Three degrees of Imprecise Probability [IP] Theory
Teddy Seidenfeld - CMU

Here, I rely freely on enjoyable collaborations/discussions with:
Mark Schervish, Jay Kadane, Fabio Cozman, Erik Quaeghebeur, and Matthias Troffaes;
Each of them has the good sense and keen judgment to disagree on some particulars in what follows!
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Consider, for example, these five canonical “Bayesian” theories:
* F. Ramsey (1931)

B. de Finetti (1931, 1937, 1974)

L. J. Savage (1954, 1971)

F.J. Anscombe and R.J. Aumann (1963)

M. DeGroot (1970)

In these theories, rational preference is a binary relation over options

represented by inequalities in Subjective Expected Utility [SEU].
In these theories, a decision maker’s uncertainty is represented by a
single subjective probability, which is an ingredient in SEU.

Two related themes cut through all these theories:
* Rational preference satisfies a dominance (coherence) principle.

* Degrees of belief are identified with a precise subjective probability,
which may be revealed (elicited) through rational preference,
which in turn is revealed through choice behavior.
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QUESTION: What becomes of these two themes within IP theories?

Outline

1. (de Finetti’s) Coherence criteria and related dominance rules

Coherence: Fair-prices (previsions) that avoid a sure-loss

2. Three degrees of IP theory relating to (de Finetti’s) coherence criteria
Fundamental Theorem: imprecise vs. indeterminate previsions
Using binary comparisons for elicitation with IP-sets.

Choice functions for solving the limitations of binary comparisons
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1. de Finetti’s criterion of coherence
* Choices are coherent when they respect a (restricted) dominance in
outcomes relative to a partition, Q2.

Fix a partition ® = {®4, ...., @, ...}, which might be infinite.
Consider a pair of acts where each Act can be formulated as a function
from ©t to a set of outcomes 0.

Assume that outcomes may be compared by a preference relation, at least

within the same state.

(O] (0 ) W3 Wp
Act, 011 01,2 01,3 O1,n
Act, 03,1 03,2 03,3 O2,n
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Act, is strictly preferred to Act; — so Act, is rejected whenever Act, is available
if:

de Finetti’s Uniform dominance (for infinite partitions):

* There is a positive amount € > (0, and for each state w;

0, is strictly preferred to o, ; by at least €.

Here are two dominance criteria that are not satisfied in de Finetti’s theory:

Strict dominance (Shimony, 1955); Admissibility (Wald, 1950):

* For each state, w; 0,,; 1s weakly preferred to o,
and for some state, w; 0, is strictly preferred to o, ;.

Simple dominance:

* For each state w; outcome o,; is strictly preferred to outcome o, .
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* Review of de Finetti’s coherence for pricing random variables.

Letx = {X;: Q —=NR; i=1, ..} be aclass of real-valued (bounded) variables

measurable with respect to algebra # over Q2.

Coherence (de Finetti):
an arbitrary partition of states, Q = {w;: i€ I}, and
an arbitrary collection of real random variables, y ={X;: j € J}, defined on Q.

fair prices (previsions) for each element of .

Dominance is with respect to outcomes formulated over Q2. The comparison is
between buying/selling variables at their fair prices (previsions) and abstaining .
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For each random variable, X € y, the agent has a two-sided prevision P(X),

which is to be interpreted as a fair price, for buying and selling.

For all real B > 0, small enough so that the agent is willing to pay the possible
losses, the agent is prepared

to pay BP(X) in order to buy (i.e., to receive) f X(w) in return.

and, is willing to accept B P(X) in order to sell (i.e., to pay) fX(w) in return.

In symbols, ex ante, the agent will accept the gamble that, in state w, pays

BIX(w) - P(X)]

as a change in fortune, for all sufficiently small (positive or negative) f3.
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The agent is required to accept all finite sums of gambles.

That is, for all finite n and all small B4, ..., Bn and all Xy, ..., Xa € ¥,

The agent will accept the linear combination of gambles

> BilXi(w) - PX)].

Where B; is positive, the agent buys B;-units of X; for a price of B;P(X;).

Where it is negative, the agent sells |B;]-units of X; for a price of (;P(X;).

The previsions are incoherent if there is an acceptable

finite combination of gambles with uniformly negative net-payoff.
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Incoherent prices: There is a finite set {; = 0} and ¢ > 0 so that for eachw € Q,

> BilXi(w) - P(Xi)] <-e.

Otherwise the agent’s previsions are coherent.

Coherence:

Respect uniform dominance in Q with respect to the alternative
“status-quo” — abstaining from the market.
Abstaining is represented by the constant outcome, 0, in each state.
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COHERENCE as elicitation
A 2-person, 0-sum sequential prevision game
The Bookie moves first and sets fair (buy/sell) prices for each X € i, P(X).
The Gambler acts on the Bookie’s offers.

The Gambler — may make finitely many (non-trivial) contracts at the

Bookie’s announced prices.

For each X, Gambler fixes a real number, 3, which determines a contract.

In state w, a contract has an outcome to the Bookie (with negative outcome
to the Gambler) of Bx[X(w) = P(X)].

The Bookie’s net outcome in state w is the sum of the payoffs from finitely
many non-zero contracts: Y xeX Bx[X(w) = P(X)].
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Basic Theorem for Coherence

Theorem (de Finetti, 1974):

A set of previsions {P(X)} is coherent

if and only if

There exists a (finitely additive) probability P on Q such that these

quantities are the P-Expected values of the corresponding variables

ErlX] = P(X).
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Contrasts between this COHERENCE

and the three different senses of dominance

Coherence fails strict dominance (Shimony, 1955)

Example: Let Q = {w,, ®,} with P({w1}) = 1. The prevision P({w,}) = 1 fails
to respect strict dominance. The agent judges the contract 1(/,,_(w) - 1)
“fair” — indifferent to Abstaining — even though:

(OF] (O)}
P{w.})=1;8=1 0 -1
Abstain 0 0

* Shimony (1955): Previsions are strictly coherent, iff regular.
P(X) =0 if and only if X(w) = 0 for each w € Q.
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Coherence fails simple dominance (de Finetti, 1974)
Example — Let Q be countably infinite Q = {w,, w,, ...} and let X(w,) = n.
Use a (strongly finitely additive) probability P({w}) = 0.

Then Ep(X) = 0. With prevision P(X) =0 and § = -1 the “fair” payoffs from -
(X(w) - P(X)) = -X(w), are simply dominated by abstaining.

(O F] 0, W3 ... 0O, ...
P(X)=0,p =-1 -1 -1/2 -1/3 ... -1/n ...
Abstain 0 0 o ... O

NOTE de Finetti (1974): Coherence satisfies simple dominance if P is o-additive.
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(de Finetti, 1972, p. 91) A set of coherent previsions may be uniformly

dominated by abstaining if countably many contracts are combined.

Example (continued): Let Q be countably infinite Q = {w,, ®,, ... }.

Consider the countably many indicator functions for the elements of Q
IL(w)=1if w=w, and I,(w)=0if w = w,.

Use a (strongly finitely additive) probability P({w}) = 0.

Then E,(l,) = 0. With prevision P(/,) =0 and § = -1 the “fair” payoffs from combining all
(infinitely) many contracts is Yn—(l(w)-0)=-1,

independent of w, which is simply dominated by abstaining.

01 (D)) 3 () )%
EHP(IH)=OI B =-1 -1 -1 -1 oo -1
Abstain 0 0 o ... O
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2. Imprecise Probabilities |[IP Theory]
2.1 Weak IP theory and Coherence

* Incomplete elicitation — de Finetti’s Fundamental Theorem of Previsions

Suppose coherent (2-sided) previsions are given for each variable in a set ,
Let Y be a real-valued function defined with respect to Q but not in .
Define: A={X:X(w) = Y(w) and X is in the linear span of x}

A={X: X(w) = Y(w) and X is in the linear span of y}

Let P (Y) =supxc 4 P(X) and P(Y)=infxc4 P(X)

Then the 2-sided prevision, P(Y), may be a number from P (Y) to P (Y)

and the resulting enlarged set of previsions is coherent.

Outside this interval, the enlarged set of previsions is incoherent.
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The Fundamental Theorem provides an early instance of /P-theory where,

in Levi’s (1980) terms (relating to 1.J. Good’s “Black Box” Theory)

the ‘7 in IP stands for an Imprecise prevision,

rather than an Indeterminate prevision.

The interval for a new prevision [P (Y) P (Y)] from the Fundamental Theorem
constrains a new, 2-sided prevision for a variable, Y & y, while preserving

coherence of the 2-sided previsions already assigned to X € .
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* Some observations relating to Weak IP Theory.

Coherence for 2-sided previsions does not require the rational person identify

precise previsions beyond the linear span of the variables in the set ¥.

Specifically, the rational agent is not required by coherence to have
determinate probabilities defined on an (even finite) algebra of events, let

alone on a power-set of events.

It is sufficient to have probabilities defined as-needed for the arbitrary set v,

as might arise in a particular decision problem.

* See, e.g., F. Lad’s (1996) book for interesting applications of this result.
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* Toy Example 1.1-Q ={1, 2, 3, 4, 5, 6} the outcome of rolling an ordinary die.
¥ is the set of indicator functions for the following four events

x ={{1},{3,6},{1,2,3},{1,2,4} }

Suppose 2-sided previsions for these four events are given, and agree with the
judgment that the die is “fair.”

P({1}) = 1/6; P({3,6}) =1/3; P({1,2,3}) = P({1,2,4}) = 1/2.

The set of events for which precise 2-sided previsions follow from precise previsions
for these four events is given by the Fundamental Theorem.

* That set does not form an algebra. Only 24 of 64 events have precise previsions.

For instance, by the Fundamental Theorem,
P({6}) =0 < P({6})=1/3;
likewise P({a})=0 < P({a})=1/3;

however, P({4,6}) = 1/3.

* The smallest algebra generated by these 4 events is the power set of all 64 events
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2.2 — Indeterminate Previsions based on 1-sided previsions.

In order to link de Finetti’s coherence with IP-theory where, the ‘I’ stands for

indeterminate previsions, we shift from 2-sided, to 1-sided previsions.

Then the decision maker is required only to provide a pair of (1-sided) previsions
{P(X)), P (X)} for each random variable X; in , corresponding to a largest “buy”

price and smallest “sell” price for the corresponding 1-sided previsions,

depending upon whether Bi is positive, or negative, respectively.
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Generalizations of de Finetti’s Coherence Theorem for 1-sided previsions have
been given by many researchers. (C.A.B. Smith, 1961)

* There are variations, e.g., that use only closed intervals of previsions, and others
with mixed boundaries (some open, some closed) for their IP sets of probabilities.

These generalizations of de Finetti’s coherence all rely on binary comparisons between

gambles, identifying those that are favorable versus others.

The resulting IP sets of probabilities that may be distinguished from one another are
convex, with relatively simple boundaries — where extreme points of the convex set

are also exposed.

* The common technique uses one or another Separating Hyperplane Theorem.
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Here are two convex sets with some
extreme points — points not convex combinations of others, that

are not exposed points — can not be separated from the set by hyperplanes.
Dotted segments are open boundaries.
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* Thus, with this IP approach, based on gambles that are favorable
compared with the status-quo, only some convex sets of probabilities
can be elicited/distinguished .

* Below, I will explain why we want to distinguish among such sets.
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2.3 A third, still stronger account of IP Theory.
Generalizations of de Finetti’s coherence that use 1-sided previsions, or
comparisons between a gamble and the status-quo as a reference point,

use binary comparisons exclusively to determine admissible options.

* These approaches cannot distinguish between some sets that differ only

on their boundaries.

In higher dimensions, the dimension of the boundary may be large too!

* Also, such approaches cannot distinguish between sets of probabilities
that have the same convex hull.

Some cannot distinguish between sets of probabilities that have the same
closed convex hull.
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One way to improve IP-elicitation in accord with the central theme that
choice behavior reveals the agent’s uncertainties

is to use choice functions rather than (binary) preference relations.
As we’ll see, then elicitation is not restricted to convex sets.

* Then, IP-theory can be richer than is represented by

the class of convex sets of probabilities.
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Return to question the relation between IP-decision theory and dominance.

Utility
axis

0.4

/ Act 18 \
0.0 f never Bayes g

but never
beaten
y 25 P(w,) axis 75 W,

Only {f,g} are Bayes-admissible from the triple {f,g,h};

however, all pairs are Bayes-admissible in pairwise choices.

l. Levi calls h second worst in the triple {f,g,h}.
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Contrast three coherent decision rules for extending Expected Utility
[EU] theory when probability — but not cardinal utility — is indeterminate.

The decision problems involve (bounded) sets of lotteries, where the
outcomes have well-defined cardinal utility but where the (act-independent)
states are uncertain, represented by a convex set of probabilities 2.

* I'-Maximin (Gilboa-Schmeidler, 1989) — maximize min. expectations over 2.

* Maximality (Walley 1990) — admissible choices are undominated in
expectations over 2 by any single alternative choice.

* E-admissibility (Levi/Savage) — admissible choices have Bayes’ models,
i.e., they maximize EU for some probability in the (convex) set 2.

Each rule has EU Theory as a special case when probability is determinate,
i.e., when 2 is comprised by a single probability distribution.

And each rule is coherent in the sense that sure loss (Book) is not possible.
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The three rules are chosen to reflect the following progression, where each

rule relaxes more of the ordering assumption than does its predecessors:

* I'-Maximin produces a (real-valued) ordering of options; hence,

defined by binary comparisons — but it fails Independence.

* Maximality does not generate an ordering of options; however, it is

given by binary comparisons.

* E-admissibility does not generate an ordering, nor is it given by

binary comparisons.
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* The I'-Maximin solution is {h}.
* The E-admissible solution set is {f, g}.
* And Maximality finds all three options admissible, {f, g, h}.

Thus, each rule gives a different set of admissible options in this problem.
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Create a convex option space by allowing mixed strategies.
Expected Utility for the (Bayes) mixed options of ®(1-a)g is in pink; they maximize EU at p(w;) = .5 (blue)
The Bayes equalizer (mixed) act is m = .5f®.52

axis

1.0
Utility \
m

0.5 | mmssssssasesTilatise.
0.4

/

W 25 P(w») axis 75 W,

* The I'-Maximin solution is the EU-equalizer {m}.

* The E-admissible and Maximally admissible options are the same set of Bayes solutions (pink).
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Agreement of the 3 decision rules on Bayes solutions then is no accident:
* Walley (Theorem 3.9.5, 1990) establishes that when the option set is
convex and the (convex) set of probabilities 2 is closed,
or (SSKL) if the set 2 is open and the option set is finitely generated,

then E-admissibility and Maximality give the same solution sets.

Their admissible sets are precisely the Bayes-admissible options.

* And then it also follows that the I'-Maximin admissible acts are a
(proper) subset of the Bayes-admissible options.

* Under these conditions, pairwise comparisons of acts suffice to
determine the set of Bayes-admissible choices and from them we can
elicit the IP-model.

* However, otherwise options that are admissible by Maximality may be
E-inadmissible. (SSKL, 2003).
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D.Pearce (1984), reports a result which is important for understanding the

underlying connection between dominance and Bayes-admissibility.

Theorem (Pearce, 1984): In a decision problem under uncertainty,

* with finitely many states and finitely generated option set O,
* with utility of outcomes determinate — cardinal utilities,

if an option o € O fails to be Bayes-admissible,

then o is (uniformly) dominated by a finite mixture from O.

Aside: This result can be extended to some infinite decision problems,
where the option set is not finite and utilities are bounded.
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In this sense, incoherent choices suffer de Finetti’s penalty — being
(uniformly) dominated by a mixed option — within the decision at hand — and
not merely for the prevision game, which is a specialized decision.

In accord with Pearce’s Theorem, in the example above,
the mixed act m = .5f® .5g strictly dominates A.

Definition: Given a (closed) set O of feasible options, a choice function C identifies the
set A of acceptable options C[O] = A, for a non-empty subset A C O.

Aside: There may be no acceptable option if the option set is not closed,

e.g., there is no “best” option from the continuum of utility values in [0, 1).
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Definition: Option o € O has a local Bayes model P if

o0 maximizes the P-expected utility over the options in O.

Theorem (Pearce, 1984 for finite state spaces): If an option o € O fails to
have a local Bayes model then it is (uniformly) dominated by a finite mixture
of options already available from O.

So — at least when the option space is closed under (finite) mixtures —
(uniform) dominance assures that admissible options are locally coherent.

That is, then the choice function needs to be locally coherent at least.

* Definition: A choice function C is coherent if there exists an IP-set
2 of probabilities such that the acceptable options under C are

precisely those that maximize expected P-utility for some P ¢ 2.
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* Note that option m has a local Bayes model from the choice set {f, g, m}

if and only if P(w;) =.5 belongs to the IP set 2.
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This observation about the admissibility of a mixed option generalizes to
allow very fine IP elicitations using coherent choice functions.

* Each (arbitrary) IP set has its own distinct coherent choice function.
* For each two different sets of distributions there is a (finite) decision

problem where they have distinct coherent choices.
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Application

We can represent the IP set of probability distributions that make two events
independent, since convexity of the IP set is not required with coherent
choice functions.

S S
®, ()]
3 Wy

This leads to different admissible options in a simple (normal form) decision problem
than results when the IP set is, instead, the convex hull formed with extreme points
satisfying independence between two events.
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Coherent choice functions may be characterized by axioms on admissible sets
that parallel familiar axioms for coherent preferences over horse-lotteries.

Coherent Preference < Coherent Choice Functions

Axiom, < is a weak order Axiom;, Sen’s Property o.:

An inadmissible option remains so

Axiom, < obeys Independence upon addition of other options.

0:<0, iff Axiomy, Aizerman condition, almost:
x0,®(1-x)0; < x0,®(1-x)0s Deleting an inadmissible option does not

promote another inadmissible options.
Axiom; Archimedes . ] ]
These two axioms determine a strict

If 0o,<0,<0;thend0<x,y<1 partial order, O, « O, on option sets:

x0,®(1-x)o; < 0, < yo,®(1-y)o; 0O, contains no admissible options

] i . from among the choice of O; U 0,.
Axiom, State-independent Utilities

The 3 remaining pairs of axioms are
expressed using the partial order « and
reproduces within each non-null state. parallel the axioms for coherent preference.

Preference over constant acts
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Representation Theorem (SSK 2007)

* The 4-pairs of axioms are necessary for a choice function to be coherent.

* The axioms suffice for representing a choice function with the Bayes-styled
decision rule:

An option is admissible from a menu if

it is maximizes Expected Utility over the menu for some probability in 2
using a set of Probability/Almost-state-independent utility pairs.

* We offer a sufficient condition where the representation uses a single,
state-independent utility on rewards.
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Summary

1. (de Finetti’s) Coherence criteria and related dominance rules

2. IP theory relating to (de Finetti’s) coherence criteria

2.1 IP as incomplete elicitation of a precise prevision:

Fundamental Theorem: imprecise vs. indeterminate previsions
2.2 IP based on lower and upper 1-sided previsions

Limitations using binary comparisons for elicitation with 1P-sets
2.3 IP based on Coherent Choice Functions

Characterizing each set of (precise) probabilities

Eliciting IP sets using choice functions

Axiomatizing coherent choice functions.
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