shown 
in Proposition 5.

To show that (ii)⇒(i), assume that (ii) holds: let A ⊆ D for some D in DArch. Then, by Proposition 7, D ⊆ D p for all p in 
ri(P(D )), which is non-empty by the coherence of D . This implies that indeed A ⊆ D p for some p in �.

Finally, we prove that EArch(A) = cl(E (A)) + E (A) whenever any (and hence all) of the equivalent statements (i)–(v) 
hold. To this end, we will show that D∗ := cl(E (A)) + E (A) is the smallest coherent and SSK–Archimedean set of desirable 
gambles that includes A. Using statement (v) it then follows that D∗ equals EArch(A).

6 As usual, we let ⋂∅ = L .
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First, we show that D∗ is coherent.
For Axiom D1, consider any h in D∗ . Then h = f + g for some f in E (A) and g in cl(E (A)). By statement (i), we have 

that A is extendible to a probability, and therefore, using Lemma 10 above, so is E (A). This implies that E p( f ) > 0 and 
E p(g) ≥ 0 for some p in �, so, by the linearity of the expectation operators, we have that E p(h) = E p( f + g) > 0. Therefore 
indeed h 
= 0.

For Axiom D2, consider any f in L�0. Then f ∈ E (A) by the coherence of E (A). Since 0 ∈ cl(E (A)) [to see this, 
infer that the sequence of constant gambles 1

k → 0 belongs to E (A) by the coherence of E (A)], this implies that indeed 
f = f + 0 ∈ D∗ .

D∗ satisfies Axioms D3 and D4—requiring that D∗ be a convex cone—because it is the Minkowski addition of two convex 
cones.

So D∗ is a coherent set of desirable gambles. We now show that it is also SSK–Archimedean. We use the fact that 
cl(C1) + cl(C2) ⊆ cl(C1 + C2) for any convex sets C1 and C2 to show, indeed:

cl(D∗) + D∗ = cl(cl(E (A)) + E (A)) + cl(E (A)) + E (A)

⊆ cl(cl(E (A)) + E (A) + E (A)) + E (A)

= cl(cl(E (A)) + E (A)) + E (A)

⊆ cl(cl(E (A)) + cl(E (A))) + E (A)

= cl(cl(E (A))) + E (A) = cl(E (A)) + E (A) = D∗

where we used D + D = D in the third line, and cl(D ) + cl(D ) = cl(D ) in the fifth line, for any coherent set of desirable 
gambles D .

So now we know that D∗ is coherent and SSK–Archimedean, and it clearly includes A: to see this, note that A ⊆ E (A)

and 0 ∈ cl(E (A)), whence A ⊆ E (A) ⊆ E (A) + cl(E (A)). But is it also the smallest such set? To show that this is indeed 
the case, note that any coherent set of desirable gambles that includes A must include E (A), its natural extension, so 
E (A) ⊆ D∗ , and therefore E (A) + cl(E (A)) ⊆ D∗ + cl(E (A)). But cl(E (A)) ⊆ cl(D∗), whence, by the SSK–Archimedeanity 
of D∗ , indeed E (A) + cl(E (A)) ⊆ D∗ . This means that D∗ is indeed the smallest coherent and SSK–Archimedean set of 
desirable gambles that includes A, and is therefore, by statement (v), equal to EArch(A). �

Theorem 11 above implies in particular that the SSK–Archimedean natural extension EArch(D ) of any coherent set of 
desirable gambles D that is extendible to a probability, is given by D + cl(D ). The set of desirable gambles D and its SSK–
Archimedean natural extension D + cl(D ) are closely related: we have D ⊆ D + cl(D ) ⊆ cl(D ). Indeed, that D ⊆ D + cl(D )

follows from the fact that 0 ∈ cl(D ), as already noted immediately after Proposition 2. To see the second inclusion, note that 
indeed D + cl(D ) ⊆ cl(D ) + cl(D ) = cl(D ). This argument shows that D and D + cl(D ) coincide except for their boundary. 
More specifically, D +cl(D ) contains D and may contain additional gambles on D ’s boundary. This implies that the interiors 
of D and its SSK–Archimedean natural extension are equal: int(D ) = int(D + cl(D )), and hence D and D + cl(D ) have the 
same credal set P(D ) = P(D + cl(D )) by Equation (7). Lemma 26 later on establishes a strengthening of this idea.

3.3. No two-way representation & even convexity

By collecting in

R(A) := {p ∈ � : A ⊆ D p} (11)

all probability mass functions p for which D p dominates A, then A ⊆ ⋂{D p : p ∈ R(A)}. For a coherent set of desirable 
gambles D this implies a one-way representation7:

D ⊆
⋂

{D p : p ∈ R(D )} (12)

and R(D ) 
= ∅ if and only if D is extendible to a probability.
The one-way representation is done using the set {D p : p ∈ R(D )}, which contains, by Proposition 5, the maximal ele-

ments of DArch that dominate D . Moreover, if D is SSK–Archimedean, by Proposition 7 we have that ri(P(D )) ⊆ R(D ) ⊆ P(D ), 
which is by Rockafellar [18, Corollary 6.3.1] equivalent to

cl(R(D )) = P(D ). (13)

In other words: R(D ) consists of ri(P(D )), possibly together with elements of P(D ) on its boundary.

7 As usual, we let ⋂∅ = L .
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Fig. 9. A generic set of desirable gambles in a ternary space.

Fig. 10. A graphical representation of a non-SSK–Archimedean and an SSK–Archimedean coherent set of desirable gambles.

The set of probability mass functions R(D ) would be a two-way representation if we can retrieve the original set of 
desirable gambles D with it—in other words, if

D =
⋂

{D p : p ∈ R(D )}.
However, SSK–Archimedeanity is not strong enough to guarantee this, as Cozman [4, Example 17] showed by means of an 
example. Here, we will present the idea of his example.

Example 7. Consider a ternary possibility space � = {a, b, c}. A generic coherent set of desirable gambles is a convex cone 
in the 3-dimensional space L of gambles on �, as indicated in Fig. 9, with a non-orthogonal coordinate system, so that the 
positive orthant L�0 is included in D .

We intersect this set of desirable gambles with a plane, indicated in light grey. We can think of this plane as the plane 
with normal in the direction of (1, 1, 1), through the point (1, 1, 1). The following two pictures are the result of such an 
intersection with two different sets of desirable gambles.

Fig. 4 serves as an illustration of this set of desirable gambles D .
It turns out that the set of desirable gambles D depicted in the left of Fig. 10 is not SSK–Archimedean. To see this, 

consider the gambles f in D and g in cl(D ). Then their addition—scaled with a factor 1
2 so that the result lays within 

the intersecting plane— 1
2 ( f + g) will not be an element of D , contradicting its SSK–Archimedeanity. We will later—in 

Section 3.4—see, that for any linear part of the boundary of D , SSK–Archimedeanity requires that it either has nothing in 
common with D , or its relative interior is included in D .

The set of desirable gambles D depicted in the right of Fig. 10 is SSK–Archimedean, as Cozman [4, Example 17] shows. 
It is, however, no intersection of D p ’s. As we will see in Theorem 31, this is because the gamble f ∗ , which lies on a 
non-exposed ray of D , does not belong to D . ♦

This observation is in line with the findings of Seidenfeld et al. [21] for partial preferences on horse lotteries: they 
showed that a coherent partial preference ≺ (on horse lotteries) is two-way represented by a convex (not necessarily 
closed) set of probability mass functions if and only if ≺ is SSK–Achimedean and the result of an extension (what we will 
call SSK–extension later on in Section 4). Cozman [4] acknowledges that SSK–Archimedeanity is not sufficient to have a 
two-way representation, and shows that the requirement of even convexity is sufficient.
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Definition 12 (Even convexity; see Daniilidis & Martinez–Legaz [5, Section 2]8). A set C in a finite-dimensional space is called 
evenly convex if it is an (arbitrary) intersection of affine open half-spaces.

Clearly, intersections of evenly convex sets are evenly convex: they form an intersection structure. This allows us to 
introduce an evenly convex closure operator:

eco(C) =
⋂

{S : S is evenly convex and C ⊆ S}
=

⋂
{S : S is an affine open half-space and C ⊆ S}

for any set C in a finite-dimensional space. eco(C) is the smallest evenly convex set that includes C . Using the second 
identity of this equation, a set C is evenly convex if and only if it is equal to its evenly convex closure: C is evenly convex 
if and only if C = eco(C).

For any p in �, its associated set of desirable gambles D p is an affine open half-space, and is therefore evenly convex. 
More generally, as Daniilidis and Martinez–Legaz [5, Section 2] note, any closed convex set and any open convex set is 
evenly convex. We collect all the evenly convex coherent sets of desirable gambles in the set De.c. , which is non-empty 
because D p ∈ De.c. for every p in �, as we just have seen.

It turns out that even convexity guarantees a two-way representation:

Proposition 13. Consider any coherent set of desirable gambles D . Then eco(D ) is coherent if and only if D is extendible to a proba-
bility, and in that case

eco(D ) =
⋂

{D p : p ∈ R(D )}.
As a consequence

D ∈ De.c. ⇔ D =
⋂

{D p : p ∈ R(D )}, (14)

for any set of desirable gambles D , so any set of desirable gambles is evenly convex if and only if it is two-way represented by R(D ). 
Finally, SSK–Archimedeanity is necessary for even convexity: any D in De.c. is SSK–Archimedean.

Proof. Before we start the actual proof, note already that, for any coherent set of desirable gambles D ,

eco(D) =
⋂

{S ⊆ L : S is evenly convex and D ⊆ S}
⊆

⋂
{D p : p ∈ � and D ⊆ D p} =

⋂
{D p : p ∈ R(D )}, (15)

where the set inclusion follows from our observation earlier that every D p is evenly convex. Since R(D ) 
= ∅ whenever D
is extendible to a probability, and since we have already seen in Example 6 that every D p is a coherent set of desirable 
gambles, this also implies that eco(D ) is included in a coherent set of desirable gambles 

⋂{D p : p ∈ R(D )} when D is 
extendible to a probability.

The proof is structured as follows. We will prove the following two statements in one fell swoop: ‘if D is not extendible 
to a probability, then eco(D ) is not coherent’, and ‘if D is extendible to a probability, then eco(D ) = ⋂{D p : p ∈ R(D )}’, 
which considered together, proves the equivalence eco(D ) is coherent ⇔ D is extendible to a probability. Our strategy for 
this will be to consider any f /∈ eco(D ), and infer from this that f 
= 0 when D is not extendible to a probability—meaning 
that 0 ∈ eco(D ) which is therefore not coherent since it violates Axiom D1—and that f /∈ ⋂{D p : p ∈ R(D )} when D is 
extendible to a probability, which implies, together with the initial observation in Equation (15), that eco(D ) = ⋂{D p :
p ∈ R(D )}. Once we have done so, our proof will be complete: the consequence in Equation (14) follows readily from 
our observation earlier that D is evenly convex if and only if it is equal to eco(D ), and that every evenly convex set of 
desirable gambles is SSK–Archimedean by the fact that every D p is SSK–Archimedean, established in Example 6, and that 
SSK–Archimedeanity is closed under arbitrary intersections, established in Proposition 8.

So consider any coherent set of desirable gambles D and any gamble f /∈ eco(D ), implying that f /∈ S for some affine 
open half-space S such that D ⊆ S . Since S is an affine open half-space, there is a real-valued non-zero linear functional 	
on L and h in L such that

8 Actually, Daniilidis and Martinez–Legaz define [5, Definition 1] even convexity differently, but they acknowledge immediately after their definition that 
it coincides with the definition we use. A second difference is that they work in the more general context of possibly infinite-dimensional separable Banach 
spaces. Because our linear space L of gambles has a finite dimension n, L is automatically a separable Banach space, and therefore all the results in 
Daniilidis and Martinez–Legaz [5] apply in the present context.
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S = {h′ ∈ L : 	(h′) > 0} + {h}
= {h′ + h : h′ ∈ L and 	(h′) > 0} = {g ∈ L : 	(g − h) > 0}
= {g ∈ L : 	(g) > 	(h)} = {g ∈ L : 	(g) > λ} = {g ∈ L : 	(g) > 0} + {λ},

where λ := 	(h) ∈ R. In other words, g ∈ S ⇔ 	(g) > λ, for any gamble g . Since 	 is a linear functional, it is completely 
determined by the values it takes on elementary indicators, that is on gambles I{ωk} with k in {1, . . . , n}, defined as

I{ωk}(ω) =
{

1 if ω = ωk

0 else
for all ω in �.

Indeed, since any gamble g can be written as g = ∑n
k=1 g(ωk)I{ωk} , we have that

	(g) = 	
( n∑

k=1

g(ωk)I{ωk}
)

=
n∑

k=1

g(ωk)	(I{ωk})

by the linearity of 	. We can think of (	(I{ω1}), . . . , 	(I{ωn})) as an n-dimensional vector and therefore as an element of 
L . In fact, (	(I{ω1}), . . . , 	(I{ωn})) can be seen as a normal vector on ker	 := {h′ ∈ L : 	(h′) = 0}, the kernel of 	, which 
is a linear subspace of dimension n − 1 by the rank–nullity theorem.

We show the first intermediate result that, as a consequence of D ⊆ S , the normal vector (	(I{ω1}), . . . , 	(I{ωn})) be-
longs to L≥0 and λ ≤ 0. To see this, consider for any k in {1, . . . , n}, and α and β in R>0, the gamble gα,β := αI{ωk} + β ∈
L�0, which belongs to D by its coherence [more specifically, Axiom D2]. Because D ⊆ S , we find that gα,β ∈ S , which 
implies that 	(gα,β) = α	(I{ωk}) + β	(1) > λ. Since the choice of α in R>0 was arbitrarily large, this implies that indeed 
	(I{ωk}) ≥ 0, for any k in {1, . . . , n}. Furthermore, since the choices of α and β in R>0 were arbitrarily small, this implies 
that indeed λ ≤ 0.

So we find that S = {g ∈ L : 	(g) > λ} for some real λ ≤ 0 and some non-zero linear functional 	 such that 
(	(I{ω1}), . . . , 	(I{ωn})) ∈ L≥0. Clearly (	(I{ω1}), . . . , 	(I{ωn})) 
= 0 since otherwise 	(g) = 0 for all gambles g , contra-
dicting that 	 is non-zero. Therefore 	(1) = ∑n

�=1 	(I{ω�}) > 0, and hence the real-valued function q on � defined as 
q(ωk) := 	(I{ωk})/	(1) for every k in {1, . . . , n} satisfies q(ω) ≥ 0 for all ω in �, and 

∑n
k=1 q(ωk) = 1, so q is a probability 

mass function. Since q is a scaled variant of 	, it satisfies 	(g) > 0 ⇔ Eq(g) > 0, for all gambles g . Therefore

S = {g ∈ L : 	(g) > 0} + {λ} = {g ∈ L : Eq(g) > 0} + {λ} = Dq + {λ}.
Let us now, as a second and final intermediate result, show that q belongs to P(D ). Note already that if λ = 0, then 

D ⊆ S = Dq + {0} = Dq , so that by Equation (11) q ∈ R(D ) ⊆ P(D ) and we are done. In the light of our first intermediate 
result, we may therefore assume that λ < 0. To show that q ∈ P(D ), it suffices by Equation (7) to show that int(D ) ⊆ Dq . 
To this end, consider any g in int(D ), meaning that g − δ ∈ D for some δ in R>0. Therefore μg − μδ ∈ D for any μ in 
R>0, using the coherence of D [more specifically, Axiom D3]. Since D ⊆ S = Dq + {λ} we find that μg − μδ ∈ Dq + {λ}, 
or, in other words, that Eq(μg) > λ + μδ. Since the choice of μ in R>0 was arbitrary, we may consider the specific value 
μ = − λ

δ
> 0, which leads us to conclude that Eq(λg) > 0, and hence Eq(g) > 0 by the linearity of the expectation operator 

Eq . Therefore g ∈ Dq , whence indeed q ∈ P(D ).
To finish the proof, we will show (i) that f 
= 0 if D is not extendible to a probability, and (ii) that f /∈ ⋂{D p : p ∈ R(D )}

if D is extendible to a probability.
For (i), let us assume that D is not extendible to a probability, which implies that D � Dq . Since Dq + {λ} contains 

D , this means that necessarily λ < 0. But f /∈ Dq + {λ} implies that Eq( f ) ≤ λ < 0, whence indeed f 
= 0. Therefore we 
have shown f /∈ eco(D ) ⇒ f 
= 0, or equivalently, f = 0 ⇒ f ∈ eco(D ), for every gamble f , so 0 belongs to eco(D ), which 
therefore violates Axiom D1 so it is indeed not coherent.

For (ii), let us assume that D is extendible to a probability. Then by Theorem 11 D ’s SSK–Archimedean natural extension 
D∗ := EArch(D ) = D + cl(D ) is coherent and SSK–Archimedean, and therefore by Proposition 7 we have ri(P(D∗)) ⊆ R(D∗) ⊆
P(D∗). We will prove the intermediate result that R(D ) = R(D∗). Since D ⊆ D∗ , using Equation (11) we find that automati-
cally R(D ) ⊇ R(D∗), so it remains to show that R(D ) ⊆ R(D∗). To this end, consider any p in R(D ), meaning that D ⊆ D p . 
We need to show that D∗ ⊆ D p . So consider any h in D∗ , meaning that h = g1 + g2 for some g1 in D and g2 in cl(D ). 
Since D ⊆ D p , we have that E p(g1) > 0 and E p(g2) ≥ 0, whence E p(h) = E p(g1)+ E p(g2) > 0, and therefore indeed h ∈ D p . 
So we have found that R(D ) = R(D∗), and therefore, using Equation (13), also P(D ) = cl(R(D )) = cl(R(D∗)) = P(D∗). This 
means that ri(P(D )) ⊆ R(D ) ⊆ P(D ).

We finish by distinguishing two cases: q ∈ R(D ), or q /∈ R(D ). If q ∈ R(D ) then D ⊆ Dq by Equation (11), so Dq is an 
affine open half-space that includes D . Furthermore, since f /∈ Dq +{λ} we find that f /∈ Dq , because we already established 
above that λ ≤ 0. This implies that indeed f /∈ ⋂{D p : p ∈ R(D )}.

If, on the other hand, q /∈ R(D ), then D � Dq , and hence λ < 0 since D ⊆ Dq + {λ}. This implies that Eq( f ) < 0. We 
will show that this implies that f /∈ D p∗ for some p∗ in R(D ). To this end, consider any p in ri(P(D )). If E p( f ) ≤ 0 then 
f /∈ D p and we are done, so assume that E p( f ) > 0. Let α := E p( f ) ∈ (0, 1), then 1 − α = −Eq( f ) , and consider 
E p( f )−Eq( f ) E p( f )−Eq( f )
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the convex combination p∗ := αq + (1 − α)p, which belongs to ri(P(D )) by Theorem 3, and therefore also to R(D ). But 
E p∗ ( f ) = E p( f )

E p( f )−Eq( f ) Eq( f ) − Eq( f )
E p( f )−Eq( f ) E p( f ) = 0, so that f /∈ D p∗ and therefore indeed f /∈ ⋂{D p : p ∈ R(D )}. So we have 

shown f /∈ eco(D ) ⇒ f /∈ ⋂{D p : p ∈ R(D )}, or equivalently, f ∈ ⋂{D p : p ∈ R(D )} ⇒ f ∈ eco(D ), for every gamble f , which, 
together with Equation (15) shows that indeed eco(D ) = ⋂{D p : p ∈ R(D )}. �

Thus a coherent set of desirable gambles D is evenly convex if and only if it is (two-way) represented by a set R(D ) of 
probability mass functions, which as Cozman [4, Theorem 9] shows, is evenly convex itself, and is the unique largest rep-
resenting set of probabilities. This clearly shows the importance of even convexity for our purpose. Cozman [4] investigates 
the notion of evenly convex sets of desirable gambles in greater detail, and provides a useful equivalent condition.

Because we will also be interested in conservative reasoning, gather from the discussion above that the set De.c. is 
an intersection structure, just as the set DArch of all SSK–Archimedean coherent sets of desirable gambles as shown in 
Proposition 8. Interestingly, De.c. has the same set D̂e.c. of maximal elements as DArch:

Proposition 14. The maximal elements of De.c. are precisely the maximal elements of DArch:

D̂e.c. = D̂Arch = {D p : p ∈ �}.
Moreover, every element of De.c. is dominated by an element of D̂e.c. . Finally, the unique smallest evenly convex coherent set of desirable 
gambles is equal to L�0 .

Proof. For the first statement, we will first show that any D p , with p in �, is a maximal element of De.c. . To this end, 
assume ex absurdo that D p ⊂ D for some D in De.c. and p in �. But D = ⋂{Dq : q ∈ R(D )}, so D p ⊂ ⋂{Dq : q ∈ R(D )}, 
which is absurd.

Conversely, to show that any maximal element D of De.c. is equal to D p for some p in �, assume ex absurdo that 
D̂e.c. � {D p : p ∈ �}. Since we have already established that D̂e.c. ⊇ {D p : p ∈ �}, this would mean that D̂e.c. ⊃ {D p : p ∈ �}. 
We will show that this is impossible. To this end, consider any D in D̂e.c. \ {D p : p ∈ �}. Since D is evenly convex, by 
Equation (14) we would infer that D ⊆ D p for every p in the non-empty set R(D ). But we have already established that D p

is an element of De.c. , so this would mean that D is dominated in De.c. , a contradiction with the fact that D is maximal.
For the second statement, consider any D in De.c. . Then by Equation (14) we infer that, indeed, D ⊆ D p for every p in 

the non-empty set R(D ).
Finally, for the third statement, we have established above that D p is an element of De.c. for every p in �. Since 

De.c. is an intersection structure, this implies that 
⋂{D p : p ∈ �} = L�0 belongs to De.c. . But L�0 is the unique smallest 

coherent set of desirable gambles, which implies that it is indeed the unique smallest evenly convex coherent set of desirable 
gambles. �
3.4. Bouligand tangent cones

There is a useful characterisation of even convexity by Daniilidis and Martinez–Legaz [5], in terms of Bouligand tangent 
cones, that will help us connect with the SSK–extension in Section 4. Given any convex set C in a finite-dimensional linear 
space, we call �(C) the largest linear space included in C 9:

�(C) := C ∩ (−C) = { f : f ∈ C and − f ∈ C}.
For any convex set C and any point f in cl(C), the Bouligand tangent cone of C in f is the set10

TC ( f ) := cl
(⋃{λ(C − { f }) : λ ∈R>0}

)
,

which is a closed convex cone [5].

Example 8. Consider the binary possibility space � := {a, b} and the coherent set of desirable gambles D as depicted in 
Fig. 11.

We depict for the four different gambles f , g , 0 and 1 in cl(D ) their Bouligand tangent cones T D ( f ), T D (g), T D (0) and 
T D (1) graphically in Fig. 12.

We see that �(T D ( f )) = {λ f : λ ∈R}, �(T D (g)) = {λg : λ ∈R}, �(T D (0)) = {0} and �(T D (0)) = L . ♦

9 We define −C := {−x : x ∈ C}.
10 We define λC := {λx : x ∈ C} as the set of multiplications of elements of C with a given real λ.
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Fig. 11. The set of desirable gambles D used in Example 8.

Fig. 12. The Bouligand tangent cones T D ( f ), T D (g), T D (0) and T D (1).

A useful fact about Bouligand tangent cones is the following property:

f ∈ int(D ) ⇔ T D ( f ) = L , (16)

for any coherent set of desirable gambles D and any gamble f in cl(D ); see [1, Sections 4.1.3 and 4.2.1]. It will be convenient 
to first prove some other facts about T D ( f ):

Lemma 15. Consider any coherent set of desirable gambles D and any gamble f in cl(D ) \ D . Then

(i) {λ f : λ ∈R} ⊆ T D ( f );

(ii) cl(D ) + T D ( f ) ⊆ T D ( f );

(iii) cl(D ) ⊆ T D ( f );

(iv) int(D ) ∩ �(T D ( f )) = ∅;

(v) { f } + �(T D ( f )) = �(T D ( f )).

Proof. For Property (i), since the closure operator cl preserves set inclusion (is monotone) and 0, 2 f ∈ cl(D ), note that 
f , − f ∈ cl(D − { f }) ⊆ cl

(⋃{λ(D − { f }) : λ ∈ R>0}
) = T D ( f ). Using the fact that T D ( f ) is a convex cone, we infer that 

indeed {λ f : λ ∈R} = posi{− f , f } ⊆ T D ( f ).
For Property (ii), consider any g in cl(D ) and h in T D ( f ), which implies that g +γ ∈ D and h +ε ∈ ⋃

λ∈R>0
λ(D −{ f }) for 

all ε, γ in R>0, whence g +h +ε+γ ∈ {g +γ }+⋃
λ∈R>0

λ(D −{ f }) = ⋃
λ∈R>0

λ(D + 1
λ
{g +γ }−{ f }) ⊆ ⋃

λ∈R>0
λ(D −{ f }), 

for all ε, γ in R>0, where the set inclusion follows from the coherence [more specifically, Axiom D4] of D . Therefore indeed 
g + h ∈ cl

(⋃
λ∈R>0

λ(D − { f })) = T D ( f ).
For Property (iii), infer from Property (i) that 0 ∈ T D ( f ), whence cl(D ) ⊆ cl(D ) + T D ( f ) by the definition of the 

Minkowski addition. Using Property (ii), this implies that indeed cl(D ) ⊆ T D ( f ).
For Property (iv), assume ex absurdo that int(D ) ∩ �(T D ( f )) 
= ∅, say g ∈ int(D ) ∩ �(T D ( f )). Then −g ∈ T D ( f ) and g ∈

int(D ), whence g − δ ∈ D for some δ ∈R>0. By Property (iii), this would imply that g − δ ∈ T D ( f ). Since T D ( f ) is a convex 
cone—so posi(T D ( f )) = T D ( f )—we would infer that 1

δ
(−g + g − δ) = −1 ∈ T D ( f ). But also D ⊆ T D ( f ) by Property (iii), 

which would imply that posi(D ∪ {−1}) = L ⊆ T D ( f ). By Equation (16) this would imply that f ∈ int(D ), contradicting the 
fact that f belongs to cl(D ) \ D .

For Property (v), note that Property (i) implies that T D ( f ) includes the linear space {λ f : λ ∈ R}, and therefore so does 
the largest linear space �(T D ( f )) included in T D ( f ). This implies that f ∈ �(T D ( f )), whence indeed { f } + �(T D ( f )) =
�(T D ( f )). �

Bouligand tangent cones are important to our purpose mainly due to the following representation result by Daniilidis 
and Martinez–Legaz [5]:
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Theorem 16 (See Daniilidis and Martinez–Legaz [5, Theorem 5]). Consider any convex subset C of a finite-dimensional space. Then C
is evenly convex if and only if

(∀ f ∈ cl(C) \ C)({ f } + �(TC ( f ))) ∩ C = ∅.

Using Lemma 15(v), this immediately yields:

Corollary 17. Consider any coherent set of desirable gambles D . Then D is evenly convex if and only if

�(T D ( f )) ∩ D = ∅ for all f in cl(D ) \ D .

We know by the example in Cozman [4, Example 17] and Proposition 13 that there is a gap between SSK–Archimedeanity 
and even convexity, which we are looking to bridge. More specifically, we are looking for an additional requirement on 
coherent sets of desirable gambles D that ensures that D is evenly convex—in other words, that eco(D ) = D —which by 
Corollary 17 above is equivalent to the requirement that �(T D ( f )) ∩ D = ∅ for all f in cl(D ) \ D . The following proposition 
shows the extent to which SSK–Archimedeanity takes care of the linear part �(T D ( f )) ∩ cl(D ) of D ’s boundary.

Proposition 18. Consider any coherent set of desirable gambles D . Then D is SSK–Archimedean if and only if

K ∩ D = ∅ or ri(K ∩ cl(D )) ⊆ D , for any linear space K ⊆ L .

As a consequence, if D is SSK–Archimedean then

�(T D ( f )) ∩ D = ∅ or ri(�(T D ( f )) ∩ cl(D )) ⊆ D , for all f in cl(D ) \ D .

Proof. We start with the first statement. For necessity, assume that D is SSK–Archimedean, and consider any linear space 
K ⊆ L . If K ∩ D = ∅, then the proof is done, so assume that K ∩ D 
= ∅, say g ∈ K ∩ D ⊆ K ∩ cl(D ). Consider any h in 
ri(K ∩ cl(D )); we need to show that then h ∈ D . If h = g then the proof is done, so assume that h 
= g . Using Theorem 4, 
we infer that f := (1 − μ)g + μh ∈ K ∩ cl(D ) for some real μ > 1. Then indeed

h = 1

μ
f︸︷︷︸

∈cl(D )

+ μ − 1

μ
g︸ ︷︷ ︸

∈D

∈ D ,

by the SSK–Archimedeanity of D .
For sufficiency, assume that K ∩ D = ∅ or ri(K ∩ cl(D )) ⊆ D for any linear space K ⊆ L . Consider any f in D and g in 

cl(D ); we need to show that then f + g ∈ D . If g = 0 or g ∈ D then the proof is done, so assume that g 
= 0 and g /∈ D . 
Let K := span{ f , g} = {λ1 f + λ2 g : λ1, λ2 ∈ R}. Then f ∈ K , so K ∩ D 
= ∅. By the assumption, therefore ri(K ∩ cl(D )) ⊆ D . 
Note that K ∩ cl(D ) contains 0, so its affine hull aff(K ∩ cl(D )) is actually equal to its linear hull span(K ∩ cl(D )) = K , 
which is two-dimensional. To see this, note that K = span{ f , g}, so K has dimension 0, 1 or 2. Since g 
= 0 it cannot have 
dimension 0. It can only have dimension 1 if λ f = g for some λ in R. λ > 0 is impossible by the coherence of D [since f ∈
D but g /∈ D ]; λ = 0 is impossible since g 
= 0, and λ < 0 is impossible because it would imply that 0 ∈ ri(K ∩ cl(D )) [since 
0 would belong to the relative interior of {α f + (1 − α)g : α ∈ [0, 1]} in the one-dimensional linear space aff(K ∩ cl(D ))], 
which is a subset of D , contradicting the coherence of D .

Note that by Equation (6), ( f + g)/2 belongs to the relative interior of the convex hull of {0, f , g, f + g} ⊆ K ∩ cl(D ), 
which has K as its affine hull: indeed ({( f + g)/2} + εBn) ∩ aff(K ) ⊆ {0, f , g, f + g}. But since {0, f , g, f + g} ⊆ K ∩ cl(D ), 
we have that ( f + g)/2 belongs to ri(K ∩ cl(D )). Since ri(K ∩ cl(D )) ⊆ D , we infer that ( f + g)/2 ∈ D , whence by the 
coherence of D , indeed f + g ∈ D .

The second statement follows immediately once we realise that �(T D ( f )) is a linear space. �
By combining Corollary 17 with Proposition 18, we find that, if a coherent set of desirable gambles D is SSK–

Archimedean but not evenly convex, then

ri(�(T D ( f )) ∩ cl(D )) ⊆ D for some f in cl(D ) \ D .

This means that there is a linear part ri(�(T D ( f ))∩ cl(D )) of the boundary of D that is contained in D , but not its endpoint 
f ∈ cl(D ) \ D . As we will see in Section 4, this endpoint will necessarily lie on a non-exposed ray of D . So we see that 
SSK–Archimedeanity takes care of the relative interior of the linear parts of the boundary, but not of its endpoints. This 
implies that the coherent set of desirable gambles of Example 7 is the only ‘type’ of SSK–Archimedean but not evenly 
convex coherent set of desirable gambles.
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4. SSK–extension

So far, we have seen that SSK–Archimedeanity is insufficient to guarantee a two-way representation. This observation is 
in line with Cozman [4, Example 17] example, and with the results in Seidenfeld et al. [21], who introduce an additional 
operation called ‘SSK–extension’ that yields a representation in terms of probabilities, in their setting of partial preferences 
on horse lotteries. This section investigates whether the same ideas can be used to obtain representation in our current 
setting, by imposing a suitable adaptation of SSK–extension.

The idea is to add to a coherent and SSK–Archimedean set of desirable gambles D those gambles f whose negation − f
are “precluded from being desirable” (precluded from being preferred to 0), and that are “precluded from being indifferent 
to 0”.

4.1. Indifference and desirability

Let us first review how to combine an indifference and desirability statement. Besides her set of gambles D that a subject 
prefers to 0, she might specify some gambles I that she finds indifferent—equivalent—to 0.

Definition 19 (Coherent set of indifferent gambles). A set of indifferent gambles I is called coherent if for all f and g in L and 
λ in R:

I1. 0 ∈ I ;
I2. L�0 ∩ I = ∅;
I3. if f ∈ I then λ f ∈ I ;
I4. if f , g ∈ I then f + g ∈ I .

We collect all the coherent sets of indifferent gambles in I.

Axioms I3 and I4 make a coherent set of indifferent gambles I a linear space: I = span I , that is non-empty by Axiom I1. 
So a coherent set of indifferent gambles I is a linear space that has nothing in common with L�0 nor L�0. The smallest 
coherent set of indifferent gambles is I = {0}: it is the smallest linear space that includes 0. This set specifies that the 
only gamble that the subject finds indifferent to 0 is 0 itself. This means that any gamble is only indifferent to itself, so 
it stipulates only trivial indifferences, and is therefore called the trivial set of indifferences. A coherent set of indifferent 
gambles I is non-trivial if and only if I ⊃ {0}, or, in other words, if and only if dim I ≥ 1.

The interaction between indifferent and desirable gambles is subject to rationality criteria as well: they should be com-
patible with one another.

Definition 20 (Compatibility between indifference and desirability). Given a set of desirable gambles D and a coherent set of 
indifferent gambles I , we call D compatible with I if D + I ⊆ D .

The idea behind this is that adding an indifferent gamble to a desirable one should result in a desirable gamble. Since 
0 ∈ I by Axiom I1 so D ⊆ D + I , we see that D and I are compatible if and only if D = D + I . Note that the trivial set of 
indifferent gambles {0} is compatible with any set of desirable gambles D : indeed D + {0} = D .

We can combine a desirability assessment A ⊆ L with a coherent set of indifferent gambles I . We call any coherent 
set of desirable gambles D a coherent extension of A compatible with indifference described by I , or shorter, a coherent extension 
of A under I , when D ⊇ A and D + I ⊆ D . It turns out that an assessment A ⊆ L can be coherently extended under I , 
precisely when [see [9, Proposition 12]]

0 /∈ posi(I + (L�0 ∪ A)). (ANP-I)

If this is the case, then the smallest coherent extension D = ⋂{D ′ ∈ D : D ′ ⊇ A and D ′ + I ⊆ D ′} of A under I is given by 
[see [9, Theorem 13]] D = posi(I + (L�0 ∪ A)).

This result implies that a coherent set of desirable gambles D can be coherently extended under indifference described 
by I , precisely when 0 /∈ D + I , or, equivalently, when

D ∩ I = ∅. (17)

The smallest coherent extension of D under I is given by

D + I . (18)
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4.2. Defining SSK–extension

The idea will be to extend a coherent set of desirable gambles D that is extendible to a probability to an extension 
ext(D ) called ‘SSK–extension’ by adding gambles whose negation are precluded from being desirable and that are precluded 
from being (non-trivially) indifferent to 0:

ext(D ) = D ∪ { f ∈ L : − f is precluded from being desirable and

f is precluded from being (non-trivially) indifferent to 0}. (19)

What do we mean by this?

Definition 21 (Precluded desirability; see [21, Definition 21]). Given a set of desirable gambles D , a gamble f is called precluded 
from being desirable if there is no coherent SSK–Archimedean extension of D that contains f .

Lemma 22. Consider any coherent set of desirable gambles D that is extendible to a probability, and any gamble f . Then f is precluded 
from being desirable if and only if − f ∈ cl(D ).

Proof. We begin our proof by noting that ‘ f is not precluded from being desirable’ is by definition equivalent to ‘D ∪ { f }
is included in a coherent and SSK–Archimedean set of desirable gambles’, which in turn is equivalent to D ∪ { f } ⊆ D p for 
some p in �, using Theorem 11. It therefore suffices to show that

D ∪ { f } ⊆ D p for some p in � ⇔ − f /∈ cl(D ).

For necessity, assume that D ∪ { f } ⊆ D p for some p in �, which then automatically belongs to R(D ∪ { f }) by Equa-
tion (11). Since R(D ∪ { f }) ⊆ R(D ) ⊆ P(D ), we have found that E p( f ) > 0—and therefore E p(− f ) < 0—for some p in P(D ), 
which by Equation (8) indeed is equivalent to − f /∈ cl(D ).

For sufficiency, assume that − f /∈ cl(D ), which is, as we just have seen, by Equation (8) equivalent to E p( f ) > 0—or in 
other words f ∈ D p—for some p in P(D ). Recall from our discussion after Theorem 11 that, because D is extendible to a 
probability, D ’s credal set P(D ) equals the credal set P(D + cl(D )) of its SSK–Archimedean natural extension, so consider 
any q in ri(P(D )). Since D + cl(D ) is SSK–Archimedean, by Proposition 7 we have that D ⊆ D + cl(D ) ⊆ Dq . If Eq( f ) > 0

then f ∈ Dq so D ∪{ f } ⊆ Dq , and the proof is complete, so assume that Eq( f ) ≤ 0. Let α := −Eq( f )
E p( f )−Eq( f ) ∈ [0, 1), and consider 

any λ in (α, 1). Using Theorem 3 we find that the convex combination p∗ := λp + (1 − λ)q belongs to ri(P(D )), whence 
D ⊆ D p∗ . Note that

E p∗( f ) = λ︸︷︷︸
>α

E p( f )︸ ︷︷ ︸
>0

+ (1 − λ)︸ ︷︷ ︸
<1−α

Eq( f )︸ ︷︷ ︸
≤0

> αE p( f ) + (1 − α)Eq( f ) = −Eq( f )

E p( f ) − Eq( f )
E p( f ) + E p( f )

E p( f ) − Eq( f )
Eq( f ) = 0

whence f ∈ D p∗ . So we infer that indeed D ∪ { f } ⊆ D p∗ . �
Definition 23 (Precluded indifference; see [21, Definition 22]). Given a set of desirable gambles D , a gamble f is called precluded 
from being (non-trivially) indifferent to 0 if there is no non-trivial coherent set of indifferent gambles I that contains f and 
results in a coherent extension of D under I that is SSK–Archimedean.

Lemma 24. Consider any coherent set of desirable gambles D and any gamble f . Then f is precluded from being (non-trivially) 
indifferent to 0 if and only if

(∀I ∈ I)
(
(dim I ≥ 1 and f ∈ I ) ⇒ (D ∩ I 
= ∅ or (∀p ∈ �)D + I � D p)

)
Proof. We need to show that there is a coherent extension of D under I that is SSK–Archimedean, if and only if D ∩ I = ∅
and (∃p ∈ �)D + I ⊆ D p . By Equations (17) and (18) we have that D is coherently extendible under I precisely when 
D ∩ I = ∅, and moreover that the smallest such extension is D + I . By Theorem 11, this smallest coherent extension D + I
is extendible to an SSK–Archimedean set of desirable gambles precisely when (∃p ∈ �)D + I ⊆ D p . �

This means that we can rewrite Equation (19) to a more convenient equivalent variant:

ext(D ) = D ∪ { f ∈ L : f ∈ cl(D ) and (∀I ∈ I)
(
(dim I ≥ 1 and f ∈ I ) ⇒ (D ∩ I 
= ∅ or (∀p ∈ �)D + I � D p)

)}
= D ∪ { f ∈ cl(D ) \ D : (∀I ∈ I)

(
(dim I ≥ 1 and f ∈ I ) ⇒ (D ∩ I 
= ∅ or (∀p ∈ �)D + I � D p)

)}, (20)
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so clearly ext(D ) ⊆ cl(D ).
It turns out that there is another, yet more useful, equivalent expression, that uses only coherent sets of indifferent 

gambles of maximal dimension n − 1:

Proposition 25. Consider any coherent set of desirable gambles D that is extendible to a probability. Then its SSK–extension ext(D ) is 
given by

ext(D ) = D ∪ { f ∈ cl(D ) \ D : (∀p ∈ �)(E p( f ) = 0 ⇒ D � D p)}.
Furthermore, ext is a closure operator: it satisfies

(i) D ⊆ ext(D ) ext is extensive;
(ii) D ⊆ D ′ ⇒ ext(D ) ⊆ ext(D ′) ext is monotone;

(iii) ext(ext(D )) = ext(D ) ext is idempotent,

for any coherent sets of desirable gambles D and D ′ that are extendible to a probability.

Proof. We start with the first statement. It suffices to show that

A1 :={ f ∈ cl(D ) \ D : (∀I ∈ I)
(
(dim I ≥ 1 and f ∈ I ) ⇒ (D ∩ I 
= ∅ or (∀p ∈ �)D + I � D p)

)}
={ f ∈ cl(D ) \ D : (∀p ∈ �)(E p( f ) = 0 ⇒ D � D p)} =: A2.

To show that A1 ⊆ A2, consider any f in cl(D ) \ D such that f /∈ A2. We will show that then f /∈ A1. f /∈ A2 implies that 
there is some probability mass function p such that E p( f ) = 0 and D ⊆ D p . Let I := ker E p = {h ∈ L : E p(h) = 0}, the kernel 
of the linear transformation E p on L . We will show that then D + I ⊆ D p . To this end, consider any f1 in D and f2 in I . 
Since D ⊆ D p , we have E p( f1) > 0, and E p( f2) = 0 by definition. Therefore E p( f1 + f2) > 0, whence indeed f1 + f2 ∈ D p . 
Also, D ∩ I = ∅: indeed, f1 ∈ D implies E p( f1) > 0 while f2 ∈ I is equivalent to E p( f2) = 0. So f ∈ I and I has dimension 
n − 1 ≥ 1, whence indeed f /∈ A1.

To show that A2 ⊆ A1, consider any f in cl(D ) \ D such that f /∈ A1. We will show that then f /∈ A2. f /∈ A1 implies that 
f ∈ I , D ∩ I = ∅ and D + I ⊆ D p for some p in � and I in I such that dim I ≥ 1. Since 0 ∈ I , we have that D ⊆ D + I ⊆ D p . 
We will show that then I ⊆ ker E p . To see this, assume ex absurdo that I � ker E p , so E p(g) 
= 0 for some g in I . Since I is 
a linear space, we may assume without loss of generality that E p(g) < 0. Consider the constant gamble h := −E p(g) > 0, 
which belongs to D by its coherence. But this would imply that g + h ∈ D + I ⊆ D p , while E p(g + h) = 0, a contradiction. 
Therefore indeed I ⊆ ker E p , whence f ∈ ker E p so E p( f ) = 0. This implies that indeed f /∈ A2.

We now turn to the second statement. For (i), that ext is extensive follows from its definition since ext(D ) is the union 
of D with another set.

For (ii), to show that ext is monotone, we must show that ext(D ) ⊆ ext(D ′). So consider any gamble f in ext(D ), and we 
will show that f belongs to ext(D ′). Since f ∈ ext(D ), we find that f ∈ D or D � D p for every p in � such that E p( f ) = 0. 
Since D ⊆ D ′ , infer that f ∈ D implies f ∈ D ′ , and that D � D p implies D ′ � D p . Therefore indeed f ∈ ext(D ′).

For (iii), to show that ext is idempotent, note that ext(D ) ⊆ ext(ext(D )) using that ext is extensive and monotone, which 
we just have established. Assume ex absurdo that ext(D ) ⊂ ext(ext(D )), then

(∃ f ∈ cl(ext(D ))︸ ︷︷ ︸
=cl(D )

\ext(D )︸ ︷︷ ︸
⊇D

)(∀p ∈ �)(E p( f ) = 0 ⇒ ext(D ) � D p).

But then f ∈ cl(D ) \ D and f /∈ ext(D ), so Eq( f ) = 0 and D ⊆ Dq for some probability mass function q. Since in particu-
lar ext(D ) � Dq , we would infer that there is some g ∈ ext(D ) \ D such that Eq(g) ≤ 0, and therefore Eq(g) = 0 because 
g ∈ ext(D ) ⊆ cl(D ). But since g belongs to ext(D )\ D , this would imply that E p(g) = 0 ⇒ D � D p for every probability mass 
function p, so in particular for the probability mass function q we have that D � Dq , a contradiction with the earlier estab-
lished fact that D ⊆ Dq . This shows that it is impossible that ext(D ) ⊂ ext(ext(D )), whence indeed ext(D ) = ext(ext(D )). �

The following fact will be useful on multiple occasions.

Lemma 26. Consider any assessment A ⊆ L that is extendible to a probability, and any A ⊆ B ⊆ ext(E (A)). Then A, B and ext(E (A))

all have the same (one-way) representing set of probabilities. In other words, R(A) = R(B) = R(ext(E (A))). As a consequence, 
ext(E (A)) is extendible to a probability.

Proof. Since A ⊆ B ⊆ ext(E (A)), we have by the definition of R in Equation (11) that R(A) ⊇ R(B) ⊇ R(ext(E (A))), so 
it suffices to show that R(A) ⊆ R(ext(E (A))). To this end, consider any p in R(A), so A ⊆ D p . Assume ex absurdo that 
ext(E (A)) � D p , meaning that E p( f ) ≤ 0 for some f in ext(E (A)). Recall using Lemma 10 that E (A) ⊆ D p , so we would 
infer that f /∈ E (A). Use Proposition 25 to infer that this would imply that f belongs to
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{g ∈ cl(E (A)) \ E (A) : (∀q ∈ �)(Eq(g) = 0 ⇒ E (A) � Dq)}
= {g ∈ cl(E (A)) \ E (A) : (∀q ∈ �)(E (A) ⊆ Dq ⇒ Eq(g) 
= 0)}

so in particular E p( f ) 
= 0. Since f belongs to cl(E (A)), we have that E p( f ) ≥ 0, so this would imply that E p( f ) > 0, a 
contradiction.

To show that ext(E (A)) is extendible to a probability, note that R(A) 
= ∅ because A is extendible to a probability, and 
therefore also R(ext(E (A))) 
= ∅, which means that ext(E (A)) is indeed extendible to a probability. �

Lemma 26 implies that D ⊆ D p ⇔ ext(D ) ⊆ D p , for any coherent set of desirable gambles D that is extendible to a 
probability, and any probability mass function p. In other words, in the light of Equation (12), for any coherent set of 
desirable gambles D that is extendible to a probability, we have D ⊆ ext(D ) ⊆ ⋂{D p : p ∈ R(D )}, so R(D ) is a one-way 
representation not only for D , but also for ext(D ).

4.3. SSK–extension, even convexity, and exposed rays

In this section we will lay bare a connection between the SSK–extension, even convexity, and exposed rays, which will 
allow us to establish that R(D ) is not only a one-way representation of ext(D ), but in fact a two-way representation. The 
main result in this section is the equivalence in Theorem 31 between the property for a coherent set of desirable gambles 
that is extendible to a probability of being two-way represented by a set of probability mass functions, and five other 
conditions.

Definition 27 (Exposed ray; see [18, Section 18]). Consider any coherent set of desirable gambles D . We call any set posi{ f }
with f in cl(D ) a ray of D . A supporting half-space to D is an affine closed half-space that contains D and has a point of 
cl(D ) on its boundary. A supporting hyperplane to D is the boundary of a supporting half-space to D , thus it includes a 
point of cl(D ). A ray posi{ f } of D is an exposed ray of D if there is a supporting hyperplane H to D such that f ∈ H and 
D ∩ H = ∅.

Lemma 28. Consider any coherent set of desirable gambles D . A ray posi{ f } of D is exposed if and only if there is a probability mass 
function p such that E p( f ) = 0 and D ⊆ D p .

Proof. For necessity, since posi{ f } is an exposed ray of D , we have that f ∈ H for some supporting hyperplane H to D , for 
which moreover D ∩ H = ∅. Note that 0 ∈ H since 0 belongs to every supporting half-space to D . Thus H is a hyperplane 
that contains 0, so it is a linear space. Consider the set of desirable gambles D ′ := H + L�0, which is coherent: It satisfies 
Axiom D1 since otherwise, were 0 ∈ D ′ , then h � 0 for some h in H , and since H is a linear space also −h ∈ H . But −h � 0
also belongs to D by the coherence of D , a contradiction with D ∩ H = ∅. It satisfies Axiom D2 since 0 ∈ H so it includes 
L�0. Moreover, D ′ is a convex cone because it is the Minkowski addition of two convex cones, so D ′ satisfies Axioms D3
and D4. Then D ′ = D p for some p in �, because D ′ is coherent and an open half-space, whence H = ker E p . Then indeed 
D ∩ ker E p = ∅—or equivalently D ⊆ D p —and f ∈ ker E p—or equivalently E p( f ) = 0.

For sufficiency, note that D ⊆ D p is equivalent to D ∩ ker E p = ∅. This means that ker E p is a supporting hyperplane to 
D since E p( f ) = 0, so f ∈ ker E p . This shows that posi{ f } is indeed an exposed ray of D . �

Lemma 28 gives an easy categorisation of the rays posi{ f } of a coherent set of desirable gambles D : for any f in cl(D ), 
the ray posi{ f }

- is exposed if (∃p ∈ �)(E p( f ) = 0 and D ⊆ D p);
- is non-exposed if (∀p ∈ �)(E p( f ) = 0 ⇒ D � D p), or, (∀p ∈ �)(D ⊆ D p ⇒ E p( f ) 
= 0).

The Bouligand tangent cone T D ( f ) of an exposed ray posi{ f } of D has the following useful property:

Lemma 29. Consider any coherent set of desirable gambles D , with exposed ray posi{ f }. Then �(T D ( f )) ⊆ ker E p for every p in �
such that E p( f ) = 0 and D ⊆ D p .

Proof. Because D ⊆ D p , we have that

T D ( f ) = cl

( ⋃
λ∈R>0

λ(D − { f })
)

⊆ cl

( ⋃
λ∈R>0

λ(D p − { f })
)

= T D p ( f ).

Since E p( f ) = 0, we know that f belongs to the boundary of the open half-space D p , and hence D p − { f } = D p , so 
λ(D p − { f }) = D p . Therefore we have, for any gamble g ,
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g ∈ T D p ( f ) ⇔ g ∈ cl

( ⋃
λ∈R>0

D p

)
⇔ g ∈ cl(D p) ⇔ E p(g) ≥ 0,

whence T D p ( f ) = cl(D p). Note that therefore −T D p ( f ) = − cl(D p), and hence indeed �(T D ( f )) ⊆ cl(D p) ∩ − cl(D p) =
ker E p . �

The observation in Lemma 29 allows us to show that the SSK-extension produces SSK–Archimedean and evenly convex 
sets of desirable gambles, even if its input is not SSK–Archimedean:

Proposition 30. Consider any coherent set of desirable gambles D that is extendible to a probability. Then ext(D ) is a coherent, 
SSK–Archimedean and evenly convex set of desirable gambles.

Proof. We first show that ext(D ) is coherent. For Axiom D1, we need to show that 0 /∈ ext(D ). Since 0 ∈ cl(D ) \ D by the 
coherence of D , it suffices by Proposition 25 to show that D ⊆ D p for some p in �. Using Proposition 7, this is indeed 
guaranteed by the SSK–Archimedeanity of D .

Since D ⊆ ext(D ), Axiom D2 is satisfied by the coherence of D .
For Axiom D3, consider any f in L , λ in R>0 and any p in �. Note that f ∈ D ⇔ λ f ∈ D , f ∈ cl(D ) ⇔ λ f ∈ cl(D ), and 

E p( f ) = 0 ⇔ E p(λ f ) = 0, which establishes that ext(D ) satisfies Axiom D3.
For Axiom D4, consider any f and g in ext(D ). If f + g ∈ D then the proof is done, so assume that f + g /∈ D , whence 

f /∈ D or g /∈ D —say, f /∈ D without loss of generality. Since f , g ∈ ext(D ) ⊆ cl(D ), this also implies that f + g ∈ cl(D ) \
D because cl(D ) is a convex cone. Assume ex absurdo that f + g /∈ ext(D ). Using Proposition 25, this would imply that 
Eq( f + g) = 0 and D ⊆ Dq for some q in �. But f and g belong to cl(D ), which implies by Equation (8) that Eq( f ) ≥ 0 and 
Eq(g) ≥ 0, whence Eq( f ) = Eq(g) = 0. We have already established that f belongs to ext(D ) \ D , so E p( f ) = 0 ⇒ D � D p
for all p in �, a contradiction with the earlier established fact that Eq( f ) = 0 and D ⊆ Dq . Therefore indeed f + g ∈ ext(D ).

To show that ext(D ) is SSK–Archimedean and evenly convex, it suffices to show that ext(D ) is evenly convex. Indeed, by 
Proposition 13 we know that SSK–Archimedeanity is necessary for even convexity.

So we will show that ext(D ) is evenly convex. By Corollary 17 it suffices to show that �(Text(D )( f )) ∩ ext(D ) = ∅ for 
every f in cl(ext(D )) \ ext(D ) = cl(D ) \ ext(D ). So consider any f in cl(D ) \ ext(D ). By Proposition 25, this implies that 
E p( f ) = 0 and D ⊆ D p for some p in �, and therefore by Lemma 26, ext(D ) ⊆ D p . We infer that posi{ f } is an exposed ray 
of ext(D ), so we can apply Lemma 29 above to infer that then �(Text(D )( f )) ⊆ ker E p , whence �(Text(D )( f )) ∩ D p = ∅. Since 
ext(D ) ⊆ D p , this implies that indeed �(Text(D )( f )) ∩ ext(D ) = ∅. �

Now we are ready to establish one of the main results or our paper, namely the establishment of equivalent conditions 
for a coherent set of desirable gambles to be representable by a set of probability mass functions.

Theorem 31. Consider any coherent set of desirable gambles D that is extendible to a probability. Then the following statements are 
equivalent:

(i) D is closed under SSK–extension: D = ext(D );
(ii) D contains all its non-exposed rays;

(iii) D is evenly convex: D = eco(D );
(iv) D satisfies the following requirement of non-exposedness:

(∀ f /∈ D )(∃p ∈ �)( f /∈ D p and D ⊆ D p). (non-exposedness)

(v) There is a non-empty (not necessarily convex) set of probability mass functions P ⊆ � that two-way represents D : in other words, 
D = ⋂{D p : p ∈ P};

(vi) D is two-way represented by R(D ): D = ⋂{D p : p ∈ R(D )}.

Proof. Proposition 13 already implies that (iii)⇔(vi), so it suffices to show the following two chains of implications: 
(vi)⇒(iv)⇒(ii)⇒(i)⇒(iii) and (vi)⇒(v)⇒(iii).

To show that (vi)⇒(iv), consider any f /∈ D . Then f /∈ D p for some p in R(D ), for which indeed D ⊆ D p by definition.
To show that (iv)⇒(ii), note that requirement (non-exposedness) implies in particular that

(∀ f ∈ cl(D ) \ D )(∃p ∈ �)( f /∈ D p and D ⊆ D p),

and hence, since cl(D ) ⊆ cl(D p), we have E p( f ) ≥ 0 for any f in cl(D ). This implies that

(∀ f ∈ cl(D ) \ D )(∃p ∈ �)(E p( f ) = 0 and D ⊆ D p),

meaning that all D ’s rays that do not belong to D are exposed, using Lemma 28. In other words, D indeed contains all its 
non-exposed rays.
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To show that (ii)⇒(i), since D contains all its non-exposed rays, by Lemma 28 this implies that D = { f ∈ cl(D ) : (∀p ∈
�)(E p( f ) = 0 ⇒ D � D p)}. By Proposition 25 therefore indeed D = ext(D ).

To show that (i)⇒(iii), note that ext(D ) is evenly convex by Proposition 30. Therefore indeed, since D = ext(D ), so is D .
The second chain of implications is immediate: to see that (vi)⇒(v) use P := R as set of probability mass functions that 

two-way represents D , and to see that (v)⇒(iii) note that 
⋂{D p : p ∈ P} is an intersection of affine open semispaces, so 

that D is evenly convex by Definition 12. �
Theorem 31 extends Cozman’s [4, Theorem 16], which gives only necessary conditions for a coherent and SSK–

Archimedean set of desirable gambles D to be evenly convex, or in other words, be two-way represented by R(D ). 
Cozman’s [4, Theorem 9] furthermore implies that if any (and hence all) of our six equivalent conditions hold, then R(D ) is 
the unique largest representing set of D .

We want to highlight that for any coherent set of desirable gambles D , the requirement (non-exposedness) implies 
extendibility to a probability: indeed, if D is coherent, then it does not contain 0, so that (non-exposedness) implies in 
particular that D ⊆ D p for some p in �. We therefore immediately obtain the following characterisation:

Corollary 32. A coherent set of desirable gambles D is two-way represented by a set of probability mass functions if and only if D
satisfies (non-exposedness).

Our Corollary 32 has the same content as De Cooman’s [8, Corollary 22] specialised to a finite-dimensional context, 
but the conclusions are obtained in a very different way. While De Cooman’s [8, Corollary 22] hold in more general Banach 
spaces of arbitrary dimension, it uses the Hahn–Banach theorem version for superlinear bounded real functionals. Our result 
is obtained using more basic concepts only, which might be valuable to some readers.

4.4. Even convexity and natural extension

Let us show how our findings above can help us extend an assessment A ⊆ L to the smallest coherent and evenly 
convex set of desirable gambles that includes A. We have seen in Theorem 11 that the SSK–Archimedean natural extension 
EArch(A) is the smallest coherent and SSK–Archimedean set of desirable gambles that includes A, but it is not necessarily 
evenly convex. It turns out that the SSK–extension plays a role similar to that of EArch(A):

Theorem 33. Consider any assessment A ⊆ L . Then the following statements are equivalent:

(i) A is extendible to a probability;
(ii) A is included in a coherent and evenly convex set of desirable gambles;

(iii) ext(E (A)) 
= L ;
(iv) The set of desirable gambles ext(E (A)) is coherent and evenly convex;
(v) ext(E (A)) is the smallest coherent and evenly convex set of desirable gambles that includes A.

When any, and hence all, of these equivalent statements hold, then ext(E (A)) = ⋂{D p : p ∈ R(A)}. As a consequence, ext(E (A))

coincides with A’s evenly convex natural extension11:

ext(E (A)) =
⋂

{D ∈ De.c. : A ⊆ D },
for any A ⊆ L .

Proof. We will show the following implications, guaranteeing the equivalence of the five statements (i)–(v):

3333

33

3333

To show that (i)⇔(ii), note using Theorem 11 that (i) is equivalent to the statement ‘A ⊆ D for some D in DArch’. We know 
[see Proposition 7] that every coherent and SSK–Archimedean set of desirable gambles is included in an element of D̂Arch , 
the maximal coherent and SSK–Archimedean sets of desirable gambles, so the statement is in turn equivalent to ‘A ⊆ D̂
for some D̂ in D̂Arch’. But Proposition 14 guarantees that D̂Arch is identical to D̂e.c. , the maximal coherent evenly convex 
sets of desirable gambles. Therefore, we have the equivalence with ‘A ⊆ D̂ for some D̂ in D̂e.c. ’, which in turn is equivalent 

11 As usual, we let ⋂∅ = L .
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to (ii) once we realise using Proposition 14 that every coherent evenly convex set of desirable gambles is dominated by an 
element of D̂e.c. .

To show that (i)⇒(iv), note using Lemma 10 that A avoids non-positivity—so that E (A) is coherent—and that E (A) is 
extendible to a probability. Proposition 30 tells us that then indeed ext(E (A)) is coherent and evenly convex.

To show that (iv)⇒(iii), simply use the fact that L is not a coherent set of desirable gambles: it violates Axiom D1.
To show that (iii)⇒(i), we will show the contrapositive statement that ext(E (A)) equals L when A is not extendible to 

a probability. Recall using Theorem 11 that A is not extendible to a probability implies that A—and hence also E (A) ⊇ A—is 
not included in a coherent and SSK–Archimedean set of desirable gambles. This means that there is no coherent SSK–
Archimedean extension of E (A), whence by Definition 21, any gamble is precluded from being desirable, and by Def-
inition 23 that any gamble is precluded from being (non-trivially) indifferent to 0. Therefore, by Equation (19), E (A)’s 
SSK–extension ext(E (A)) is equal to L .

Finally, to show that (iv)⇔(v), note that (v) is a strengthening of (iv). It therefore suffices to show that (iv)⇒(v). To this 
end, assume that ext(E (A)) is an evenly convex coherent set of desirable gambles, and we need to show that it is equal to 
the smallest evenly convex coherent set of desirable gambles D that includes A. To this end, since A ⊆ D ⊆ ext(E (A)), use 
Lemma 26 to infer that R(D ) = R(ext(E (A))). But since both D and ext(E (A)) are coherent and evenly convex, we infer 
using Proposition 13 that indeed D = ⋂{D p : p ∈ R(D )} = ⋂{D p : p ∈ R(ext(E (A)))} = ext(E (A)).

For the second statement, to show that then ext(E (A)) = ⋂{D p : p ∈ R(A)}, it suffices to note, using Lemma 26 again, 
that R(A) = R(ext(E (A))).

To finish the proof we will show that ext(E (A)) is equal to A’s evenly convex natural extension 
⋂{D ∈ De.c. : A ⊆ D }. 

To this end, note that if A is not included in a coherent and evenly convex set of desirable gambles then 
⋂{D ∈ De.c. : A ⊆

D } = ⋂∅ = L . But using the equivalence (ii)⇔(iii) we also have that ext(E (A)) = L , so in this case indeed 
⋂{D ∈ De.c. :

A ⊆ D } = ext(E (A)).
If, on the other hand, A is included in a coherent and evenly convex set of desirable gambles, then 

⋂{D ∈ De.c. : A ⊆ D }
is the smallest coherent and evenly convex set of desirable gambles that includes A, which indeed coincides with ext(E (A))

using the equivalence (ii)⇔(v). �
De Cooman [8, Theorem 21] obtained a similar conclusion, in a more general context of Banach spaces of arbitrary 

dimension, but without reference to the SSK–extension.
Our Theorem 33 above implies that ext(D ) is the smallest evenly convex and coherent extension of any coherent set of 

desirable gambles D that is extendible to a probability. In other words, if we start with a given coherent set of desirable 
gambles D that is extendible to a probability, and impose additionally the requirement (non-exposedness)—or equivalently, 
as we have seen in Theorem 31, even convexity—on it but nothing else, then we end up with ext(D ).

Note that, quite interestingly, the SSK–extension ext spells out the condition under which a set of desirable gambles D
can be coherently extended to an evenly convex one: as we have seen in Theorem 33, this can be done precisely when D
is extendible to a probability. This is expressed by the fact that ext coincides with the evenly convex natural extension on 
the entire domain of subsets of gambles.

One might wonder what the SSK–extension ext(EArch(D ))—which, as we have seen, is the smallest evenly convex 
extension—of the SSK–Archimedean natural extension EArch(D ) of a coherent set of desirable gambles D that is extendible 
to a probability, may be. Since we have seen that SSK–Archimedeanity is necessary for even convexity, this suggests that the 
SSK–Archimedean natural extension is only an intermediate step to the SSK–extension. Is this the case? More specifically, is 
ext(EArch(D )) = ext(D )?

Since ext(D ) is a coherent and SSK–Archimedean extension of D by Proposition 30, and EArch(D ) is the smallest such 
extension of D by Theorem 11, this means that EArch(D ) ⊆ ext(D ). But since ext is a closure operator [see Proposition 25], 
we find that ext(EArch(D )) ⊆ ext(ext(D )) = ext(D ) ⊆ ext(EArch(D )), where the first inclusion holds because ext is mono-
tone, the equality because ext is idempotent, and the second inclusion because ext is extensive. This means that indeed 
ext(D ) = ext(EArch(D )), so that SSK–Archimedeanity is an intermediate step towards even convexity which can be omitted, 
but nevertheless is crucial to define the SSK–extension. This idea, and a similar one for not necessarily coherent assessments 
A ⊆ L that are extendible to a probability, is shown in the commuting diagram of Fig. 13, and illustrated in Example 9
below.

Example 9. Let us revisit Cozman’s [4, Example 17] example, which we used in our Example 7, to gain more intuition about 
the difference between the SSK–Archimedean natural extension EArch and the SSK–extension ext. We consider a ternary 
possibility space and two different coherent sets of desirable gambles D1 and D2 that are extendible to a probability, and 
will calculate their SSK–extensions in two different ways: once using the SSK–Archimedean natural extension, and once 
directly.

We show in Fig. 14 the two intersections of the two sets of desirable gambles with a plane. This figure is meant to be 
understood in the same way as Fig. 10 in Example 7.

D1 and D2 differ only by the ray posi{ f }: D2 = D1 ∪posi{ f }. This ray posi{ f } is an element of the linear space �(T D2 ( f )), 
indicated in Fig. 15.
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Fig. 13. Commuting diagrams involving the natural extension E , the SSK–Archimedean natural extension EArch and the SSK–extension ext. Fig. 13a. starting 
with a coherent set of desirable gambles that is extendible to a probability. Fig. 13b. starting with an arbitrary set of desirable gambles that is extendible 
to a probability.

Fig. 14. The two sets of desirable gambles D1 and D2.

Fig. 15. The largest linear spaces �(T D1 ( f )) and �(T D2 ( f )) included in the Bouligand tangent cones of D1 and D2.

We see that �(T D1 ( f )) has nothing in common with D1: �(T D1 ( f )) ∩ D1 = ∅, so the entire linear part of D1’s boundary 
�(T D1 ( f )) ∩ cl(D1) does not belong to D1. However, �(T D2 ( f )) does have something in common with D2, namely the ray 
posi{ f }.

We are first looking for the SSK–Archimedean natural extension of each of these two sets of desirable gambles. Note 
that D1 is open and therefore SSK–Archimedean, as we have observed in Example 6, so that EArch(D1) = D1. However, 
D2 is not SSK–Archimedean, so we will have EArch(D2) ⊃ D2. To see this, use Proposition 18, which establishes that any 
SSK–Archimedean set of desirable gambles D either has nothing in common with the linear space �(T D ( f ))—as is the case 
for D1—or contains the entire relative interior ri(�(T D ( f )) ∩ cl(D )) of the linear part of the boundary it has something 
in common with. This implies that we should extend D2 with at least ri(�(T D2 ( f )) ∩ cl(D2)). The same argument used 
in Example 7, which uses requirement (Arch) directly, shows that D2’s SSK–Archimedean natural extension EArch(D2) =
D2 ∪ ri(�(T D2 ( f ))∩ cl(D2)) is indeed precisely this extension. Fig. 16 depicts the SSK–Archimedean natural extensions of D1
and D2 graphically.
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Fig. 16. The SSK–Archimedean natural extensions of D1 and D2.

Fig. 17. g is exposed for D1 but not for EArch(D2), and h is exposed for EArch(D2).

Fig. 18. The SSK–extension of EArch(D2).

Note that D1 is open, and therefore evenly convex. Using Theorem 33 we infer that ext(D1) = ext(EArch(D1)) = D1. D2
nor EArch(D2), however, are evenly convex. To see that D2 is not evenly convex, use Proposition 13 and the fact that D2
is not SSK–Archimedean, established above. To see that also EArch(D2) is not evenly convex, note that it does not contain 
the gamble g—or the ray posi{g}—indicated in Fig. 16, which is an “endpoint” of the linear part �(T D2 ( f )) ∩ cl(D2) of D2’s 
boundary, and therefore, as we have seen in Example 7, not required by SSK–Archimedeanity to belong to D2. But this 
“endpoint” g is non-exposed, as we will see, in contradistinction to the other “endpoint” h. To see that g is non-exposed, 
consider any pk in � such that E pk ( f ) = 0. Then ker E pk intersects EArch(D2), as is depicted graphically in Fig. 17, so that 
posi{g} is a non-exposed ray by Lemma 28.

Note that posi{g} is an exposed ray of D1, since ker E p1 has nothing in common with D1. We see that posi{g} is 
EArch(D2)’s only non-exposed ray in �(T D2 ( f )) ∩ cl(D2) that does not belong to EArch(D2): the other ray posi{h} that does 
not belong to EArch(D2) is exposed since E p∗ = 0 and ker E p∗ does not intersect EArch(D2). Therefore by Theorem 31 we 
have that posi{g} ⊆ ext(EArch(D2)). In fact, using Proposition 25 we see that ext(EArch(D2)) = EArch(D2) ∪ posi{g}, which is 
the smallest coherent and evenly convex set of desirable gambles that includes EArch(D2), as depicted in Fig. 18.

Note that we would obtain the same smallest coherent and evenly convex set of desirable gambles if we were to skip 
the SSK–Archimedean extension, and directly look for D2’s SSK–extension ext(D2), as predicted by Theorem 33. To see this, 
note that the ray posi{g} is a non-exposed ray of D2: for every pk 
= p1 the intersection ker E pk ∩ D2 is the same non-empty 
set, and for p1 we find that posi{ f } belongs to ker E p1 as indicated in Fig. 19.

In fact, any other gamble on the line between g and h—in other words, any gamble in ri(�(T D ( f )) ∩ cl(D ))—is non-
exposed, for very similar reasons. Using Theorem 31, this means that ri(�(T D2 ( f )) ∩ cl(D2)) ⊆ ext(D2). Proposition 25
tells us, here again, that D2’s SSK–extension is precisely ext(D2) = D2 ∪ posi{g} ∪ ri(�(T D2 ( f )) ∩ cl(D2)), so it is equal 
to ext(EArch(D2)), which is depicted in Fig. 18. ♦

5. Conclusions

We have shown how SSK–Archimedeanity and SSK–extension can be used to obtain a two-way representation of sets 
of desirable gambles in terms of sets of probabilities, by mimicking the arguments of Seidenfeld et al. [21] in terms of 
preference relations on horse lotteries. Quite interestingly, but not entirely surprising, the combination of SSK–extension 
with SSK–Archimedeanity leads to evenly convex sets of desirable gambles. But this relation is deeper than could be thought 
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Fig. 19. g is non exposed for D2.

based on the works of Seidenfeld et al. [21] and Cozman [4] alone: we show that the SSK–extension is the smallest evenly 
convex extension of a coherent set of desirable gambles that is extendible to a probability. Furthermore, we extended 
Cozman’s [4, Theorem 16] and gave equivalent conditions for a coherent set of desirable gambles that is extendible to a 
probability to be represented by a probability. One of these equivalent conditions is given in Theorem 31(iv), which is a 
condition on coherent sets of desirable gambles that turns out to be equivalent to representability by a set of probability 
mass functions.

We remind the reader that we use the framework of a finite state space �. One challenge in generalising to an infinite 
state space is coherence for finitely-additive probabilities. For example, if � = {ωk : k ∈ N} and f the bounded gamble 
defined as f (ωk) = − 1

k for each k in N , then f is point-wise negative. But if p is a merely finitely-additive probability with 
p(ωk) = 0 for each k in N , then E p( f ) = 0, and f is almost-desirable. This conflicts with the fact that − f is point-wise 
positive and hence required to be desirable by clause D2 of Definition 1. We leave to future work extending these results to 
the infinite state space case with finitely additive probabilities.
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