Comments on Causal Decision Theory

Teddy Seidenfeld


Stable URL:
http://links.jstor.org/sici?sici=0270-8647%281984%291984%3AC2OCDT%3E2.0.CO%3B2-R

*PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association* is currently published by The University of Chicago Press.
1. Introduction

Two of the symposiasts here today acknowledge a specific and deep rooted problem in normative expected utility theory. They concur, the deficiency is exposed in decisions which emphasize the difference between probabilistic dependence and causal dependence across act-state pairs. Despite this shared agreement, my co-commentator and the principal speaker offer different prognoses for expected utility theory. They agree on the symptoms but not on the cure.

Professor Harper and his co-worker Gibbard despair of saving expected utility. With commendable forthrightness, they give us their newly designed (1978) causal decision theory to replace a moribund expected utility. With the fine skills of genetic engineers they have created causal decision theory by introducing causal conditionals into the algebra of probability, just as mutant virus proteins have been implanted into host DNA.

By contrast, Prof. Eells refuses to sign a postdated death certif-icate identifying Newcomb et al. as executioners. Though he agrees with the advocates of causal decision theory that standard accounts of expected utility deliver the wrong choices in the test-problems, he holds out for a complicated corrective planned to rejuvenate the old program so that it falls in line with the recommendations of the new "causal" approach. Eells prescribes a regimen of tickles and metatickles to shock expected utility into causal consciousness (1982, 1985).

I must beg your indulgence to complicate the debate with a third opinion. Though I agree expected utility theory is normatively defi-cient, the family of decision problems related to Newcomb's indicate no new flaw, no new shortcoming which I see. Expected utility can be challenged, successfully, for its conflation of risk with uncertainty—as in Ellsberg's (1961) work. Expected utility fails to admit a concern with "risk" beyond that captured in the curvature of a utility function—as Allais noted some thirty years ago (1953). And,
because of the norms involving "closure", expected utility theory is hard put to extend the concept of "evidence" to include the results of (mere) calculation—so that there is precious little to be found about how subjective probability affords a sense of "evidence" in mathematics or logic. [See (Glymour 1980, chap. 3) for discussion of how this problem affects "confirmation" in science. Of course, the issue is not news. See (Savage 1967) and (Hacking 1967), for instance.] But I do not understand the alleged shortcomings exposed in the case of Newcomb. I do not see where expected utility is at fault because of confusions over causal independence. Where are the dire consequences stemming from a straightforward use of conditional expected utility theory? To be blunt, what's the beef?

2. Variations and Special Cases of Newcomb's Problem

In defense of expected utility, let me rehearse some small variations on the Newcomb theme. We begin with the canonical Newcomb problem. There is a choice between two options: option₁—to take the contents of an opaque box (one-box); and option₂—to take the contents of the opaque box plus the $1,000 in the transparent box (two-boxes). The opaque box contains either $1,000,000 or nothing, depending upon a demon's earlier prediction that the choice is for one-box or for two-boxes. The familiar decision-matrix summarizes the choice problem and reveals a dominance in dollar payoffs of option₂ over option₁.

<table>
<thead>
<tr>
<th>event₁: demon predicts option₁ chosen</th>
<th>event₂: demon predicts option₂ chosen</th>
</tr>
</thead>
<tbody>
<tr>
<td>option₁: take one-box</td>
<td>$1,000,000.</td>
</tr>
<tr>
<td>option₂: take two-boxes</td>
<td>$1,001,000.</td>
</tr>
</tbody>
</table>

We assume the agent who is to choose in the Newcomb problem takes no interest in the consequences of the choice apart from the monetary outcomes of the matrix, where more is better. That is, the agent has no outside interest in, say, frustrating the demon's prediction apart from the preference for an additional $1,000 in case the demon predicts a choice of option₁. For simplicity, let us take a utility function linear in dollars, so that the dollar figures also are utiles. Hence, the dominance of option₂ over option₁ is truly a dominance by preference, not merely a dominance by dollar amounts. The twist, of course, is to add a constraint that the chooser admits the demon is a very accurate predictor of such choices—where the accuracy is interpreted as a high conditional probability given the agent's choice: \( \text{prob.}(\text{event}_1 \mid \text{option}_1) = \text{prob.}(\text{event}_2 \mid \text{option}_2) = 1-\varepsilon. \) [See (Levi 1975) for an explanation of why this interpretation is necessary for preserving a conflict between expected utility and dominance considerations.] Then, the conditional expected utility of option₁ exceeds that of option₂—against the recommendation afforded by appeal to dominance.
Causal decision theorists (and Prof. Eells, too) think(s) two-boxes are better than one, contrary to this analysis by conditional expected utility. [As I understand Eells, he hopes for added information that overrides the evaluation based on (just) the evidence of which option is chosen.] In one way or another causal decision-theorists argue that, since what is in the opaque box is "fixed and determined" when the agent chooses, attention to the causal efficacy of the choice makes the dominating option right and the one-box option wrong.

Let us trace out the effects of preferring the two-box option in cases of the Newcomb problem. First, consider an infallible demon. This issue was raised by Levi (1975). I repeat it as I know of no reply from the causal decision theory camp. Then, by the criteria of Savage's (1954) or Jeffrey's (1965) versions of expected utility theory, the problem is one of choice under certainty—there is no risk involved. Taking option₁ and getting $0, or taking option₂ and getting $1,001,000 constitutes a null-event. It is certain that the demon predicts correctly; hence, the decision matrix is

<table>
<thead>
<tr>
<th>demon predicts correctly</th>
<th>$1,000,000</th>
<th>$1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>option₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>option₂</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where other outcomes are null. The causal relationships between the choice and the "fixed and determined" state of the opaque box are unchanged by this special-case version of Newcomb. Do the causal decision theorists advocate option₂ when it is certain to yield $1,000 whereas option₁ is certain to yield $1,000,000? To recommend two-boxes in this case is to contravene more than subjective expected utility theory—it is to overturn what is non-controversial by all standard accounts of choice, from expected utility to minimax theory to the very principle of dominance so dear to the hearts of causal decision theorists. Here option₁ dominates!

As a second case, consider the version of Newcomb with an infallible demon where a friend, not you, faces the choice but where you and your friend agree on the formulation of the decision problem. How do you evaluate the worth of your friend's act on the hypothesis it is made but before the opaque box is opened and its contents awarded? What are your betting odds that conditional on option₁ your friend becomes a millionaire? What are your betting odds that conditional on option₂ your friend receives only $1,000? By the weakest of principles of conditionalization, where a conditional gamble is equated to a called-off bet (see Shimony 1955) and for more recent discussion (Levi 1981), these are sure-things; hence, you are prepared to offer arbitrarily high odds on their occurring. Last, what is your fair-market price for your friend's choice? That is, given which option it is that your friend chooses, what is the fair market value for the proceeds it brings? Given your friend chooses one-box, is there any reason to pass up the bargain to buy the proceeds for, say, $10,000? Given your friend chooses two-boxes, is there any reason to offer more than $1,000 to get the rewards that await? I see none.
These questions and answers erode the causal-decision-theoretic arguments pointing towards the two-box solution when the demon is infallible (either in first- or in third-person version). Likewise, they stymie Eells' strategy for underwriting the two-box option. No matter what sort of additional information Eells tries to capture under the headings of "tickles" or "metatickles", so long as we are not accepting what is practically impossible, the conditional probability of the demon predicting accurately remains 1. That is, for an infallible demon, given any non-null evidence, the problem remains one of choice-under-certainty. What is the point to "tickles" and "metatickles" here?

Perhaps the causal decision theorists, and Prof. Eells too, treat the infallible demon as an exception to the rule? I don't find good reason to switch principles of rationality when ε changes from a minute quantity to zero. Nor am I impressed by the argument that the case of the infallible demon is one where the agent lacks a free choice. I am sufficiently a "compatibilist" not to fear for my freedom even when my choices are perfectly predictable—in the sense of a predictor like Newcomb's demon. (Helpful here is Dennett's recent discussion (1984, chapter 5).) I think the arguments that tell against the "two-box" solution with the infallible demon also have bite when the demon is fallible.

Thus, it seems important to bother with the case where the demon is good, but not infallible. Suppose, prob.(demon predict option_i | option_j) = 1-ε < 1 (i=1,2). The convenience of making these conditional probabilities equal is that then there is a simple Savage-styled formulation of the decision problem, where states are probabilistically act-independent (though, I gather, not causally act-independent in the sense required by causal-decision theory). The decision problem admits a Savage-styled matrix:

<table>
<thead>
<tr>
<th></th>
<th>demon predicts correctly</th>
<th>demon predicts incorrectly</th>
</tr>
</thead>
<tbody>
<tr>
<td>option_1</td>
<td>$1,000,000.</td>
<td>$0.</td>
</tr>
<tr>
<td>option_2</td>
<td>$1,000.</td>
<td>$1,001,000.</td>
</tr>
</tbody>
</table>

where the veracity of the demon's prediction affords a binary partition of "states".

Let us inquire about the third-person version of this case of Newcomb's problem. Again, how do you evaluate the worth of a friend's choice on the hypothesis of which option he chooses but before the contents of the opaque box are revealed? What are your betting odds that conditional upon option_1 your friend becomes a millionaire? What are your betting odds that conditional upon option_2 your friend receives no more than $1,000? Once again, by the weakest of principles of conditionalization, your conditional betting odds are 1-ε : ε. What is your fair-market price for your friend's choice? Is there any reason to pass up the opportunity to own the proceeds of your friend's choice if offered at less than the expected value according to these conditional odds?

The conditional probabilities fix conditional betting rates on the payoffs to your friend. But they also guide your actions in the sim-
A marketplace where options on Newcomb choices are bought and sold. Do the causal decision theorists recommend your friend choose option \(_1\) and sell it at its fair-market value of about $1,000 when, had your friend chosen option \(_2\) his fortune would be worth, by the market value, nearly that of a millionaire? Or are the causal decision theorists prepared to deny that betting rates on your friend's prospects are fixed by the conditional probabilities which are part of the constraints of the problem? If the conditional probabilities do not fix these betting rates, what betting rates do they fix? What is the content of the assumption that the prob.(demon predicts option \(_i\) | option \(_j\)) = 1 - \(\varepsilon\) (i=1,2) if not to fix the conditional odds that your friend gets rich?

The same issues arise with a first-person version of Newcomb's problem for the fallible demon. I shall not bother to repeat for the third time each of the questions about conditional betting odds and about the fair-market value of your choice. It suffices to say I see no difference here between the third- and first-person versions.

3. Metatickles and Computation as Evidence

How does Prof. Eells propose to get a recommendation for "two-boxes" according to the dictates of expected utility? His plan develops a suggestion due to Nozick (1969, fn. 11, pp. 144-145). Perhaps the agent who is to make the choice can recognize extra, relevant information that makes the "fixed and determined" states conditionally act independent given the new evidence. Suppose the agent perceives that \(T\) obtains and that

\[
\text{prob.}(\text{opaque box contains } 80 | T \& \text{option}_i) \ (i=1,2)
\]

is constant. Then, by the total evidence principle and conditionaization, if the agent knows \(T\) obtains the decision problem is not controversial: dominance is valid under expected utility—"two-boxes" are better than "one box".

Where shall the agent look for the elusive \(T\)-state which is to resolve the controversy? That depends upon what tickles your fancy. In some of the Newcomb-type problems, the agent is supposed to recognize a "common cause" of both the choice and the pertinent state. For instance were one's predilection to smoke due to a sensible "tickle" in the esophagus, which "tickle" is the by-product of the same hypothetical genetic cause for lung-cancer, then feeling the "tickle" brings the bad news about one's genetic make-up but also makes the event of getting lung-cancer probabilistically independent of whether or not one smokes. (See (Levi 1985) for a serious discussion of this stilted example.)

3.1. Aside on the Smoking/Cancer example

I find objectionable the use of R. A. Fisher's name in connection with this variant of Newcomb. It misrepresents the points Fisher argued for in the smoking/cancer controversy. He was concerned with the statistical interpretation of the Doll & Hill observational studies. Specifically, Fisher argued they were insufficient data to conclude smoking causes lung cancer (1959, pp. 7-10). Basing public
policy on the unwarranted causal claim struck him as an abuse of sta-
tistics.

It should be noted Fisher bothered to include an essay on the
meaning of "probability" in his short monograph on the smoking con-
troversy (1959, essay 3). My understanding is that Fisher objected
to the Doll & Hill studies also because they failed to provide the
right sort of data to support a probability relation between smoking
and lung cancer, quite apart from the more difficult matter of estab-
lishing a causal relation between these. More technically, the ques-
tion Fisher raises is whether, because the data were collected in an
observational study using only minimal controls, i.e., the study
lacked important controls through blocking, do the data satisfy the
requirement that "no relevant sub-set can be recognized" (1959, p.
28)? To the extent that the broad categories of non-smokers, ciga-
rette smokers, pipe smokers, cigar smokers, etc. are genetically dif-
ferent, the Doll and Hill data fail to satisfy the requirement of
being an epistemically homogenous reference class. The relative fre-
cuencies across these classes do not support inter-class comparisons
of how probable it is you will have lung cancer given you smoke a
cigarette rather than a cigar since you cannot have both of the dis-
tinct genetic types posited of these different classes. See Fisher's
remarks in (1959, pp. 22-23).

Thus, I find it a burlesque of Fisher's analysis to use his con-
jecture about a common cause for smoking and lung cancer as a reason
for a Newcomb-like presentation of the controversy. To repeat:
Fisher was concerned with an abuse of statistics to arrive at a pub-
lic policy on smoking in light of an unwarranted causal claim. If
his words carry any import for individual decisions about smoking, it
is that the Hill and Doll data also are inadequate for grounding
probability relations connecting smoking with lung cancer.

3.2. A Problem Created When Computations Are Evidence

Eells agrees that such sensible "tickles" may be absent
(1985, p.180). The bulk of his essay presented in this symposium
deals with ideas for finding metatickles that, formally, play the
same role as tickles. They are called "metatickles", I surmise,
because they are reports about how the agent evaluates the
(first-order) evidence available.

Perhaps I am handicapped, for I lack a meta-funny bone and can't
grasp the sense of a metatickle. It is not just the complexity of
Newcomb problems that perplexes me when I am asked to use as evidence
my introspective account of how I evaluate options. I don't under-
stand how that is to be done in the most mundane decision problems.

The problem I have with metatickles is a special case of the gen-
eral problem of how to use the output of a mere calculation as new
evidence. Under the normative constraints of expected utility, an
agent carries a coherent set of probabilities and utilities which fix
preference (and choice) by expected utility, i.e., preference and
choice are in accord with the ranking by expected utility. But the
business of calculating an expected utility, given the agent's proba-
bility and utility functions, is no more newsworthy to the agent than
is, say, the calculation of a conditional probability given the two unconditional probabilities of which it is the ratio.

Of course, this analysis rests upon a non-occurrence sense of belief. See (Levi and Morgenbesser 1964, p. 221, fns. 3 and 4). On an occurrence sense of belief, I expand by beliefs when, after a calculation, I see that the decimal expansion of √2 is 1.4142... in place of 1.414.... But if the output of the calculation is to serve as new evidence, in the sense of evidence appropriate to conditionalization, I must have some non-trivial personal probability distribution for the fifth digit in the decimal expansion of √2.

The basic problem in an approach which tries to use this calculation like an experiment, to produce new evidence, is that it robs the criterion of coherence (de Finetti 1970) of its normative force. The Dutch Book argument, associated with incoherence, uses an algebra of possibility in which both mathematical and logical consequences are respected. Any personal probability that assigns other than probability 1 to the "event": fifth digit in the decimal expansion of \(\sqrt{2}\) is 2, is incoherent. This is appropriate for a normative theory of rational degrees of non-occurrence beliefs. The norms of subjective expected utility, like the norms imposed by elementary logic on rational belief, are not directed at the body of occurrence beliefs. For example, the requirement that one's knowledge be deductively closed makes little sense for occurrence beliefs.

Let me clarify the objection. I am not suggesting there is some conceptual difficulty incorporating, say, the cost associated with a calculation in the evaluation of an experimental design. (Though one must not ignore the obvious potential regress in worrying about the cost of estimating the cost-effectiveness of particular computational procedures.) What I do find too vaguely described to understand is the proposal that one may take the output of mathematical calculation as new evidence in the same sense in which new observations are taken as evidence for Bayesian conditionalization. No doubt this is a hard problem. Until it is addressed I am at a loss to comprehend what evidence is added by a metatickle that reports the computations in deliberation (in calculating an expected utility).

That is, the investigation into the "pre-choice dynamics of evidential deliberation" (Eells 1985, p. 185) jumps the gun on what is, at least, an open controversy in the debate over what may count as evidence for Bayesian conditionalization. Hence, I reject the assertion, "We have just seen that the results of calculating the evidential expectations of the available acts is [sic] itself evidence (a metatickle) that can sometimes require reassessments of the evidential relevance of the acts to the outcomes." (Eells 1985, p. 191).

Let me take a moment to emphasize the complexity of the challenge facing those planning to extend the concept of "evidence" to include computational outcomes. Suppose I plead ignorance of the decimal expansion of \(\sqrt{2}\) beyond 1.41.4... . Can I treat \(\sqrt{2}\) as some unknown constant in the interval [1.414, 1.415]? Suppose I hold some non-trivial distribution for \(\sqrt{2}\) whose support is the set of irrational numbers in this narrow interval. [I know \(\sqrt{2}\) is irrational by a
familiar, indirect argument which fails to specify its fifth decimal digit. See, e.g., (Hardy 1967, p. 6).]

Now, it is a simple task to specify a problem in probability theory, which, by elementary geometry, is solved with the solution that the probability for the event in question is $\sqrt{2}/2$. That is, without knowing the decimal expansion of $\sqrt{2}$, I can show that my personal probability for a specific event is $\sqrt{2}/2$. What does this mean if I am to treat $\sqrt{2}$ as an unknown constant with a distribution supported by irrationals in $[1.41, 1.415]$? It won't do to "solve" for my personal probability by using the distribution for $\sqrt{2}$ over the interval $[1.414, 1.415]$ and "integrating out" the unknown quantity. That doesn't work since my expectation for $\sqrt{2}$ may be a rational number (as when I assign $\sqrt{2}$ a "uniform" distribution over irrationals in $[1.414, 1.415]$), which makes my "estimate" of $\sqrt{2}/2$ a rational quantity as well—contrary to my knowledge that $\sqrt{2}/2$ is irrational. The point is that, since I can identify my personal probability by terms which, in an occurrent sense of belief, fail to identify the decimal representation of that probability, it appears that the consequence of treating computations as evidence is the conclusion that my (occurent) personal probability may be indeterminate—in conflict with the canons of subjectivism. If my personal probability is indeterminate, then I cannot compare events to decide which is subjectively more probable. Trying to capture this indeterminacy in a "second-order" distribution leads us to the contradiction above.

Perhaps, before rushing to assume there is a way to use the computations of expected utility themselves as evidence in Newcomb-problems, one should heed Savage's words on the dangers lurking that way. "Is it possible to improve the theory in this respect, making allowances within it for the cost of thinking, or would that entail paradox, as I am inclined to believe but unable to demonstrate?" (1967, p. 308)

4. Metatickles, Self-Knowledge, and a Problem of Free Will

The plan to use information about one's own deliberations as metatickles raises the spectre of an ancient problem about free will. Can choice be reconciled with thorough self-knowledge about how one deliberates? How much self-knowledge is compatible with free-will? Frederic Schick (1979) gives a careful accounting why contemporary decision theorists, ranging from the economist G. L. S. Shackle to Richard Jeffrey, have been spooked by the question. Also, see D. Dennett's discussion (1984, p. 112).

With Prof. Bells prepared to use Jeffrey's (1965) account of expected utility, it is appropriate to rehearse the dilemma as it arises within Jeffrey's theory. [See Jeffrey (1977) and Schick (1979). Jeffrey (1965, §11.9) discusses a related question.] Agent A faces a choice among options he ranks in accord with the theory of desirability. The agent A believes his choice is effective. That is, A has the ability to make-true that which he chooses and he knows this. However, if A knows he will choose the most desirable option available, then (as it is a mere calculation away which option is most desirable) this option carries a personal probability of 1 (to A) of occurring. By Jeffrey's theory, this best option must be
ranked (by A) as indifferent with any tautological proposition. If options are exclusive, the other options must be judged "null", i.e., A assigns them probability 0 and they are identified with a contradictory proposition. In short, knowing what he will choose and knowing his choices are effective robs A of his decision.

A variant of this dilemma troubles P. C. Fishburn in his review of normative theories of subjective expected utility (1981, p. 187). If \( q_1 \) and \( q_2 \) are distinct options with \( q_1 \) strictly more desirable than \( q_2 \), then the proposition corresponding to the disjunction "\( q_1 \) or \( q_2 \)" must be ranked between \( q_1 \) and \( q_2 \). However, argues Fishburn, if one can make \( q_1 \) happen, then why wouldn't one rank "\( q_1 \) or \( q_2 \)" indifferent with \( q_1 \) as one knows \( q_1 \) will be chosen from the two, i.e., \( \text{prob}(q_1 | "q_1 \text{ or } q_2") = 1 \). Fishburn (1981, p. 194) suggests the fault is due to the unified domain in Jeffrey's theory: both "states" and "acts" are assigned subjective probabilities. An alternative to Fishburn's reason is to blame the problem on the dilemma about self-knowledge discussed above.

I do not know of an easy way out of this dilemma. Denying effectiveness of choices strikes me as only sidestepping the problem. It requires the ad hocery also of denying propositional status to the modified option, "trying to do ...". Jeffrey (1965, p. 167) suggests this solution then withdraws it (1977). I understand Schick to opt for some introspective opacity. Agent A doesn't know enough about himself to get into trouble. Levi (198x, chap. 4) proposes that while deliberating agent A give up the claim he knows he maximizes expected utility.

The point of my worry is that there will be no way to incorporate the self-knowledge metatickles are intended to provide without overstepping the bounds of self-ignorance necessary for avoiding this puzzle about free will. How does Prof. Eells solve this free will problem? How does he guard against decision-theoretic paralysis from an information overdose with metatickles of dubious therapeutic value?

Notes

1 Since the event, "demon predicts correctly", is (by assumption) certain to occur, we have that preference given this event coincides with unconditional preference (Savage 1954, theorem 2.1.4). Then, if causal decision theory is to recommend "two-boxes" when the demon is infallible and if Savage's axioms are "ambiguous" (Gibbard 1984) between the two rival interpretations, it follows that on a causal-decision-theoretic reading of this version of Newcomb's problem the proposition that the demon predicts correctly fails to denote an event governed by Savage's postulates P1 and P2. In other words, on pain of contradicting theorem 2.1.4, how can a causal-decision-theoretic reading of Savage's postulates recommend "two-boxes" yet admit the assumption that the demon is infallible? Does the sense of subjective probability in the claim that the demon is infallible escape reduction to Savage's postulates when these are given a causal-decision-theoretic interpretation? If so have we not
found grounds for disputing the thesis that the axioms are "ambiguous" between the rival interpretations? For, on the interpretation defended in this commentary there is no parallel restriction on theorem 2.1.4, i.e., supersets of a "sure event" are "sure events"—personal probability may be completed (as a measure).
References


--------- (198x). Moral Struggle. Unpublished manuscript.


You have printed the following article:

Comments on Causal Decision Theory
Teddy Seidenfeld

Stable URL: [http://links.jstor.org/sici?sici=0270-8647%281984%291984%3C201%3ACOCDT%3E2.0.CO%3B2-R](http://links.jstor.org/sici?sici=0270-8647%281984%291984%3C201%3ACOCDT%3E2.0.CO%3B2-R)

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library’s website or contact a librarian to learn about options for remote access to JSTOR.

References

Le Comportement de l'Homme Rationnel devant le Risque: Critique des Postulats et Axiomes de l'Ecole Americaine
M. Allais
Stable URL: [http://links.jstor.org/sici?sici=0012-9682%28195310%2921%3A4%3C503%3ALCDLR%3E2.0.CO%3B2-Z](http://links.jstor.org/sici?sici=0012-9682%28195310%2921%3A4%3C503%3ALCDLR%3E2.0.CO%3B2-Z)

Risk, Ambiguity, and the Savage Axioms
Daniel Ellsberg
Stable URL: [http://links.jstor.org/sici?sici=0033-5533%28196111%2975%3A4%3C643%3ARAATSA%3E2.0.CO%3B2-E](http://links.jstor.org/sici?sici=0033-5533%28196111%2975%3A4%3C643%3ARAATSA%3E2.0.CO%3B2-E)

Slightly More Realistic Personal Probability
Ian Hacking
Stable URL: [http://links.jstor.org/sici?sici=0031-8248%28196712%2934%3A4%3C311%3A3SMPP%3E2.0.CO%3B2-B](http://links.jstor.org/sici?sici=0031-8248%28196712%2934%3A4%3C311%3A3SMPP%3E2.0.CO%3B2-B)
Direct Inference and Confirmational Conditionalization
Isaac Levi
Stable URL:
http://links.jstor.org/sici?sici=0031-8248%28198112%2948%3A4%3C532%3ADIACC%3E2.0.CO%3B2-S

Difficulties in the Theory of Personal Probability
Leonard J. Savage
Stable URL:
http://links.jstor.org/sici?sici=0031-8248%28196712%2934%3A4%3C305%3ADITTOP%3E2.0.CO%3B2-F

Self-Knowledge, Uncertainty, and Choice
Frederic Schick
Stable URL:
http://links.jstor.org/sici?sici=0007-0882%28197909%2930%3A3%3C235%3ASUAC%3E2.0.CO%3B2-Q

Coherence and the Axioms of Confirmation
Abner Shimony
Stable URL:
http://links.jstor.org/sici?sici=0022-4812%28195503%2920%3A1%3C1%3ACATAOC%3E2.0.CO%3B2-T