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Jeffreys, Fisher, and Keynes:
Predicting the Third Observation,
Given the First Two

Teddy Seidenfeld

During three years, from 1932 through 1934, the Proceedings of the Royal
Society of London was the setting for a stimulating, five-article exchange
between Harold Jeffreys and Ronald Fisher about their differing views
on the foundations of statistical inference. In what surely was a rare
event in any debate with Fisher, Jeffreys got the first and the last word
(Jeffreys 1932, 1933, 1934; Fisher 1933, 1934).! For our purposes at
this conference on Keynes, I propose that we examine how, starting
with Jeffreys’s first rebuttal (1933) to Fisher, and continuing through
Fisher’s second reply (1934), and on to Jeffreys’s final rebuttal Cowmc,. .
each side used Keynes’s 1921 Treatise on Probability to argue that the
other was committing a foundational error.? To do that, first I review the

- statistical arguments Jeffreys and Fisher set out in their initial papers in

this sequence. Then I examine how each side tried to co-opt Keynes’s
theory. Last I indicate some contemporary work that reflects, to my mind,
how one aspect of the debate has evolved over sixty years.

I thank Rob Kass for some helpful comments on the material presented here.

1. However, just one year later, Fisher did not pass up the advantage of the “last reply” in
his 1935 presentation and discussion, “The Logic of Inductive Inference,” in the Journal of the
Royal Statistical Society.

2. For a different perspective on this Jeffrey-Fisher exchange, see David Lane’s stimulating
essay from 1980. :
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Inverse Inference According to Jeffreys and to Fisher

In the 1930s, and even today, the foundational litmus test of a statis-
tical theory is its solution to inverse inference: inference from “sam-
ple” to “population.” A textbook case will serve as our heuristic. Let
(x1,%2, . . .,x,) be n iid. N(u,o?) observations, where both param-
eters are unknown. What does your favorite statistical theory authorize
may be inferred about the normal mean y and variance o2 of the “popula-
tion” from which the » observations have been independently sampled?

Harold Jeffreys was an advocate of Bayesian statistical inference,
which solves inverse inference according to Bayes’s rule:

P (Hypothesis | Data) o« P(Data | Hypothesis) x P(Hypothesis),
or,
Posterior probability o« Likelihood x Prior probability.

For our heuristic example, this becomes (in densities):

EAEVQ‘ *wakwu e vkxv
o (o) exp[—{(n — 1)s* + n(x¥ — w)*}/206%1p(u, o) dpdo,

where the sample variance s> = >, (x; ~£ X)?/(n — 1) and the sample
average X = ), x;/n, are jointly sufficient. But what is the joint prior
probability for the unknown parameters, p and o'?

Jeffreys (1931), in Scientific Inference, had already argued that, in esti-
mation, the appropriate probabilistic representation of ignorance about a
parameter depends on how that parameter functions in a statistical model
of the data to be acquired. That is, rather than using a Laplacean, uniform
prior to depict prior ignorance about a parameter, Jeffreys argued by way
of statistical symmetries what that ignorance prior should be. For infer-
ence about a location parameter—for example, for inference about the
normal mean 4 (given the variance, o2)—he argued that shift-invariance
for the sample average justified the uniform (improper) prior density
du.? Likewise, for inference about a scale parameter—for example, for
inference about the normal variance o2 (given the mean, u)—he argued
that invariance for powers justified the (improper) prior density, do/o *

3. Note that x is sufficient for u, given o2,
4. Note that MUN. (x; — w)? is sufficient for o2, given .
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However, Jeffreys found no compelling reason to mandate a joint igno-
rance prior for the two parameters (u and o) that is merely the product
of the separate ignorance priors, p(u,o) « 1/0.°

The first of the five papers, Jeffreys’s 1932 essay, begins with a novel
argument for the improper joint density, dudo /o . His reasoning is ele-
gant. Let (x1, x2, x3) be three (continuous) i.i.d. random quantities from
a statistical model. Let H be the hypothesis that x; lies (strictly) between
x1 and x,. Prior to observing the data, the probability of H is 1/3. (It
is immediate from the assumption the data are i.i.d. that all six orders
are equiprobable; hence, for two of six equiprobable cases H obtains.)
Suppose we observe two values (x;,x;) of three i.i.d. N(u,0?) vari-
ables. Jeffreys asked: What prior probability over the unknown parame-
ters (1, o) leads to the conclusion that wQ@ | x1,x2) = 1/3, regardless
of the specific values of (x;, x,)?

Expressed somewhat differently, Jeffreys’s question is: What prior
probability on the parameters preserves the ignorance we have initially
about the relative order statistic for x; with respect to x; and x,, regardless
of the observed values of x; and x,? The answer is, of course, the joint
(improper) prior proportional to 1/0.6 So, Jeffreys had a new reason for
the two-parameter “ignorance” prior he used in Bayes’s rule, based on a
constraint for predictions.

R. A. Fisher was no Bayesian—not in the 1920s when he ro:wma
to create the foundations of significance testing, maximum likelihood,
and the theory of statistical estimation and not in the 1930s ‘when he
set the foundations for randomized experimental design; nor was Fisher
Bayesian in his many presentations (beginning in 1930 and g&zm only
with his death in 1962) of his “fiducial” solutions to inverse inference. By
1933, Fisher’s Statistical Methods for Research Workers was in its fourth
edition and Bayes’s rule was not one of the tools in the toolbox that is
SMfRW! In 1933, Fisher was enjoying his newest invention, the enigma
of fiducial probability. Neyman-Pearson hypothesis testing was a half-

5. The problem followed Jeffreys through much of his career. See, e. g., section 3.10 (es-
pecially p. 182) in Theory of Probability ([1961] 1967) to see the tension between Jeffreys’s
Invariance Theory applied to prior ignorance for . and o jointly versus separately.

6. In section 3.8 of Theory of Probability ([1961] 1967), Jeffreys shows that for a location-
precision model, with parameters («, %), respectively, the joint prior expressed as dadh/h
yields the desired probability P(H | x1,x3) = 1 /3. (Precision is the multiplicative inverse of
the scale parameter.) However, Jeffreys is unable to show the converse—that i is, there remain
some open cases whether this prior is unique for all location-scale families.
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dozen years old, and confidence interval theory (according to Neyman,
that is) was still a year away.’

Thus, I speculate it came as no surprise to Jeffreys that Fisher was un-
willing to accept the novel derivation of Jeffreys’s joint “ignorance” prior
for the two normal parameters. For Fisher, as for many non-Bayesians,
each probability assertion—whether as prior, likelihood, or posterior
probability—had to be grounded on objective (statistical “population’)
distributions. Thus, statements of likelihood were judged valid because,
in taking a statistical parameter as given, they hypothesized the very
conditions that made them “objective.” But the priors for statistical pa-
rameters that Jeffreys adopted were only expressions of ignorance, in the
tradition Laplace had created. They were not (nor were they intended as)
statistical assertions about, for instance, some hyperpopulation of normal
distributions from which a particular N(u, 5%) was selected at random.
Fisher’s 1933 paper offered a new fiducial solution to the prediction
problem raised by Jeffreys. To appreciate Fisher’s contribution, we have
to digress for a sketch of fiducial reasoning. How can there be a solution
to inverse inference (from sample to population) that does not confront
Bayes’s theorem? How can there be posterior probability without prior
probability 7%

Consider a simplification of our heuristic example where we know the
normal population variance, o2, only u is not @oﬁs. Fisher reasoned
this way: the quantity v = (\/n)(X — p)/o is pivotal, having a standard
N(0,1) distribution, independent of the unknown mean . That is, prior
to knowing (x1, X2, . . .,X,), vis N(0,1). Fisher asserted that ignorance
about 1 means that after learning (xy, X2, . . ., X,), still v is N(0,1); that
is, Fisher claims that X is irrelevant to v in the absence of knowledge of
w. But given x, “v is N(0,1)” is equivalent to “u is N(%, 0%/n).”® Thus,
Fisher derives a statement of inverse probability, apparently, without
recourse to a specific prior for the unknown . It is no coincidence that
the Bayesian reconstruction of this fiducial reasoning yields the same
numerical conclusions based on the (improper) uniform prior, d .

7. See Levi 1980 for discussion that the noted philosopher, C. S. Peirce, had published the
outlines of confidence interval theory fifty years earlier, though it went unnoticed.

8. Modifying Savage’s 1963 quip: How could Fisher make a Bayesian omelette without
breaking the Bayesian eggs?

9. This reconstruction of fiducial inference as resting on an “irrelevance” step in pivotal
reasoning was made clear by Jeffreys in section 7.1 of Theory of Probability ({1961] 1967).
Hacking 1965 atternpts to ground this irrelevance claim on likelihood-based reasoning. I discuss
the extent to which Fisher’s fiducial methods were Bayesian in Seidenfeld 1992.
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In his 1933 reply to Jeffreys, Fisher solves the prediction problem in
fiducial fashion, roughly as follows: the quantity u = (s*/0?) is pivotal
with a x?2 distribution (on n — 1 degrees of freedom). Inverting on this
pivotal affords a fiducial distribution for the variance, which we may
denote as P (o | s%), an inverse chi-square distribution. Given o2, the v
pivotal affords a fiducial distribution for the unknown population mean,
denoted as P(u | 02, %). These correspond, exactly, to the “posterior”
probabilities Jeffreys derived using Bayes’s rule and his (improper) joint
prior (dudo /o). In other words, Fisher was able to duplicate Jeffreys’s
predictive probability for a third normal variate, given the first two, with-
out appeal to a “prior” probability, by using fiducial reasoning instead.
Fiducially, given (x, x;), the probability is 1/3 that x5 liés between the
other two.

Foundations and the Appeal to Keynes’s Work

Is there better evidence of a statistical dispute being wocsgm&ozmw than
that the opposing sides agree in the precise mathematical form of their
answer while also disparaging the other’s reasoning? Thus, by the third of
the five papers, Jeffreys’s rebuttal (1933) announces the need to explore
what the concept “probability” means. Appealing to Bertrand Russell’s
synopsis of the philosophical problem of induction, Jeffreys quotes that
“induction appears to me to be either disguised deduction or a mere
method of making plausible guesses™ (523), and, with respect to the first
alternative, Jeffreys suggests three strategies: (i) induction based on “the
law of contradiction”; (ii) induction based on a “law of omcm&m@:w.m:m
(ii1) induction based on the theory of probability.

Of course, Jeffreys opts for the third strategy. That is, he advocates a
theory of probability that relates theories and evidence. To carry this off,
however, he needs (and knows that he needs) prescriptions for assigning
determinate probabilities in specific cases. For that he baldly asserts, “the
existence of a numerical theory of probability, however, is not enough for
practical application without some rules for deciding what numbers are
to be put into it. The fundamental rule is the Principle of Non-sufficient
Reason, according to which propositions mutually exclusive on the same
data must receive equal probabilities if there is nothing to enable us to
choose between them” (1933, 528). And from here it is but a short step
to confront Keynes ([1921] 1973, chap. 4) imposing objections to the
Principle of Non-sufficient Reason. This he does, in terms of one of
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Keynes’s well-known examples. I paraphrase Keynes’s objection, which
Jeffreys quotes in full:

If we are ignorant of area or populations of different countries of the
world, then we should judge a man to be as likely an inhabitant of Great
Britain as of France. Also, he should be judged as likely to inhabit
Ireland as France, and by the same principle he should be judged
equally likely to inhabit the British Isles as France. But, by additivity,
the first two judgments make it twice as likely that he resides in the
British Isles as in France, contradicting the third judgment.

It will not do to solve this problem, asserts Keynes, by saying that
because the British Isles are known to have two subdivisions (which
alone tells us nothing about their relative populations), therefore, it is
twice as likely for someone to reside in the British Isles as in France.
([1921] 1973, 44)

Jeffreys’s reply is simple; he says that in this case Keynes neglects to
relativize judgments of equipossibility to the background information of
what counts as a “country.” Either, argues Jeffreys, the person judges
Great Britain and Ireland as separate countries or only as parts of a
single country (the British Isles). There is no contradiction, argues Jef-
freys, once this background assumption is fixed. That is, Jeffreys adopts
Keynes’s so-called “logical” interpretation of probability, where prob-
ability relates theory and statistical evidence, but he is not moved by
Keynes’s objections to Non-sufficient Reason.

Of course, Fisher is not satisfied with Jeffreys’s reply to Keynes. Fisher
agrees with Keynes’s objection. There are two senses of the word country,
and the investigator recognizes this; there is no justification for adopting
one sense of country over the other for purposes of using the Principle
of Non-sufficient Reason (Fisher 1934, 5).

I suggest the Jeffreys-Fisher exchange about Keynes’s example, in
criticism of Non-sufficient Reason, sits at the surface of their differences
about Keynes’s views on probability. There are two, more substantial,
themes in Keynes’s work that divide Jeffreys and Fisher:

1. Keynes argues ([1921] 1973, chap. 3) that, as a quantitative (real-
valued) relation between two propositions ¢ and ¥, the “logical”
probability Q(¢ | ¥) may not be defined for all pairs.'®

2. In (the concluding) part 5 of the Treatise, Keynes tries to ground

10. See Kyburg’s 1955 Ph.D. thesis for an important, early discussion of this theme.
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¢

statistical inference on empirical premises only. Particularly for
problems of inverse inference, Keynes explores ways of “invert-
ing” the uncontroversial direct inferences (such as those Ber-
noulli’s theorem provides), inferences that take us from statistical
“population” to “sample” under random sampling.

These two considerations, I suggest, rather than the overt dispute over
Non-sufficient Reason, are what separate J effreys and Fisher.

Regarding the first question, whether quantitative probability is de-
fined for all pairs of propositions, Jeffreys argues in the affirmative.!! By
contrast, Fisher’s theory admits three varieties of inductive support for
solving inverse inference in the absence of prior probability for the hy-
pothesis: significance testing, likelihood, and fiducial probability. These
take increasingly restrictive background assumptions for their applica-
bility. Significance testing requires a well-defined statistical null hypoth-
esis, but (contrary to Neyman-Pearson hypothesis testing) no paramet-
ric family of statistical alternatives is supposed. Likelihood requires a
parametrized family of statistical hypotheses. And Siducial probability
requires, in addition, a suitable pivotal variable (or pivotal variables, in
the case of several parameters). Only in the case of fiducial probability
is inverse inference solved by a conclusion expressed as a (conditional)
probability for the hypothesis, given the data. Thus Fisher’s theory, the
non-Bayesian theory, rather than Jeffreys’s Bayesian theory, is closer to
Keynes’s position on the matter of whether (real-valued) probability is
defined between all pairs of propositions.

Regarding the second point, whether inverse inference can be grounded

. on statistical premises alone, Fisher’s fiducial probability attempts to do

just that. Fiducial inference is the attempt to reduce inverse inference
about a parameter to direct inference about a pivotal. By contrast, Jef-
freys’s Bayesian program offers a refined version of Non-sufficient Rea-
son in which the statistical model fixes the symmetries that are used to
determine the equiprobable states of “ignorance.” That is, Jeffreys’s solu-
tion to Keynes’s objections about Non-sufficient Reason grounds the rep-
resentation of ignorance on mathematical symmetries of the “chances.”

For example, with a location parameter (e.g., the normal mean ) the
“prior” is uniform, and with a scale parameter (e. g., the normal variance

0?) Jeffreys’s prior is uniform in the log of the parameter. The sym-

11. This point is made explicit in Jeffreys’s Theory of Probability ([1961] 1967), axioms 1
and 5.
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metries Jeffreys uses to pick these priors are motivated by mathemati-
cal invariances in the statistical model, the empirical part of the model
which relates the hypothetical parameter to the observed data through
noncontroversial “direct inference.” However, Fisher’s fiducial solution
to the same problem relies on an inversion of the statistically based “di-
rect” probabilities for the pivotal variables. In fiducial inference, there is
no appeal to mathematical symmetries in order to apply the principle of
Non-sufficient Reason to form an “ignorance” prior probability. The only
uses Fisher makes of Bayes’s theorem require statistically based proba-
bilities. Thus, on the second point too, I think Fisher’s (non-Bayesian)
theory comes closer than Jeffreys’s Bayesian theory to Keynes’s views
on solving inverse inference by “inverting” on noncontroversial “direct”
probability.

Among contemporary theories of statistical inference, H. E. Kyburg’s
original program of “Epistemological probability” (1974) captures both

Keynesian themes. Regarding the first issue, in many common circum- -

stances the (frequency-based) evidence is inadequate to support a real-
valued Epistemological probability for a hypothesis. Then, Epistemolog-
ical probability is interval-valued, rather than real-valued. With interval-
valued probability, not all pairs of propositions are comparable by the
simple qualitative relation “. . . is at least as probable as > That
is, when probability goes interval-valued, it may be that neither of two
propositions is at least as probable as the other—they are 585@2&@
under this relation, just as Keynes and Fisher supposed. Second, Ky-
burg’s Epistemological probability theory solves “inverse” inference by
inverting on special relations between statistical samples and their pop-
ulations that behave very much like Fisher’s pivotals. Kyburg calls these
“rationally representative sample” relations.

Some of the non-Bayesian aspects of Kyburg’s theory are discussed
(Kyburg 1977) in debates with Levi (1977) and also with me (Seidenfeld
1978). In any case, Kyburg’s work on statistical inference shows how one
development of the twin Keynesian themes (noted here) leads, naturally,
away from the strict Bayesian position illustrated so clearly in Jeffreys’s
important work.

Nonparametric Inference and Non-sufficient Reason

I'want to conclude by discussing how some contemporary work relates to
a Keynesian theme in the Jeffreys-Fisher debate. For the specific problem
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of forecasting xs, given (x;,x,), when the data are i.id. on.B,m_ and
both parameters are unknown, Jeffreys’s Bayesian method and Fisher’s
fiducial method lead to the same (numerical) results. Is there an extension
beyond the normal model? Are there nonparametric versions, too?

This question is relevant because, in the spirit of the Treatise on Prob-
ability, if there is an extension to nonparametric fiducial inference that
might identify a nonparametric Bayesian “prior,” just as Jeffreys’s (im-
proper) prior serves as the Bayesian model for Fisher’s fiducial inference
in the case of normal data. Such a nonparametric ignorance “prior” might
stand for a «Qﬁoz of Non-sufficient Reason that'is applicable without
any particular knowledge of a statistical model.

Consider, then, the case of 3 i.i.d. real-valued data from an unknown
continuous distribution ¥. The nonparametric version of Jeffreys’s pre-
diction problem asks whether there is an “ignorance” prior for the observ-
ables such that, given (x1, x,), the probability is 1/3 that x lies between
them. Bruce Hill (1988) addresses the general question, for samples of
size n. That is, is there a Bayesian model for nonparametric predictions
where the following condition (A,) holds?

Aw:  Given(x1,x,, . . .,x,),the predictive probability is 1/ (n+
1) that x,,1; lies between any two (of n — 1 many) order statistics,
or lies outside either extreme value. That is:

Px@ < Xnt1 < Xgap | X1.%, - . %) =1/(n+ 1)
@G=1,...,n—1),and

P(xppy < xqy | X1,%2, . . ., %) = 1/(n+ 1),and

W@n:.l > HQ_V _RTHNv .. .uk:v = H\AE:T Hv

Before reporting Hill’s answer, note that there is a simple fiducial ar-
gument that satisfies A,.'2 Let F; be the c.d.f. for the random variable
;. F; is uniformly distributed on the unit interval, F, ~ U[0,1], in-
dependent of the unknown distribution F. Since the x; are i.i.d., with

common (unknown) distribution F, prior to observing (x1,xa, . . .,x,),
(F1, . . ., F,)is uniformly distributed on the n-dimensional unit-cube.
That is, the F; are independently distributed, and (Fay, - - ., Fyy) are

just the (unobserved) order statistics from independently distributed

5.. Ifind the basis for this argument, ironically, in Fisher’s second objection to Jeffreys Qoukr
2). Hill (1988, 215) locates it, cryptically, in Fisher’s 1939 remarks on “Student.”
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U[0,1] variates. We use these F;, as pivotals, in a fiducial argument
(sketched below).

Consider Ay, corresponding to the nonparametric version of Jef-
freys’s problem for predicting the third observation, given the first two.
Let 8 = Fpy — F), sothat 0 <6 < 1. Note that

P(xqy < x3 < x| 8,x1,%2) =& = Foy — Fay,

independent of the data, (x;, x,). If we take a fiducial step, the observed
data are irrelevant to the joint distribution of { F(1), F»)}, thatis, fiducially,-
in densities,

p(Fay, Fy) = p(Fay, Foy | x1,x2).

It is easy to verify that the density function for § is: p(8) = 2(1 — 3).
Then, we can write

Wﬁkﬁv < X3 < X2 _ HTXNV

= \w@:v < x3 <X | 8,x1,x2)p(8 | x1,%x2) dd
5

1

= \ 82(1 — 8) dé
0

= 1/3.

Thus, a simple nonparametric fiducial argument leads to the prediction/
for the third observation, given the first two, which agrees with Jeffreys’s
condition for “ignorance” about the underlying (chance) distribution, F,
for the observables.

The question for our inquiry is: What “ignorance” prior (over the
data) duplicates this nonparametric inference? That is, relying on Fisher’s
fiducial inference as an acceptable solution to the nonparametric “inverse

inference” (about 8), what is the corresponding Bayes model? The answer .

has interesting consequences for the Principle of Non-sufficient Reason.

Hill 1968 showed that, even for Ay (and thus for all A,), since A, en-
tails A(,1)), the Bayes model cannot use a countably additive prior wﬁ.&-
ability for the data. This is evidently so in Jeffreys’s problem, involving.
N(,0?) data, where the improper prior density dudo /o corresponds
to a finitely, but not countably additive probability.'* Thus, Jeffreys’s

13. This is evident as the “uniform™ prior du assigns equal prior probability to each unit
interval of the form, k < u < k+1(k = 0,k = £1,k = £2, . . .). These unit intervals
constitute a countable partition of the parameter space. Hence, by finite additivity, each has
prior probability 0, though their countable union has prior probability 1.

Predicting the Third Observation, Given the First Two 49

rule for choosing a prior to depict “ignorance,” or (what amounts to the
same) the Bayes model for Fisher’s fiducial probability, requires non-
countably additive probabilities. Hill’s analysis reveals this is so also for
the nonparametric version. ,

Apart from the mathematical point, what is urgent about the shift from
countably additive to merely finitely additive probability? The follow-
ing brief discussion illustrates a qualitative aspect of statistical inference
that rises or falls with countable additivity. In his discussion of whether
or not personal probability needs to be countably additive, de Finetti
1972 formulated the following concept of conglomerability of condi-
tional probability: Let w = {hy, . . ., A, .} be a denumerable parti-
tion and let E p[e] denote the (finitely maa;?@ @xcooﬂm:os with respect
to probability P

Definition: The probability P is conglomerable in 7 if, for each
bounded variable X and constants k; and k,, k; < m pLX] < k, whenever
ki S Ep[X |W]l<ky (i=1,...).M

About ten years ago Schervish et al. (1984) showed that conglomer-
ability characterizes countable additivity. That is, with respect to.denu-
merable partitions, as is evident, each countably additive probability is
conglomerable in each partition; however, each finitely (but not count-
ably) additive Eocmg_:% fails to be conglomerable for some event E,in
some partition. '3

For the particular case Jeffreys uses, predicting the third normal da-
tum given the first two, based on the interesting work of Heath and
Sudderth (1978), we learn that there is conglomerability in the margin of
the observables (x;, x,) and in the margin of the two normal parameters,
(4, 0). However, in light of the Buehler-Feddersen inequality, below,
we see that there is conditional nonconglomerability. Specifically, let
t = (x; 4+ x2)/(xy — x3). Buehler and Feddersen ( Hoamv established the
following Ewazmra\ obtains for all (i, 0):

P(xgy = pu < x| 1,0,t] <1.5) >.512.
Given || < 1.5, and applying conglomerability in (i, o), we obtain the

14. Dubins 1975 shows that conglomerability in 7 is equivalent to disintegrability in 7.

15. Note that the failure of conglomerability is for an event—that is, a simple random
variable. Also, it depends on details in the mathematical structure of the (merely) finitely-
additive probability P, where the failure of conglomerability occurs can be determined by the
unconditional expectations alone. This is discussed, at length, in Schervish et al. 1984.

o
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inequality
WARCV S U =X | 1] < 1.5) > .512.

However, by Jeffreys’s (or Fisher’s) analysis, the following obtains for
each pair (x1,x2):

Pxay < <xo | x1,%)=.5;
hence, for pairs (x1, x2), which satisfy the inequality |z| < 1.5, we get:
P(xay < p < x| x1,%2,[t] £ 1.5) =.5.

Given |t| < 1.5, and applying conglomerability in (x;, x2), we obtain
the contrary equality,

Pxgy < p <xpllt] <1.5)=".5

Thus, given j¢| < 1.5, there is conditional :ozooHHmHo.waum_uM:Q.a
One upshot of nonconglomerability is that :mm::mmﬂv_.ra\ fails—that
is, simple dominance is not valid in denumerable partitions. So, of two
statistical decisions D; and D,, it may be that Ep[Dq] < m rIDA], %wﬂ
Ep[Dy | h;]1 > EplDy | hi] foreachi = 1,2, . . . That simple domi-
nance fails raises a somewhat unusual question about the value of owﬁ‘
free data. In the circumstances above, should the agent make a 8@3& -
decision between D; and D,, or is it better to postpone that oro.Hom to
learn, cost-free, which element of 7 obtains? The “prior” expectation of
waiting for the new evidence and then deciding w.m negative!
Nonconglomerability of P thus raises a novel issue .mco_: E.m <m_cw of
new data. Keynes ([1921] 1973, chap. 6) provides a brief but stimulating
discussion about the vague notion of weight of evidence. For .nmeEP
on the assumption that the weight of evidence for a Eﬁoﬁo.mﬂ.m oms.:oH
decrease by learning something new, he shows that the precision (e,
the inverse of the variance) of a distribution cannot index éw_mr.r That
is, a conditional distribution may have larger <mnm50w. .wm:, it HEM.WE be
suggested that weight of evidence can be mw:mmm decision m._oowas.om._:%
in terms of the value the new evidence provides in a sequential decision.
But we see that, too, cannot serve as a universal index of weight voomc.moq
for a finitely additive probability it may be that new evidence omm_.“@m
negative expected value; better to decide in advance of the new data!

7

16. See Kadane et al. 1986 for additional discussion.
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If we adapt the Jeffreys-Fisher debate to a justification of improper
priors in the name “ignorance,” if we use that debate to try to restore the
Principle of Non-sufficient Reason, then we have the following surprising
price to pay: aconsequence of “ignorance” is that sometimes itis decision
theoretically better to remain ignorant than it is to learn ! :

I cannot imagine how Keynes would have accepted that. I suspect that
on this score, regarding the representation of ignorance, Keynes would
have placed himself outside the range of positions bracketed by Jeffreys’s
and by Fisher’s analyses. And surely they would have each responded
that that event had probability 2/3 of occurring anyway.
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Comment

Gregory Lilly

Fisher, Jeffreys, and Keynes

Professor Seidenfeld provides three valuable services to economists in-
trigued by Keynes and probability theory.

One, Seidenfeld alerts us to the Fisher-Jeffreys debate. It is always
instructive (and sometimes amusing) when two giants clash over foun-
dations, especially when, as in this case, the issues are not clouded with
overly technical terminology.

Two, Seidenfeld suggests that Fisher and Jeffreys can be reference
marks in an explication of Keynes’s probability theory. He points out
that in two important respects, Keynes is more like Fisher than Jeffreys.
I was somewhat surprised at this since the traditional classification puts
Jeffreys and Keynes into the Fisher-free category: theorists who tried to
develop a “logical” conception of probability. Normally we think about
how Jeffreys and Keynes are alike, and how Fisher and Keynes differ;
new classifications tend to produce new insights—perhaps this one will,
too.!

1: For example, Cottrell (1993, 43) has advised Keynes scholars who want to explore the
connection between A Treatise on Probability and The General Theory that a focus on the idea
that probability is about an objective relation between a hypothesis and an evidence statement is
a misplaced focus. Instead of emphasizing the presumed objective logic of a probability-based
philosophy of science, an idea that Keynes and Jeffreys share, these scholars should emphasize
the idea that the probability relation may not be defined for all pairs of hypotheses and evidence
statements, an idea that Keynes and Fisher share.



