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IMPROPER REGULAR CONDITIONAL DISTRIBUTIONS1 

BY TEDDY SEIDENFELD, AND JOSEPHMARKJ. SCHERVISH B. WANE 

Carnegie Mellon University 

Improper regular conditional distributions (rcd's) given a a-field d 
have the following anomalous property. For sets A E d,Pr(A 1 d)is not 
always equal to the indicator of A. Such a property makes the conditional 
probability puzzling as  a representation of uncertainty. When rcd's exist 
and the u-field d is countably generated, then almost surely the rcd is 
proper. We give sufficient conditions for an rcd to be improper in a maximal 
sense, and show that these conditions apply to the tail u-field and the u-  
field of symmetric events. 

1. Introduction. The theory of regular conditional distributions (rcd's) 
is a standard part of the received view of mathematical probability. Nonethe- 
less, there are some anomalous cases of conditional probability distributions 
where, in the terminology of Blackwell, Dubins and Ryll-Nardzewski, the rcd 
is not everywhere proper, given the conditioning sub-u-field, d .  That is, let 
P( .  I d ) ( w )  denote the rcd for the measure space (Q, @, P)  given the con- 
ditioning sub-u-field, d.That the rcd is proper at  w means that whenever 
w E A E d,P(A I d ) ( w )  = 1. The rcd is improper if it is not everywhere 
proper. Here, we explore the extent of such impropriety, focusing on atomic 
sub-a-fields, d,with atoms a(w), where the impropriety of the rcd is max- 
imal in two senses, local and global, a t  once. The failure of propriety at  the 
point w is locally maximal as P(a(w) I d ) ( w )  = 0. The failure of propriety is 
globally maximal as the rcd is improper at  P-almost all points. Also, we con- 
sider a connection between the impropriety of rcd's for symmetric measures, 
given the sub-a-field of symmetric events, and Vitali-styled nonmeasurable 
sets. This connection leads us to a conjecture about the possibility of using 
certain finitely additive extensions of P as a way around the impropriety of 
the countably additive rcd in these cases. 

2. Regular conditional distributions. Let 93,P )  be measure(a, a 
space. Denote by w points in R. In what follows all probability distributions 
are countably additive unless otherwise stated. 

I t  is well known how to define conditional distributions given an event 
of positive probability. Kolmogorov's seminal 1933 work (1950) provides the 
common method to deal with more general conditioning. 
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DEFINITION1. In the usual terminology, with d a sub-a-field of 9,P(. I d )  
is a regular conditional distribution [rcdl on @, given provided that: 

(i) For each w E R, P (  I &)(w) is a probability on B. 
(ii) For each B E B,P(B I &)(.) is an &-measurable function. 

(iii) For each A E d ,  B E 93' 1' P(B  I d)(w)dP(w) = P(A n B). That is, 
P(B I , d )  is a version of the Radon-Nikodym derivative of P( .n  B) with respect 
to P .  

2. 
contain a given point w of R. 

DEFINITION An d-a tom is the intersection of all the elements of ,d that 

Thus, condition (ii) for rcd's requires that P (B  I ad)(.) is constant on the 
&-atoms. 

Two limitations in this approach are well documented in the literature. 

2.1. The "Borel paradox". One controversial aspect of this theory of con- 
ditional probability was pointed out by Kolmogorov [(1950), pages 50-511. He 
calls it the "Borel paradox." See, for example, Billingsley [(1995), page 441, 
problem 33.11. Put simply, the Borel paradox shows that P( .  I ,d)(w) is not a 
probability distribution on @ given events in sd' but, rather, it  is a probability 
distribution given a a-field. Specifically, with @ the Borel subsets of the real 
line, let and be the sub-a-fields generated by the random variables 
X and Y, respectively. Suppose that X = x* is the same event (in @) as 
Y = y*. Nonetheless, if X(w) = x*, P( .  I dX)(w)  and P (  I dy)(w) may be dif- 
ferent distributions, with sup norm distance arbitrarily close to 1.In rebuttal 
to this objection, Kolmogorov points out that between any two conditioning 
sub-a-fields, this "paradox" can occur only on a P -null set of points. That is, 
it  is a measure-0 failure, at  worst. However, if sufficiently many sub-a-fields 
are considered simultaneously, as might arise through a family of continuous 
transformations of a bivariate conditioning sub-a-field, the Borel paradox may 
become a problem of full measure. [See the Appendix to Kadane, Schervish 
and Seidenfield (1986).1 

2.2. Rcd's may not exist. The canonical example of a measure space and 
conditioning sub-a-field that admits no rcd is obtained by letting 93' be an 
extension of the Borel sets on [0,11 under Lebesgue measure with the addi- 
tion of one non-measurable set, and letting d be the sub-a-field of Borel sets 
themselves. [See, e.g., Halmos (1950), page 211.1 The same example is dupli- 
cated with only minor variations in Billingsley [(1995), Exercise 33.13, page 
4431; Breiman [(1968), page 811; Doob [(1953), page 6241; and Loeve [(1955), 
page 370 #I]. Though, for each B E 93' , the extended measure space has Radon- 
Nikodym derivatives P (B  I &) satisfying condition (iii), above, the derivatives 
resist assembly of these pointwise probabilities into a full probability distribu- 
tion on @, measurable with respect to d,as required by conditions (i) and (ii). 
In the counterexample, exceptional null sets pile up to create a failure. That 



1614 T. SEIDENFELD, M. J. SCHERVISH AND J. B. KADANE 

these texts use a common couterexample involving a non-measurable set to 
preclude existence of a n  rcd is not accidental, as Corollary 1establishes. In 
what follows, we use IA( . )to denote the indicator function for a set A. 

DEFINITION3. Sub-a-field d is atomic if i t  contains each of its ,&-atoms. 

THEOREM1. Let d be a countably generated sub-a-field of B.Let P(.  I d )  
be a regular conditional distribution on @, given d.Then, there exists a set 
C* E d ,  with P(C*) = 1such that for each A E ,& and w E C*, P(A I d ) ( w )  = 

I A ( ~ ) .  

The proof of Theorem 1is established with the aid of Lemma 1. 

LEMMA1 [Billingsley (1995), page 431, Example 33.31. Assume that 
P(. I ,&) is a regular conditional distribution on @,given d.Let A E d.Then 
there exists a set C Ed with P(C) =1such that for each w E C,  P(A I d ) ( w )  = 

I A ( ~ ) .  

PROOFOF THEOREM1. Apply Lemma 1to each element {A, : n = 1 , .. .) 
of a countable set of generators for d.Let {C, : n = 1 , .  . .) be the resulting 
sequence of almost sure events. Define set C* = nnCn.Then C* satisfies the 
conclusion to the theorem, as  i t  does so for each generator A,(n = 1,.. .). 

COROLLARY1. Let d be a n  atomic, countably generated sub-a-field of B ,  
where the ,&-atoms are the singletons. Let P( .  I ,&) be a regular conditional 
distribution on 93, given ,&. Then 93 is a sub-a-field of the measure completion 
of P on d. 

PROOF. This results from Theorem 1 [see also Loeve (1955), page 3561, 
as follows: Let C* E d be the P-measure 1 set guaranteed to exist by 
Theorem 1. Then, as each singleton {w)  is an  element of ,& by assumption, 
for each w E C*, P({w) 1 d ) ( w )  = 1. Let E E 93. Then, for w E C* n E, 
P ( E  I d ) ( w )  = 1.For w E C* n Ec,P(Ec  I d ) ( w )  = 1and thus P ( E  I d ) ( w )  = 

0. Hence, P ( E  I d ) ( w )  = IE(w), almost surely with respect to P. But since 
{w : P ( E  / d ) ( w )  = 1) is d-measurable and likewise for {w : P ( E  I d ) ( w )  = 
O), the set E differs from some set in d by a P-null event. That is, E must 
be in the measure completion of ,&. 

There is a familiar and helpful sufficient condition for existence of a n  rcd 
on 93 given each of its sub-a-fields d.That is, that  @ is isomorphic (un-
der a 1-1measurable mapping) to the a-field of a random variable. See, for 
example, Billingsley [(1995), Theorem 33.3, page 4391; or, Breiman [(1968), 
Theorem 4.30, page 781. If this condition holds, we shall call (R, @) a Borel 
space. If (R, @) is a Borel space, then 93 is countably generated. When @ is 
countably generated, regardless whether (R, @) is a Borel space, if a n  rcd 
exists given a sub-a-field d ,  it is almost surely unique. 
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LEMMA2. Let P i (  / d ) ( w ) ( i  = 1 , 2 )  be two rcd's for P on B given d ,  and 
assume that @ is countably generated by a set that forms a T-system; that is, the 
countably many generators are closed under finite intersections. (Alternatively, 
let B be a separable a-field; that is, one with a countable dense set.) Then, 
P{w : PI( .  I d ) ( w )  = Pz(. I ,&)(w)) = 1. 

PROOF.Let B i ( l  = I ,  . . .) be a T-system (or countable dense set) for B. 
Let 

Each of these is a n  ,&-measurable set as  Pj (Bi  I d l ( . )  is an  &-measurable 
function, for each i = 1 , 2 , .. . and j = 1 ,2 .  It is sufficient to show that  
P(W3i) = 1 for all i. If, to the contrary, for some i P(W3i) < 1, argue for 
a contradiction as follows. Suppose then that  P(Wli) > 0. Then, 

which is a contradiction. 

When the sufficient condition for existence of rcd's fails because the measure 
space is not countably generated, rcd's may nonetheless exist though they 
can form mutually singular families of distributions when evaluated a t  each 
point w . 

EXAMPLE1. Let 93' = & be the a-field of all countable and co-countable 
sets in [0,11. Let P be a probability that  assigns 0 to each point (real number) 
in [0,11.Each of the following is readily seen to be a n  rcd for P on 93')given d. 

1. Let P I (  I &)(w) be the "indicator" rcd that  concentrates all its mass a t  
w that  is, for B E B, P ( B  I d ) ( w )  = IB(0) .  It is a simple fact that  there 
always is such a n  obvious rcd on a space @ given @, regardless the algebraic 
structure of @. 

2. Let P 2 (  I d ) ( u )  be defined so that  Pz(. I d ) ( w )  = P(.), for each point w.  I t  
is straightforward to verify that  this function is a n  rcd for @ given d. 

Note that, for each w ,  Pl({w) I d ) ( w )  = 1and Pz({w) I d ) ( w )  = 0, so these 
are mutually singular distributions, as  evaluated a t  each point, w.  The second 
of the two rcd's in Example 1 displays a n  anomaly that  is the focus of the 
balance of this paper. 
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3. Proper rcd's. For our investigation of the received theory of condi- 
tional probability, the central concept comes from important works by Black- 
well and Ryll-Nardzewski (1963) and Blackwell and Dubins (1975). 

DEFINITION An rcd P(.  d )  on @ given ,d is proper at the point w if4. I 
P(A I d ) ( w )  = 1whenever w E A E d .  Say that P (  I d )  on @ given d ,  is 
improper at w otherwise. An rcd P(. / d )  on @ given d isproper if it is proper 
at  each point w.  

The extent of impropriety for rcd's is the principal subject of this paper. 
Where an rcd is improper at w, its conditional probability function evaluated 
at w cannot be used as a coherent degree of belief, at  least, in the sense of coher-
ence intended by deFinetti (1974) or Savage (1954). That is, we understand 
coherence of degrees of belief to include the requirement that a conditional 
probability function is supported by its conditioning event. Conditioning on a 
a-field does not entail conditioning on the events in the a-field. However, if 
conditioning on a a-field is to represent coherent degrees of belief, then the 
rcd should be proper. 

We begin our discussion of the extent of impropriety of rcd's with an impor- 
tant and, we find, surprising result due to Blackwell and Dubins (1975). 

DEFINITION A probability distribution is extreme if its range is the two 5. 
point set (0, 1). 

THEOREM If @ is a countably generated 2 [Blackwell and Dubins (1975)l. 
a-field and if there exists some extreme probability on d supported by no d-
atom belonging to d,then d is not countably generated, which entails that 
no probability admits a proper rcd on 923 given d. 

Thus, this result gives a sufficient condition for when an rcd cannot be 
proper. 

We index the extent of impropriety of an rcd at a point w with Definition 6. 

DEFINITION6. Fix w and consider those A such that w E A E d.If for 
some w E A E d ,  P(A I d ) ( w )  = 0, say that P ( .  I d )  is maximally improper 
at w. Otherwise, if for each w E A E ,d,1 > P(A I d ) ( w )  > 0, say that the 
rcd is modestly proper at w. 

In order to characterize the extent of impropriety of an rcd globally, across 
different states, we consider the inner P-measure of the set of points where it 
is improper. Let f denote the inner P-measure of a set. 

DEFINITION Let B = {w : P(. I d ) ( w )  is improper at  w). Call f(B) the 7. 
lower P-bound on the extent of impropriety of the rcd P(.  I d ) .  If B is P-
measurable, call P(B) the extent of impropriety of the rcd P(.  I d ) .  Finally, say 
that P (  I d )  is maximally improper if, with lower P-bound 1,it is maximally 
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improper. That is, an  rcd is maximally improper if, with respect to its measure 
completion, it is almost surely maximally improper. 

EXAMPLE2 (Example 1continued). Evidently, rcd PI(.  I &)(w) is every-
where proper. However, rcd P2(.I ,&)(w) is maximally improper! 

In light of Theorem 1, if an  rcd P( .  I d )  exists, then when d is countably 
generated, almost surely the rcd is proper. That is, then the extent of its im-
propriety is 0 and impropriety is restricted to a P-null set, at  most. Blackwell 
[(1955), page 61 asked whether this null set can be reduced to the empty set 
when @ is a Lusin space. Blackwell and Ryll-Nardzewski (1963) establish 
that the answer is negative when & is the a-field generated by a real-valued 
random variable whose range is not a Bore1 set. We discuss their result in the 
next section, where we relate it to non-measurable sets when the conditioning 
sub-a-field is the tail field or field of symmetric events. 

Now for our central theorem about the extent of impropriety of rcd's. Gener-
ally, when the sufficient condition of Theorem 2 is satisfied, rcd's are maximally 
improper. 

THEOREM3. Let be an atomic sub-u-field of @. Assume that P is an  ex-
treme probability on & that is not supported by any &-atoms. An red P (  I &) 
for P on @ given d exists and is maximally improper. 

REMARK.By Lemma 2, this rcd is unique when @ is countably generated. 

PROOF. By assumption, P is extreme on d. Therefore, as is evident, 
P ( .  I d )  = P(.)  is an rcd for P on @ given d,That is: (1)for each point 
w ,  P( .  / ,&)(w) is a probability on @. Equally evident, (2) for each B E B, 
P(B  I ad)(.)is an &-measurable function, with pre-image either Q or 0.More-
over, it is constant a t  every point w ,  and thus it is constant on the atoms of 
,&. Finally (3), if P(A) = 1, then P (B  n A) = P(B) = /aP(B)dP(w) = 
JA P (B  I ,&)(w)dP(w);and if P(A) = 0, then P (BnA)  = 0 = /, P(B) dP(w) = 
JA P (B  I &)(w) dP. But, as P is extreme on ,& and is not supported by any 
,&-atoms, P(a)  = 0 for each ad-atom a .  Hence (P-almost surely), this rcd 
P( .  I ,&)(w) on @ satisfies P(a  I &)(w) = 0 for each &-atom a .  Denote by a(w) 
that &-atom containing the point w.  Thus, for almost all points 
w ,  P(a(w) I &)(w) = 0. which establishes that this rcd is maximally improper. 

Here are two additional illustrations of Theorem 3, counting the rcd 
P2(.I &)(w) of Example 1as the first example. By contrast, we use a @ that 
is countably generated in each of the next two examples. 

EXAMPLE3 [See Blackwell and Dubins (1975),page 7421. Let R =  (0,l)'o; 
that is, the sample space of infinite binary sequences; let 93'be the product 
a-field; and let P be the product measure corresponding to independent flips 
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of a "fair" coin; that is, P(0 x (0, l ) x  . . .) = P ( l  x (0, l ) x  . . .) = 112 , etc. 
Let d be the tail a-field for this process. Then, by the Kolmogorov 0-1 law, 
for each A E ,&, P(A) = 0 or P(A) = 1.The ,&-atoms, a ,  are countable sets 
of points, where mi, w E a if and only if they differ in at most finitely many 
places. These ,&-atoms belong to the tail field, a E &.Since each d-atom is 
a countable set, P(a)  = 0; hence, P is not supported by any of its d-atoms. 
With P(. I d)= P(.) the rcd on @, given &,we have that for each &-atom, 
a ,  P{w : P(a I d) (w)  = 0) = 1. In particular, P{w : P(a(w) I d ) ( w )  = 0) = 1, 
and this rcd is maximally improper. The example has a natural generalization 
to i.i.d, binomial "weighted" coin flipping. P , ( l  x (0, I )  x . . .) = 8, for 0 < 6 < 1, 
which we pursue in Corollary 2 for symmetric measures. 

EXAMPLE4 [see Billingsley (1995)) Example 33.111. Let R = [O, 11, let 
@ = the Borel subsets of R, and let P be Lebesgue measure. Let be the 
sub-a-field of all countable and co-countable sets in [0, 11.Clearly, P(A) = 0 
or P(A) = 1, for each A E &.Equally obviously, P(A) = 0 for each countable 
set A. Note also that the &-atoms, which in fact belong to &, are just the 
singleton sets consisting of the points of R, {{x) : 0 5 x 5 1). Hence, according 
to Theorem 3, the rcd on @ given ,&, P(.  I &), satisfies 

P{x : P(xi I d ) ( w )  = 0, for 0 Ix, xi 5 1)= 1. 

Thus, P({x : P({x) I ,&)(w) = 0)) = 1. 

Next, we discuss the a-field of symmetric events, as covered by the 0-1 
law of Hewitt and Savage (1955). We use the space of sequences of Cartesian 
products of binary events, as in Example 3; however, Theorem 3 generalizes 
directly to products of an arbitrary finite set. Thus, let R = {O,l)"; let 93' = the 
Borel subsets of R; and let P be a symmetric probability, in the sense of Hewitt 
and Savage, defined as follows. Let T be an arbitrary (finite) permutation of 
the positive integers, i.e., a permutation of the coordinates of R that leaves 
all but finitely many places fixed. Thus, T : R + R, is 1-1, onto, and leaves 
all but finitely many coordinates of a point w unchanged. Given T, define the 
set T-lB as {w : T(w) E B). P is called a symmetric probability if P(T-lB) = 
P(B), for each B E B and each T. If B = TP1B for all (finite) permutations 
T, B is called a symmetric event. Hewitt and Savage [(1955), Theorem 6.31 
shows (duplicating deFinetti's representation theorem) that each symmetric 
probability P is an average (integral) of "extreme" symmetric probabilities of 
the form 

where 0 5 6' 5 1,where Po(.) is the i.i.d. (binomial) product probability on @, 
with Po{l x (0, 1) x . . .)= 0, and where y(.)  is a "prior" probability on Borel 
subsets of the unit interval. The representation is unique in y. Let & be the 
sub-a-field of 93' generated by the class T of all (finite) permutations of the 
coordinates of R, i.e., & is the a-field of the symmetric events. Denote by a 
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the d-atoms. These are denumerable sets of points, which are elements of ,&. 
That is, all but two d-atoms are countably infinite sets of points related by 
the equivalence relation that elements differ by a finite permutation of their 
sequences. The two distinguished d-atoms are the two constant sequences 
(0,0, . . .) and (1,1,. . .). 

We establish our result for the class of symmetric probabilities as a corollary 
to the following theorem, which itself generalizes Theorem 3. 

THEOREM4. Let ( O , 9 )  be a Borel space. For each 8 E O, let P, be a prob-
ability on @. Let P(.) be defined on &' by P(.)  = /, P , ( . ) d ~ ( 6 ) .Let d be a 
sub-u-field of @ for which there exists a marginal red on Bgiven d,denoted 
by P ( . I d )  and assume that P,( . Id)  is maximally improper for P-almost all 8. 
Then P ( . I d )  is maximally improper as well. 

The proof of Theorem 4 is straightforward from the following lemma. 

LEMMA3. Let (O,L2) be a Borel space, with a probability measure p. For 
each 8 E O, let P ,  be a probability on @ such that for every B E @, P,(B) 
is a measurable function of 8. Define the probability P on @ by P(B) = 

loP,(B) d ~ ( 8 ) .Let P(. I d )  be a n  red given a sub-u-field ,& of 99.Also, let 
P , (  I d )  denote a n  red for each P,. Then, for each w there exists a probability 
v, on 9such that for all D E L2 

almost surely with respect to P. 

PROOF. Let F be the product u-field @ 8 9.For each E E F, define 

E, = {w : (w, 8) E E),  

the 6-section of E. It is easy to see that, if E is a product set, i.e., E = B x D for 
B E B and D E 9,then E, E @ for all 8, and P,(E,) is a measurable function 
of 8. The .rr-h theorem of Dynkin [see Billingsley (1995))Theorem 3.21 implies 
that for all E E F, E, E 99 for all 6 and P,(E,) is a measurable function of 8. 
Define 

which is easily seen to be a probability on F .  Let d' = {B x O : B E d), 
which is a sub-a-field of F .  Let Q(. I ,&I) be an rcd. Clearly, Q(E I d l ) ( w ,8) is 
a function of w only since it is ,&'-measurable. It is easy to see that for all D, 
P (D  I ,&) is a version of Q(R x D I ,&'). Next, let ,&" = d 8 9 so that d' is 
a sub-a-field of ,&". It is easy to see that for all D P,(D I d )  is a version of 
Q(R x D I d " ) .  For each D E 9 and w E a ,  define v,(D) = & ( a  x D I d ' ) (w).  
The law of total probability [see Schervish (1995), Theorem B.70, page 6321 
now says that (1)holds, 
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COROLLARY2. Each rcd P ( . I d )  on @given &, for a symmetric probability 
P ,  is maximally improper provided that the two distinguished &-atoms are 
P-null events, P{(O, O,O,. . .)) = P{(1,1, 1 . .  .)) = 0. 

PROOF. We apply Theorem 4 to the Hewitt-Savage representation for a 
symmetric probability P, using the sub-a-field of symmetric events as &.By 
the Hewitt-Savage 0-1 law, Po(A) = 0 or Po(A) = 1 for each A E & and 
each extreme measure Po(.).Evidently, for each 0 < 6' < 1, and for each &-
atom a, P,(a) = 0, so that Pois not supported by any of the &-atoms. Then, 
by Theorem 3, Po-almost surely, Po(aI &)(w) = 0 for each d - a tom a and so 
P,(.IA)(w) is maximally improper. In fact, for this case 6' is an  & -measurable 
function. (Note that for a symmetric probability P ,  almost surely the infinite 
sequence of binary events has a limiting frequency for 1's) say, which is an 
d-event  of P-measure 1.Almost surely, 6' of the Hewitt-Savage representa-
tion equals this limiting frequency; hence, 6' is &-measurable.) Thus, in the 
conclusion of Lemma 3 as applied to our situation, almost surely v,(.) is a 
point-distribution concentrated at  the value of 0 consistent with w. 

4. Impropriety of rcd's and some non-measurable sets. Dubins 
(1971) identifies a different argument from the one of Theorem 2, establishing 
that there cannot be everywhere proper rcd's for @ given & in Example 3. He 
uses the following indirect argument. In Example 3, suppose that it were the 
case that the rcd P (  I d ) ( w )  for @ given & were everywhere proper. Then 
there would be an &-measurable selection function on the atoms of ,& whose 
range is an analytic (hence Lebesgue measurable) set. As the &-atoms are 
denumerable sets, a proper rcd P(. I ,&)(w) is a discrete distribution that lives 
on the atom a(w) that contains w .  For instance, the mode of each distribu-
tion, P(. I ,&)(w), could serve to define a selection function-a function that 
picks out exactly one element from each ,&-atom. However, the range of such 
a selection function is a Vitali-style non-measurable set, which is a contra-
diction. That is, the "fair coin" product measure is invariant to changes in 
a finite number of the coordinates in each binary sequence of a measurable 
set-corresponding to the fact that Lebesgue measure is (translation) invari-
ant under the additionJsubtraction of a fixed (binary rational) number to each 
real number in a measurable set. However, in Example 3, fi is covered by 
countably many such changes to the range of any selection function on the 
,&-atoms. But as P cannot be uniform over a countably infinite set, this con-
tradicts the fact that the range of the selection function is analytic. 

We adapt this line of reasoning involving non-measurable sets to establish 
the following: 

THEOREM5 .  Let &' be the Bore1 subsets of R, let ,& be the sub-a-field of 
symmetric events, and let P be a symmetricprobability that assigns 0 to the two 
distinguished atoms. Then, with respect to elements of &, the P-lower bound 
is 0 on the set of points where P (  I &) can be even modestly proper. 
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The proof of Theorem 5 uses the following result: 

THEOREM6 [Theorem 2 of Blackwell and Ryll-Nardzewski (1963)l. Let X,  
Y be Borel subsets of complete separable metric spaces, let P be a countably 
generated sub-a-field of the a-field of Borel subsets of X and let @ be the class 
of Borel subsets of Y.  For any function p on @ x X such that (a) ,a(., x) is for 
each x a probability measure on B and (b) for each B E B ,  p(B, .) is a 4-
measurable function on X ,  and any set S E @ x X such that ,a(S,, x) > 0 for 
all x E X ,  where S, denotes the x-section of S ,  that is, S, = {y : (y ,  x) E S), 
then there is a 8-measurable function g from X into Y whose graph is a subset 
of S, that is, (g(x),  x) E S for all x E X. 

PROOFOF THEOREM5. Let F be the set of points w where the rcd 
P( .  I &)(o) for B given d is modestly proper. Assume for an indirect proof 
that, with respect to sets in d,f ( F )  > 0. Then let A E d ,  F 2 A denote 
a set of positive measure. We use Theorem 6 iteratively to find a countable 
sequence of selection functions whose ranges, though measurable sets, each 
behaves as a Vitali-styled non-measurable set. These sets lead to a countable 
partition of A into sets of measure 0 events, which contradicts the fact that 
P(A) > 0. 

Reason as follows. Let d*be the smallest sub-a -field with respect to which 
P( .  / ,&) over B is measurable. Trivially, d*c d .  In the case considered, d* 
is countably generated (hence atomic), because @ is. Recall that each d - a tom 
is a countable set and that each &*-atom, a*, consists of that union of d-
atoms a* = Ua,  such that each point w E a*  yields the same distribution 
P (  I d ) ( o )  over 93' as do the other points in a*. As P( . I d ) ( w )  is modestly 
proper over A, each atom a*  contains a finite or at  most denumerable union 
of &-atoms from A. However, a*  may contain uncountably many ,&-atoms 
from Ac. 

In our first application of Theorem 6, let X, = Y, = A. Let B1 = @/A 
and 8, = &*/A, the quotient u-fields, respectively of B and &* given A. 
Clearly, 8, is countably generated with (uncountably many) atoms c,. Let 

P( .nA 1 st'-)
PI(',  W)= 1 E A. Last, let p ( ~  (w) for 

S1= {(wl, w) : w1 E cl(w) and w E A}. 

Evidently, ,a,(., w) satisfies the requisite conditions in Theorem 6. Then apply 
Theorem 6 to argue that there is a 81-measurable selection function g,(c,(w)) 
that picks out one element from each 81-atom cl(o)  for each o E A. 

Let V,, ,be the range of this function. (We use V to remind the reader of the 
Vitali-like properties of this range.) We argue that, as V1, is @,-measurable, 
P(V,, ,) = 0 using P's symmetries under finite permutations of the binary 
sequences that are the points of Y. Consider the countable set of finite per- 
mutations of a binary sequence, which we write as PER = {per j  : j = 1,. . .). 
For simplicity we let per, be the identity function. Then, as P is is a symmet- 
ric probability, it is invariant under the application of each element of PER to 
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a measurable set. Thus P assigns equal probability to each of the countably 
many disjoint sets perj(Vl, l )  = Vl, j. We can say more. Let V, = U V,, j. 
Then P(V1) = 0. Moreover, we see that V1 is an uncountable union of d -
atoms a,, V1 = Ua,, where each such &-atom a, is a subset of a distinct 
6 -a tom el,, and where each €l-atom has one such an &-atom as its witness. 
Let Al = A - V1. 

We iterate the application of Theorem 6 by induction through a countable 
set of countable ordinal as follows, until we arrive at  a stage E where X, = 0. 

For a successor ordinals /3 + 1set Xp+, = Yp+l = Ap Let .@p+l= .@/Ap 

and Gp+l = &*/Ap. Let ,up+,(+,w) = P $ g f L y ) ( w )  for w E A p  Last, let 
Sp+,= {(w', w) : w1 E cp + l(w) and w E Ap). 

For y a countable limit ordinal, define the respective sets by intersections in 
the usual fashion for such constructions, as follows. With p < y, let X, = Y, = 

P( ,AY)l o/*)(w)forA, = f' A,,. Set @, = @/A, and 8, = &YAY.Let py(.,w) = , ~ , y ) l d , )  

w E Ay. Last, let S, = {(wl,w) : w' E c,(w) and w E A,). 
In the former case we obtain a €p+l-measurable selection function gp+l 

(cp+,(w)) that picks out one element from each %+,-atom cp+,(w) for each 
w E Ap. Let Vp+l,l be the range of this function. Then, P(Vp+l,l) = 0, and 
with Vp+l = U j  Vp+l,j, we have also P(Vp+,) = 0. In the latter case, the 
same argument leads to the conclusion that P(V,) = 0. However, as each 
atom a* contains a finite or a t  most denumerable union of d-atoms from A, 
this process exhausts A after some countable number of iterations. That is, 
there exists a countable ordinal [ such that A = Upxi VP. This completes the 
proof as 0 < P(A) = P(Up,l Vp) = Cp,[ P(Vp) = 0, a contradiction. Hence, 
P (F )  = 0, and P's rcd cannot be even modestly proper over a set of positive-

P-measure, given the symmetric field d .  

COROLLARY3. Under the same conditions as Theorem 5 there is no exten-
sion of the symmetric probability P to a larger a-field 95'' that has positive 
lower bound on the set ofpoints where its rcd given the symmetric events d is 
modestly proper. 

PROOF. Apply Corollary 1 to the preceding theorem to establish that no 
extension of P to a a-field @' that includes a P-non-measurable set admits 
an rcd, proper or not, given @. 

5. Conclusions. We have examined the received theory of regular con-
ditional distributions for certain anomalous behavior, impropriety, with re-
spect to conditioning on sub-a-fields. Impropriety was studied in papers by 
Blackwell (1955), Blackwell and Ryll-Nardzewski (1963), Dubins (1971) and 
Blackwell and Dubins (19751, where their focus was on the impossibility of 
everywhere proper rcds. Here, we provide an index for the extent of impro-
priety in an rcd based on the measure of the set of points where the rcd is 
not proper, and by how much it is not proper. When rcd's exist and the sub-a-
field is countably generated, almost surely the rcd is proper. However, when 
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the sub-a-field is not countably generated, the door is opened to the possi- 
bility that almost surely P(a(w) I d*) (w)= 0, a situation we call maximally 
improper. We offer sufficient conditions for an rcd to be maximally improper 
and show that they obtain in some familiar cases, e.g., given the tail a-field 
of a mixture of i.i.d. processes and given the a-field of symmetric events for 
symmetric probabilites. 

Insofar as the anomalous sub-a-fields involve conditioning on (countable) 
Borel sets, we believe that it is unlikely that a minor variation in the theory 
of rcd's can avoid impropriety in its conditional distributions. A rival the- 
ory does exist, however, that assures not only that conditional probability is 
everywhere proper, but also allows conditional probability to be coherently de- 
fined given an event rather than given a sub-a-field, hence solving the Borel 
paradox. Also, this theory does not encounter the limitation of non-measurable 
events; hence, coherent conditional probability always exists. We have in mind, 
of course, the theory of finitely additive probability, as described by Dubins 
[(1975), Section 31. 

The price for all these benefits is not insignificant. The theory of finitely 
additive conditional probability does not always satisfy the integral equation, 
condition (iii), for rcd's. With finitely additive probability, it generally does not 
happen that, for B E @, J, P(B / &)(o) dP(o) = P(B). When this equation 
fails, then the finitely additive P is not disintegrable in the partition of the d-
atoms. In particular, Schervish, Seidenfeld and Kadane (1984) shows that each 
finitely but not countably additive probability P will fail to be disintegrable 
in some denumerable partition. 

For an example of what might usefully be done with finitely additive prob- 
abilities, Dubins (1977) shows there exists a coherent finitely additive prob- 
ability P that extends the "fair coin" product measure of Example 3, p,  and 
which is disintegrable in the partition T, formed by the atoms a,- of the 
anomalous tail-field, F. Since P extends p and is disintegrable in the par- 
titon .ir, where p obeys the Kolmogorov 0-1 law, its conditional probability 
distributions behave P-almost surely like the maximally improper rcd's based 
on p with respect to sets ofpositive p-measure. Thus, one can compute values 
of P for sets of positive p-measure by using the familiar, maximally improper 
rcd for p given 7 ,  which we here denote by p(B I 7 ) ( ~ ) .However, since P 
is coherent, its conditional probability distributions are everywhere proper. 
That is, the conditional probability distribution P(.la,T) is supported by its 
conditioning event, the countable set a,. Thus, P(.la,-) and p(B I 7 ) ( o )  are 
mutually singular at each element of T. To heighten the tension, P(.la,) may 
be a "uniform" purely finitely additive measure over its conditioning event, 
that is, P(wla,) = 0 for each w E ay ,  as Dubins' result establishes. 

Every countably additive probability has many finitely additive extensions 
to the power set. Given a partition, it is not generally known whether any of 
these extensions is disintegrable in that partition. This leads to the following 
open question. If P is a countably additive probability with an improper rcd 
given the atomic sub a-field &, does there exist a finitely additive extension 
of P that is disintegrable in the partition of the &-atoms? 

http:P(.la,-)
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