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Abstract 
We review de Finetti’s two coherence criteria for determinate probabilities: coherence1 defined in terms of previsions 
for a set of events that are undominated by the status quo – previsions immune to a sure-loss – and coherence2 defined 
in terms of forecasts for events undominated in Brier score by a rival forecast.  We propose a criterion of IP-coherence2 
based on a generalization of Brier score for IP-forecasts that uses 1-sided, lower and upper, probability forecasts.  
However, whereas Brier score is a strictly proper scoring rule for eliciting determinate probabilities, we show that there 
is no real-valued strictly proper IP-score.  Nonetheless, with respect to either of two decision rules – Γ-Maximin or 
(Levi’s) E-admissibility-+-Γ-Maximin – we give a lexicographic strictly proper IP-scoring rule that is based on Brier 
score. 
 
Keywords. Brier score, coherence, dominance, E-admissibility, Γ-Maximin, proper scoring rules. 
 
1. Introduction 
One important approach to the foundations for subjective probability is the strategy to reduce rational degrees of belief 
to normative decision theory.  Savage’s [17] is a classic among such theories.  De Finetti’s Book argument, dating from 
about 1930 and summarized in [3], is another.  De Finetti considers personal previsions, which are an agent’s fair prices 
for buying and selling random variables.  These random variables are defined with respect to some common space of 
possibilities.  De Finetti introduces a criterion of coherent previsions: that the agent’s fair prices cannot be used to form 
a set of trades that result in a uniform sure loss with respect to that space of possibilities.  Thus in de Finetti’s theory, 
coherence is a normative decision theoretic constraint on an agent’s previsions: avoid sure loss.  He established the 
central result that a set of previsions is coherent in this sense just in case there is some (finitely additive) probability 
against which the prevision for a random variable is its expected value.  When the random variables are indicator 
functions for events, coherent previsions are the agent’s personal probabilities for those events, and the agent’s fair 
prices are her/his coherent betting odds.  De Finetti thus reduced the problem of rational degrees of belief to the 
problem of coherent previsions. 
 
Starting in about 1960, de Finetti emphasized two coherence criteria – coherence1 for previsions (as described above), 
and coherence2 for forecasts assessed by Brier score.   He established [3, 5] that these two criteria are equivalent for 
purposes of distinguishing between sets of previsions or sets of forecasts that are undominated versus those that are 
dominated.  Coherence is the common requirement that a decision maker avoids dominated alternatives.  A set of 
previsions are coherent1 i.e., they are undominated by the alternative of the status-quo – there is no “Book” – if and only 
if those same quantities, when used as forecasts evaluated by Brier score, are coherent2, i.e., they are undominated by 
any rival set of forecasts.   In his later presentations de Finetti favored coherence2 over coherence1 because, in addition 
to providing an equivalent criterion for coherence, also proper scores provide a method for incentive compatible 
elicitation, unlike the situation with coherence1 and the prevision game, as we call it.  In Section 2, we make precise and 
explain these claims. 
 
De Finetti’s theory of coherent previsions, coherence1, serves as the basis for numerous IP generalizations – see [13, 26, 
27, 28] for examples.  However, we know of no parallel development of IP theory based on proper scoring rules.  It is 
our purpose in this essay to report some basic findings about scoring-rule based IP theory.  In Section 3 we explain one 
approach to an IP version of coherence2 and illustrate how that approach works.  In Section 4 we present an 
impossibility result for a real-valued proper IP scoring rule.  By contrast, we illustrate a strictly proper, lexicographic 
(non-standard) IP version of Brier score.  In Section 5 we conclude with remarks about the approach begun here. 
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2.  De Finetti’s two criteria for coherence 

2.1 Coherence1 and Coherence2. We begin our review of de Finetti’s theory with a reformulation of his first coherence 
criterion, coherence1, which constrains a rational agent’s fair prices for buying and selling random variables.  
Coherence1 requires that the rational agent’s fair prices cannot result in a set of trades that  result in a (uniform) sure 
loss.  Coherent1 previsions cannot be dominated by the status-quo, where there are no trades.  We reformulate 
coherence1 in the context of a 2-person, 0-sum game, the prevision game, in order to prepare the reader for concerns 
about strategic aspects of applying coherence1. These strategic aspects can distort the rational agent’s play, even though 
that play is coherent1.  That is, the rational agent may have incentives to play coherently1 in the game while 
misidentifying his/her degrees of belief.   
 
The existence of such strategic aspects in the prevision game help to motivate de Finetti’s second coherence criterion, 
coherence2.  Coherence2 constrains the rational agent’s forecasts for the same set of random variables by requiring that, 
as assessed by Brier score, forecasts are undominated relative to each rival set of forecasts.  As we explain, below, 
coherence2 is an incentive compatible criterion for forecasting variables that provides an alternative foundation for 
subjective probability.  It mitigates the strategic aspects of rational play that threaten to distort the agent’s announced 
prices in the prevision game. 
 
The prevision game, is formulated for a class of bounded variables, X = {Xi: i ∈ I} each of which is measurable with 
respect to a space {Ω, B}, where I serves an index set.  One player, the bookie, posts a fair, or 2-sided prevision P(Xi) 
for each Xi ∈ X.    The bookie’s opponent, the gambler, may choose finitely many non-zero real numbers {αi} where, 
when the state ω ∈ Ω obtains, the bookie’s payoff is  Σiαi( Xi(ω) – P(Xi) ), and the gambler’s payoff is the negative of 
this quantity, -Σiαi( Xi(ω) – P(Xi) ).  That is, the bookie is obliged either to buy (if α > 0), or to sell (if α < 0) |α|-many 
units of X at the price, P(X).  Hence, the previsions are described as being 2-sided or fair buy/sell prices. 
 
The bookie’s previsions are incoherent1 if the gambler has a strategy that insures a uniformly negative payoff for the 
bookie, i.e., if there exist a finite set {αi} and ε > 0 such that, for each ω ∈ Ω,  Σiαi( Xi(ω) – P(Xi) )  <  -ε.   
Otherwise, the bookie’s previsions are coherent1.   
 
De Finetti’s Fundamental Theorem of Previsions:  

The bookie’s previsions {P(X): X ∈ X} are coherent1 if and only if there is a finitely additive probability P whose 
expected value for X, EP[X], is the bookie’s prevision.  That is:   

• Coherence1 obtains  if and only if   EP[X] = P(X).  
 
This result extends to include coherence1 for conditional expectations given non-null events, using the device of called-
off previsions.   Let F be an event with F(ω) its indicator function.  The bookie’s called-off prevision, PF[X], for X 
given event F has payoff in state ω to the bookie:  F(ω)α( X(ω) - PF(X) ), which equals 0 – the transaction is called-off 
– in case event F fails.  Assuming that the conditioning event is not null, i.e., P(F) ≠ 0, then 
• Coherence1 for called-off previsions requires that EP[X | F] = PF[X]. 
 
When the conditioning event F is null, coherence1 places no substantive constraints on the called-off prevision PF[X].  
That is EP[F(ω)α( X(ω) - PF(X) )] = 0 regardless the real-value of PF[X].  This defect in de Finetti’s formulation has 
been discussed many times in the literature, and with a variety of different proposals to remedy the situation.  For 
different corrections to this defect in coherence1 see [7, 13, 16, and 28].  In our opinion, the debate over conditional 
probability given a null event is not yet resolved. The correctives to de Finetti’s theory engender other controversies.  
For example, each of these three proposals underwrites Dubins’ [6] theory of full conditional probabilities.  But Dubins’ 
theory of conditional probability produces an asymmetric relevance relation. (See [2].)  Because such controversies 
about conditioning on null events do not arise for the basic questions about IP-coherence addressed in this essay, we use 
de Finetti’s original version of coherence1 and sidestep the important challenge of developing a satisfactory theory of 
conditional probability given a null event. 
 
The problems we do address here are prompted by de Finetti’s [3, 4] observation that strategic aspects of betting may 
affect elicitation of a bookie’s fair previsions using the prevision game.  For example, when the bookie (believes 
he/she) knows the gambler’s betting odds, then announcing a prevision is subject to strategic play in the game and may 
fail to reveal the bookie’s fair prevision. 
 
Example 1: Suppose the bookie’s fair (2-sided) prevision for an event G is .50.  But suppose the bookie is confident the 
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gambler’s fair prevision for G is .75.  So the bookie announces P(G) = .70, anticipating that the gambler will find it 
profitable to buy units of G at the inflated price.  Elicitation using the prevision game fails to identify the bookie’s fair 
price for G. ◊    
 
Note: There are other issues concerning elicitation in the prevision game.  Among these is the challenge of state-
dependent utilities [20], which we mention in Section 5. 

To mitigate strategic aspects of the prevision game, de Finetti turned to a different coherence criterion: probabilistic 
forecasting of random variables subject to Brier score.  In this essay, where our central goal is to discuss extensions of 
coherence2 to Imprecise Probabilities for events, we focus on forecasting events, represented by their indicator 
functions. E(ω) = 1 if ω ∈ E and E(ω) = 0 if ω ∉ E.   
 
The bookie’s previsions serve as probabilistic forecasts subject to Brier score: squared-error loss.  The penalty for the 
forecast P(E) when ω ∈ Ω is given by two functions {g1, g0} depending upon the state:      
 g1(P(E), ω) = (1 – P(E))2    if event ω ∈ E obtains; 
 g0(P(E), ω) = (0 − P(E))2    if event ω ∈ Ec obtains, which is summarized by the squared-error penalty score 

(E(ω) – P(E))2 
For the conditional (called-off) forecast PF(E), on condition that event F obtains, the score is   

F(ω)(E(ω) – P(E))2. 
And just as in the prevision game, the score for a finite set of forecasts is the sum of the separate scores.  

The coherence2 criterion applies to forecasting real-valued random variables, not just indicator functions.  
Definition: A forecast set {P(X): X ∈ X} is coherent2 if, for each finite subset of X, there is no rival forecast set {Pʹ′(X): 
X ∈ X} whose scores uniformly dominates in Ω.  

The two senses of coherence are equivalent, as de Finetti established [3, Sections 3.3-3.4]. 
Proposition 1: A set of previsions are coherent1 in the prevision-game if and only if those same set previsions are a 
coherent2 set of forecasts under Brier score.  

Proof:  Here is a geometric version of de Finetti’s projection-argument that establishes coherence1 and coherence2 are 
equivalent coherence criteria. We sketch his argument applied to previsions/forecasts for a complementary pair events.  
We use the same geometric presentation in Section 3 in order to extend coherence2 to an IP setting. 
 
Let X = {X1, X2} be a pair of variables where X1 is the indicator for an event A and X2 is the indicator for the 
complementary event Ac.   In Figure 1, below, a pair of forecasts, {Q(A), Q(Ac)} with 0 ≤ Q(A), Q(Ac) ≤ 1, is depicted 
by the point (Q(A), Q(Ac)) in the unit square.  The Brier score for a pair of such forecasts depends upon the two possible 
values of the indicators {X1, X2}, which are represented by the two points: (1,0), if the event A obtains, and (0,1) if the 
event Ac obtains.  The Brier score for the pair of forecasts {Q(A), Q(Ac)} equals the square of the Euclidean distance 
between the point (Q(A), Q(Ac)) and the respective point, either (1,0) or (0,1), depending upon which of the two 
possible values of the indicators {X1, X2} obtains.   
 
A forecast pair {Q(A), Q(Ac)} is incoherent2 if there is some rival forecast pair {Q’(A), Q’(Ac)} whose Brier score is 
smaller regardless the realized values of the variables {X1, X2}.  Thus, the rival forecast pair dominates if and only if the 
distance between the two points (Q’(A), Q’(Ac)) and (1,0) is less than the distance between the two points (Q(A), Q(Ac)) 
and (1,0), and likewise for the respective distances to the point (0,1). 
 
The coherent1 forecasts lie along the reverse diagonal, the simplex on two states, where Q(A) + Q(Ac) = 1. No such 
point is dominated in Brier score by any other coherent1 forecast, since moving along this line segment increases the 
distance, and hence increases the squared error relative to one endpoint or the other.   
 
Example 2: Consider, the incoherent1 previsions: P(A) = .6 and P(Ac) = .7.   A Book is achieved against these previsions 
with the gambler’s strategy α1 = α2 = 1.  Then the net payoff to the bookie is -0.3 regardless which state ω obtains.   In 
order to see that these are also incoherent2 forecasts, review Figure 1. ◊ 
   
If the forecast previsions {Q(A), Q(Ac)} are not coherent1, they lie outside the probability simplex.  Project these 
incoherent1 forecasts into the simplex.  As in Example2, the point (.60, .70) projects onto the coherent1 previsions at the 
point (.45, .55).  By elementary properties of Euclidean projection, the resulting pair of coherent1 forecasts, represented 
by the point (.45, 55), are closer to each endpoint of the simplex than is the pair of incoherent forecasts, represented by 
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the point (.60, .70).  Thus, the projected forecasts have a dominating Brier score with respect to the binary partition of 
possible values for the variables {X1, X2}.  This establishes that the initial forecasts are incoherent2.  Since no coherent1 
forecast set can be so dominated, we have coherence1 of the previsions if and only we have coherence2 of the 
corresponding forecasts, as required by Proposition 1.� 

 

 
 

Figure 1 

Notes: If either forecast is outside the unit interval, then it is outside the range for the variable being forecasted.  Then it 
is trivial to dominate that single forecast with a rival forecast chosen to be closer to the nearest endpoint of the range of 
the variable in question.  Also, just as coherence1 fails to regulate called-off previsions given a null event, coherence2 
does not regulate called-off forecasts given a null event.   See [7] for a parallel revision to coherence2 in order to 
accommodate conditional forecasts given a null event.  
 
2.2	
  Incentive	
  Compatible	
  Scoring	
  	
  	
  
Brier score is just one of an infinite class of (strictly) proper scoring rules.   
Definition: A scoring rule is (strictly) proper just in case a forecaster (uniquely) minimizes expected score by 
announcing her/his previsions.   
Thus, forecasting with a (strictly) proper scoring rule avoids the problem of strategic behavior present in the prevision 
game: there is no opponent.  Even allowing different proper scoring rules for different forecasts, by taking the combined 
score for a finite set of forecasts as the sum of the individual scores, the result is again (strictly) proper.   Savage [18] 
and Schervish [19] characterize the (g0, g1) pairs for proper scoring rules.  In [21] we establish that all (proper) scoring 
rules produce the same distinction between coherent1 and incoherent1 forecasts as with Brier score, both for 
unconditional forecasts and for conditional forecasts given a non-null event.   
 
Proposition 2 [21]:   
(2.1)  When the scoring rule is proper, finite, and continuous, each incoherent1 forecast set is dominated by some 
coherent1 forecast set. 
(2.2) When the scoring rule is proper, finite, but not continuous, each incoherent1 forecast set is dominated, but not 
necessarily by a coherent1 forecast set. 
 
Notes: Result 2.1 can be established by a generalization of de Finetti’s geometric argument, where the projection 
depends upon the scoring rule. See [15].  Gilio and Sanfilippo [8] use a strengthened coherence criterion to extend this 
analysis to continuous scoring rules when there is conditioning on null events.  The demonstration of result (2.2) in [21] 
uses game-theoretic reasoning.  
  
3.  Coherence2 with a Brier IP scoring rule. 

One introduction to Imprecise Probabilities is provided by C.A.B.Smith’s [26] modification of de Finetti’s prevision 
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game, which provides a criterion of IP-coherence1 for (closed, convex) IP sets.  Rather than requiring a 2-sided, fair 
price, the bookie may fix a pair of 1-sided previsions for each X ∈ X: the bookie may fix separate buy and sell prices.  
 
• The bookie announces one rate P(X) as a buying price for use when α > 0, and a possibly different selling price   

P (X) for use when α < 0.   
 
The result is a generalized Book argument. See [279, chapter 2] for some history and basic results. 
 
Proposition 3:  
(3.1) A bookie’s 1-sided previsions avoid sure loss if and only if there is a maximal, non-empty (closed, convex) set of 
finitely additive probabilities P where    
  P(X)  <  infimumP∈P EP[X]  
And P (X)  >  supremumP∈P EP[X]. 
 When these inequalities are equalities, the 1-sided previsions are said to be IP-coherent1.   
(3.2) By requiring lower and upper previsions for sufficiently many variables (from the linear span of X), the 1-sided 
previsions avoid sure loss if and only if they are also IP-coherent1.  See Theorem 1.ii of [23]. 
  
We offer a parallel version for defining IP-coherence2 based on Brier score for 1-sided forecasts, as follows:  
 Use a lower forecast to assess a penalty score when the event forecasted fails;  
 Use an upper forecast to assess a penalty score when the event forecasted obtains.  

Let {Ei: i = 1, …, m} be m events defined over a finite partition Ω = {ωj: j = 1, …, n}.  The forecaster gives lower and 
upper probability forecasts {pi, qi} for each event Ei. 

Scoring forecasts with a Brier-styled IP scoring rule:   
Fix a state ω ∈ Ω.   
If ω ∈ Ei the score for the forecast of Ei is   (1-qi)2 =  g1(qi, ω) 
If ω ∉ Ei the score for the forecast of Ei is       pi

2    =  g0(pi, ω) 
That is, use the most favorable forecast value from the pair {pi, qi} for determining the score.  Just as with the other 
coherence criteria discussed here, the score for a set of forecasts is the sum of the individual forecast scores. 

Dominance:   
A forecast set G (strictly) dominates another F if, for each ω ∈ Ω, the score for G is (strictly) less than the score for F.   
 
But, since the vacuous {0 = pi, qi = 1} forecast dominates each rival {0 < piʹ′, qiʹ′ < 1}, we require an additional 
restriction on the class of competing forecasts in order to avoid triviality of the resulting theory of IP-coherence2. 
Note: This is analogous to a problem that is usually ignored within traditional IP theory.  With 1-sided previsions, it 
remains IP-coherent1 to be strategic: announce a lower buying (and/or a higher selling) price than one is prepared to 
accept.  That is, knowing who is the Gambler in the 1-sided Prevision Game, the Bookie may play strategically and 
mimic having a less determinate IP-coherent1 set of previsions in order to secure strictly favorable gambles. 
 
We propose that IP-coherence2 takes into account both a rival model class M, which identifies the competing class of 
rival forecasts, and an index of relative imprecision in a forecast set.  By allowing the rival forecasts to be restricted to a 
particular class M, we offer a more general approach than when the rival class is fixed as the maximal class of all 
possible lower and upper forecasts.  This flexibility permits, also, to link our approach to different theories of Robust 
Statistics, as illustrated in Example 3, below. 
 
Stated informally, a set of 1-sided forecasts F  are incoherent2 when there exists a dominating set of forecasts G that are  

(i) at least as precise/determinate as F and  
(ii) where G belongs to the model class M.    

We illustrate this idea by filling in the details of the two concepts: the rival model class M and relative informativeness 
between forecast sets using the ε-contamination class. 
 

Example 3: Set M equal to the ε-contamination class, defined as follows.  Let P be a particular probability distribution 
over Ω = {ω1, …, ωn}. Fix 0 ≤ ε  ≤ 1.  Let Q be the simplex of all probability distributions on Ω.  The ε-contamination 
model, Pε, with focus on the distribution P, is the set of probability distributions on Ω defined by Pε = {(1-ε)P + εQ:     
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Q ∈ Q}.  This model is popular in studies of Bayesian Robustness. (See Huber [11, 12] and Berger [1].)  Also, it is the 
model obtained from Harsanyi and Selten’s [9] “trembling hand” strategies where P is the target strategy which can be 
achieved with probability 1-ε; otherwise, with probability ε strategy Q obtains.  As a third reason for illustrating our 
ideas with the ε-contamination model is that the lower probability function from this model is also a Dempster-Shafer 
Belief Function, and updating the ε-contamination model either by Bayes’ rule or by Dempster’s rule yields the same 
results.  For our purposes here, it is useful to know that this class is characterized by specifying (IP-coherent1) lower 
probabilities for atomic events, and then using the largest closed convex set of distributions satisfying those bounds.  
(See Seidenfeld [22].)◊   

IP-forecasts over a finite partition for Brier-styled, ε-contamination coherence2:   

Let F = { {pi, qi}: i = 1, …, n} be forecasts for each state ωi ∈ Ω ={ω1, ..., ωn}.   

Define F’s score set S  by an ordered n-tuple of  n-dimensional points:   
S = {(q1, p2, …, pn), (p1, q2, …, pn), …, (p1, p2, …, qn)}.  
Thus, S  contains at most n-many distinct points. Each point in S has n-many coordinates.    

 
Observe that the IP-Brier-style score for F evaluated at state ωj is the square of the Euclidean distance between the jth 
point of S and the jth corner of the probability simplex on Ω.  Clearly, the IP-score for a forecast set can be improved 
merely by moving a lower forecast closer to 0, or by moving an upper forecast closer to 1. So, consider dominating 
forecast sets only when the dominating forecast has a score set that is less indeterminate than the score set for the 
dominated forecast.  Here is a candidate for relative indeterminacy which, when combined with our Brier-style IP-
score, allows a characterization of ε-contamination IP-coherence2.   

Definition: Forecast set F2 is at least as indeterminate as forecast set F1 (or F1 is at least as determinate as F2) if the 
convex hull of score set S1, H(S1), is isomorphic under rigid movements (where both shape and size are held fixed) to a 
subset of the convex hull of score set S2, H(S2). 

Note that this relation of relative imprecision, or relative indeterminacy, is merely a partial order.  We opt for such a 
concept so that relative indeterminacy may be extended to a variety of different real-valued indices of imprecision, e.g., 
by using generalized volume of the score set to quantify indeterminacy. 

We use these notions to define IP-coherence2 generally, and then continue with our illustration of IP-coherence2 with 
respect to the ε-contamination model. 
Definition:  Given an IP-scoring rule, a set F of IP-forecasts is IP-incoherent2 with respect to the model M provided that 
there is a dominating set of rival forecasts G from the model M where the set G is at least as determinate than the set F.  
Say that F is IP-coherent2 with respect to M if it is not IP-incoherent2 with respect to M.  For convenience we will write 
these as M-coherent2 and M-incoherent2 

Observe that IP-incoherence2 reduces to de Finetti’s incoherence2 when all forecasts in F are determinate, i.e., when pi = 
qi for each forecasted event Ei (i ∈ I), and when M is the class of all determinate, coherent1 forecasts.   To see this, 
assume that |Ω| = k.  Then the score set S is the ordered set with k-many repetitions of the same |I|-dimensional point.  
Since the lower and upper F forecasts for an event are identical, the k-many points in S do not vary with ω.  So a 
dominating rival forecast set G = {p’i, q’i} must also assign the same lower and upper values to each event Ei (that is, for 
each i ∈ I, p’i = q’i}, in order for G to be at least as determinate as F.  By Proposition 2.1, then if G dominates F the rival 
forecast set {pi’} establish that F is incoherent2 and incoherent1. 

Next, we provide two basic results for IP-coherence2 with respect to the ε-contamination model. 

Proposition 4:  Let 0 ≤ pi ≤ qi ≤ 1, with n-many forecasts F solely for atoms of the algebra, the elements of the partition 
Ω = {ω1, …, ωn}. 

(4.1)  The score set S for F lies entirely within the probability simplex on Ω  if and only if  the lower and upper 
forecasts F match an ε-contamination model.  And then F cannot be dominated by rival forecasts from a more 
determinate ε-contamination model. 
 
(4.2)  If all the elements of a score set S, associated with forecast set F, lie outside the probability simplex on Ω, there is 
a dominating ε-contamination forecast model F* with greater determinacy than F.   F is IP-incoherent2 against rivals 
from the ε-contamination model.  
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Proof:    
Result (4.1) is established by elementary calculations.   If and only if each point of the score set S belongs to the 
probability simplex then, when state ωj obtains, corresponding to the jth point of S, 1 = qj + ∑i≠j pi.  This equality obtains 
for each j = 1, …, n.  Then there exists an ε ≥ 0 such that for each i = 1, …, n, qi = pi + ε, which defines an ε-
contamination model.  In the opposite direction, if forecasts for the atoms are based on an ε-contamination model, for    
i = 1, …, n, qi = pi + ε, and then 1 = qj + ∑i≠j pi so that all of the score set S lies in the probability simplex.  
 
Last, if S belongs to the probability simplex and a rival ε-contamination model F’ (with corresponding score set S’) 
dominates, then H(S) is a proper subset of H(S’) because for each j = 1, …, n, the jth point of S’ is closer to the jth 
extreme point of the probability simplex than is the jth point of S.  So, F’ is less determinate than F.  Thus F is IP-
coherent2 with respect to the ε-contamination model. 
 
Result (4.2) follows by the Brouwer Fixed-Point Theorem. Begin with a forecast set F = F0, whose score set S0 has each 
of its n-many ordered points outside the simplex of coherent1 forecasts.  Recursively create rival forecast sets as follow.  
Apply the (de Finetti) projection to each of these n-many ordered points of S0 taking them into the probability simplex 
of coherent1 forecasts.  This creates a set of (at most) n-points  T1 = {t1, …, tn} where each t ∈ T1 is a probability 
distribution P(•) over Ω.  Form the new forecast set F1 = {{p1i, q1i}: i = 1, …, n} where p1i = mint∈T1{P(ωi)} and q1i = 
maxt∈T1{P(ωi)}.  This determines a new score set S1.  Since none of the points in S0 belongs to the probability simplex, 
by the same reasoning used in de Finetti’s analysis for Proposition 1, F1 dominates F0.   
 
Just in case S1 lies in the simplex, when result (4.1) applies, the recursive procedure halts.  Otherwise forecast set F2 is 
created from a projection of score set S1 into the probability simplex, etc.  
 
Since Euclidean projections are continuous functions and the probability simplex is compact, the recursive process with 
forecast sets F0, F1, F2, …. has a fixed point F* in the class of  ε-contamination models.  By a simple adaptation of de 
Finetti’s argument for Proposition 1, the forecast set Fi+1 (weakly) dominates the forecast set Fi unless Fi is a fixed point 
of the process.  
 
Note: It may be that Fi+1 merely weakly dominates Fi for i ≥ 1, since some but not all the points in S1 may lie in the 
probability simplex.  However, since all the points of S0 lie outside the probability simplex, F1 dominates F0.    
 
Last, the projection of a closed, convex set, e.g., the projection of H(S) into the probability simplex, is isomorphic to a 
subset of H(S).  Thus, assuming that the each of the points of S0 is outside the probability simplex on Ω, the fixed point 
F* of the process F0, F1, F2, …, which belongs to the ε-contamination model class, strictly dominates F0 , and is at least 
as determinate as F0.  Hence, F0 is IP-incoherent2 with respect to the ε-contamination class.�  
 
Example 4:  Here is an illustration of Proposition 4, IP-coherence2 with respect to the ε-contamination model, using 5 
different forecast sets.  Let Ω = {ω1, ω2, ω3}.   Forecasts are for the three atoms only.  The five forecast sets Fj (j = 1, 
…, 5) are presented in the form {{pi, qi} for ωi: i = 1, 2, 3}. The respective score sets have three points with coordinates 
{(q1, p2, p3), (p1, q2, p3), (p1, p2, q3)}, as described above.   
 
Figure 2 diagrams the convex hull of each score set and shows the shaded 2-dimensional, triangular simplex of 
probability functions on Ω. 
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Figure 2 (for Example 4) 

The convex hull of the five score sets are color coded.  The simplex of probability distributions is shaded.  Each score 
set projects onto S2, the score set for forecast set F2, corresponding to an ε-contamination model. 

 
F1 = { {.55, .80}, {.55, .80}, {.55, .80}}   
S1 = {(.80, .55, .55), (.55, .80, .55), (.55, .55, .80)} 

F2 = { {.25, .50}, {.25, .50}, {.25, .50}}   
S2 = {(.50, .25, .25), (.25, .50, .25), (.25, .25, .50)} 

F3 = { {.20, .45}, {.20, .45}, {.20, .45}}   
S3 = {(.45, .20, .20), (.20, .45, .20), (.20, .20, .45)} 

F4 = { {.10, .35}, {.10, .35}, {.10, .35}}   
S4 = {(.35, .10, .10), (.10, .35, .10), (.10, .10, .35)} 

F5 = { {.05, .30}, {.05, .30}, {.05, .30}}   
S5 = {(.30, .05, .05), (.05, .30, .05), (.05, .05, .30)} 
 
The two forecast sets F1 and F5 are IP-incoherent1 in accord with Proposition 3.  Their 1-sided previsions lead to sure 
losses as, respectively, their lower (upper) forecasts are too great (too small).  There is no determinate probability 
distribution agreeing with either set’s lower and upper forecasts. 

Forecast set F2 corresponds to an ε-contamination model with focus on the uniform probability P = (1/3, 1/3, 1/3) and ε 
= 1/4.  The convex hull of the score set S2 lies in the probability simplex, as per Proposition (4.1). It is IP-coherent1 and 
IP-coherent2 with respect to the ε-contamination model class. 
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Forecast set F3 is IP-coherent1 as it has lower and upper forecasts agreeing with a closed convex set of probabilities.   
Those values agree with a rival ALUP model, but not with an ε-contamination model.  That is, F3 is IP-coherent2 with 
respect to an IP-model class defined by specifying atomic lower and upper probabilities [ALUP], but not so with 
respect to the ε-contamination class, which is an IP-model class determined solely by atomic lower probabilities.  (See 
Appendix 1 for additional details about the ALUP model.) 

Forecast set F4 has lower and upper forecasts that do not match those from a closed convex set of probabilities.  Its 
intervals are too wide.  However, the uniform probability agrees with these forecasts, i.e., the probability values (1/3, 
1/3, 1/3) fall inside the forecast intervals from F4.  Thus, in accord with Proposition 3, the forecasts from F4 do not 
suffer a sure-loss in the 1-sided prevision game; however, F4 is IP-incoherent1 and IP-incoherent2 with respect to the ε-
contamination model class. 
 
As indicated in Figure 2, each of the other four convex hulls projects to H(S2).  That is, the process described in the 
proof of Proposition (4.2) has F2 as its fixed point for each of the five forecast sets, and the process terminates after at 
most one projection.  (See Appendix 2 for an illustration of Proposition (4.2) where the fixed point is merely a limit of 
the process.) 
 

 
4.  Incentive compatible IP-elicitation 
Recall that de Finetti favored coherence2 over coherence1 because, in addition to serving as an equivalent criterion of 
coherence, Brier score provides a strictly proper score.  A decision maker who maximizes expected utility against Brier 
score announces her/his previsions for random variables as their forecasts.  Brier score is an incentive compatible 
elicitation for determinate probabilities.  It eliminates some of the strategic aspects evident in the prevision game.   That 
is, for a decision maker whose degrees of belief about events are represented by a single probability function P(•) and 
who maximizes expected utility, she/he has a unique strategy for announcing forecasts (and called-off forecasts) that 
minimize expected Brier score.  Announce the probability P(E) as the forecast of event E.  If H is not-null, then 
announce the conditional probability P(E |H) for the called-off forecast of event E, on condition that H obtains.   
 
Recall that when H is null, coherence2 places no restrictions on the called-off forecasts given H.  There is no difference 
to the expected score contributed by any conditional forecast of E, called-off if H fails, regardless whether that forecast 
is or is not coherent2.  See [5] for an improved version of coherence2.  However, our presentation in this section is not 
affected by the open problem of how to resolve the problem of reducing conditional probability given a null event to a 
decision-theoretic criterion of coherence. 
 
What can be done to extend Brier score to an incentive compatible IP-scoring rule?  The question is ill-formed without 
a decision rule that extends maximizing expected utility to IP decisions.  That is, whether a particular IP-scoring rule is 
proper or not, depends upon what decision rules we allow the IP decision maker to use.  The IP community has not 
agreed on the answer to this question.  Here, we consider only decision rules that reduce to the rule of maximizing 
expected utility when IP sets of probabilities collapse onto the special case of a singleton set, where upper and lower 
probabilities are identical and a single probability distribution represents uncertainty.  Also, we require that decision 
rules respect the following weak form admissibility.   
 
Let S(F, ω) be a real-valued IP-scoring rule for forecast set F in state ω.  Recall that scores are given in the form of a 
loss so that smaller is better. 

Admissibility Principle: If for each ω ∈ Ω  S(F, ω) ≤ S(F’, ω), then F is admissible in a pairwise choice between 
rival forecasts F and F’.  Moreover, if for each ω this inequality is strict then F’ is inadmissible whenever F is an 
option. 

 
In this section we report two results concerning existence of proper scoring rules for eliciting upper and lower 
probabilities for events, when the forecaster’s opinion is represented by a closed, convex sets of probabilities on a finite 
state space and decisions conform to the Admissibility Principle.   The first of the two, Proposition 5, establishes that 
there is no real-valued IP-counterpart to a continuous scoring rule, such as Brier score.  
 
Proposition 5: There is no real-valued strictly proper IP continuous scoring rule. 
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By contrast, Proposition 6, if one considers scoring rules with non-standard values, then strictly proper IP-scoring rules 
exist for each of two IP-decision rules.  The IP-decision rules we investigate in connection with Proposition 6 are 
summarized as follows, with additional details given in Section 4.2:   
 
Γ-Maximin:  The admissible options in a decision problem D are those that maximize their lower expected value. 
 
E-admissibility: An option X ∈ D is E-admissible if for some P ∈ P and each Y ∈ D,  EP[X] ≥ EP[Y]. 
E-admissibility-followed-by-Γ-Maximin:  Apply Γ-Maximin to the set of E-admissible options in D. 
 
Proposition 6: Under either the Γ-Maximin decision rule, or using one of Levi’s [13] lexicographic decision rules –     
E-admissibility followed by Γ-Maximin security – there is a strictly proper lexicographic IP-Brier scoring rule. 
 
Next, we establish and explain these findings. 
 
4.1 Proof of Proposition 5  The impossibility reported in this result is made evident by considering the demands on a 
real-valued strictly proper IP-scoring rule S(F’, ω), for forecasting one event, E.  
Let the interval [p, q], 0 ≤ p ≤ q ≤ 1, represent the forecaster’s uncertainty for E.  In general, the IP-scoring rule may be 
written 
  S([x, x], ω) = g1([p, q], ω)    if ω ∈ E obtains, 
and  S([x, x], ω) = g0([p, q], ω)    if ω ∈ Ec obtains.  
When p = q, in order to be strictly proper and real-valued, the scoring rule must satisfy Theorem 4.2 of Schervish [12].   
Specifically, with 0 ≤ x ≤ 1, the loss for the point forecast S([x, x], ω), x satisfies  

 g1(x)  = g1(1)+ (1− q)λ(dq)
x

1
∫    if ω ∈ E obtains; 

 g0(x)  = g0 (0)+ qλ(dq)
0

x
∫         if ω ∈ Ec obtains, 

where g1(1) and g0(0) are finite, and λ(dq) is a measure on [0, 1) that gives positive measure to every non-degenerate 
interval.   Continuity of the scoring rule results from a continuous measure λ with no point masses.  For example, Brier 
score results by letting λ have the constant density 2 on the unit interval. 
 
When p < q, the impossibility of a strictly proper continuous IP-scoring rule is a consequence of the fact that, since λ is 
positive on non-degenerate sub-intervals of the unit interval [0,1] and continuous, and as there is no continuous 1-1 map 
between the unit square and unit interval, there will be rival interval forecasts [p, q] and [p’, q’] with   
 g1([p, q]) – g1([p’, q’])  ≥  0,  
and g0([p, q]) – g0([p’, q’])  ≥  0. 
 
Then the interval forecast [p’, q’] is admissible against the rival interval forecast [p, q].  When the interval [p, q] is the 
forecaster’s IP-uncertainty for event E, she/he will not have reason to announce that interval as her/his forecast rather 
than the rival forecast [p’, q’].  Thus, the IP-scoring rule is not strictly proper.  If each of the two inequalities is strict, as 
illustrated in Examples 5 and 6 (below), then the IP-scoring rule is not even proper.� 
 
Example 5.  We illustrate Proposition 5 using the ideas about IP-coherence2 presented in Section 3.  Consider Brier 
score adapted to a forecast interval [p, q] using the favorable end of the forecast interval.  That is, let        

b([p,q], ω) = g1([p, q], ω) = (1-q)2   if ω ∈ E,  
and      b([p,q], ω) = g0([p, q], ω) =   p2       if ω ∈ Ec.  
Introduce a real-valued index of indeterminacy for a forecast set F, I(F), where I agrees with the partial order of relative 
imprecision used to define IP-coherence2.  For instance, let I([p, q]) = q-p.  For real values x, y, let H(x,y) be a real-
valued function increasing in each of its arguments, e.g., H(x,y) = x + y.   Define an IP-Brier score for forecast set F by 
B(F,ω) = H(b(F,ω), I(F)).  Then by Proposition 5, B is an improper-IP scoring rule.  To complete the example, consider 
event E and compare the two interval forecasts [.25, .75] and [.50, .50].   
Then    B([.25, .75], ω)   =  1/16 + 1/2  =  9/16  
and   B([.50, .50], ω)   =   1/4 + 0 = 1/4,  
all independent of ω.  Hence, the interval forecast [.25, .75] is inadmissible under this IP-Brier scoring rule B.  That is, 
under this variant of IP-Brier scoring rule, a decision maker whose IP-uncertainty about the event E is given by the 
closed interval of probabilities [.25, .75] strictly prefers announcing the point-valued forecast [.50, .50] instead of 
her/his IP-interval, [.25, .75].   
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4.2 Proof of Proposition 6  First we review the two decision rules mentioned in the result.  Let P be a closed, convex 
set of probabilities P on the space {Ω, B}.  Let χ be the class of bounded random variables, X, each measurable with 
respect to this space.  For each X, write X for the infimum over P of the expected value of X,   

X  =  infP∈P  EP[X], 
which identifies the lower expected value for X with respect to P.  Identify a decision problem, D, with a closed subset 
of χ. That is, the options in a decision problem form a closed set of bounded variables.   
 
The two IP-decision rules we investigate in Proposition 6 are defined as follows: 
   
Γ-Maximin:  The admissible options in D are those that maximize their lower expected value. 
Note:  By making both P and D closed sets, this max-min operation is well defined. 
 
E-admissibility: An option X ∈ D is E-admissible if for some P ∈ P and each Y ∈ D,  EP[X] ≥ EP[Y]. 
E-admissibility-followed-by-Γ-Maximin:  Apply Γ-Maximin to the set of E-admissible options in D. 
 
In general, these decision rules have very different axiomatic characterizations.  Γ-Maximin is represented by a real-
valued ordering of χ using X-values to index each option.  But that ordering violates the independence axiom for 
preferences.  E-admissibility is not represented by an ordering.  In fact, it does not even reduce to pairwise comparisons.  
(See [24] for related discussion.)  Nonetheless, next we construct a lexicographic IP-Brier score that is strictly proper 
under either of the two decision rules mentioned in Proposition 6. 
 
Proposition 5 precludes a proper IP-scoring rule that elicits both endpoint of the interval forecast [p,q] for event E.  
However, we may elicit either endpoint alone.   
Define the lower-Brier scoring rule, b([x,y], ω) = b(x,ω) as:   

g1(x) =  (1-x)2   if ω ∈ E 
g0(x) =  1 + x2   if ω ∈ Ec. 

and the upper-Brier scoring rule, b ([x,y], ω) = b (y,ω) as:  

1g (y) = (1-y)2 + 1  if ω ∈ E 

0g (y) =   y2   if ω ∈ Ec. 
Each of these is a strictly proper scoring rule for eliciting determinate forecasts.  This follows immediately from 
Schervish’s representation (above) where g1(1) = 0g (0) = 0, g1(0) = 1g (1) = 1, and λ = 2 is the uniform (Brier) score 
density for both rules.  
 
Lemma 1: Under the Γ-Maximin decision rule, respectively, the lower- (upper-) Brier score is strictly proper for the 
lower (upper) endpoint of the IP-forecast [p,q] of event E. 
Proof of Lemma 1: We give the argument for the lower-Brier score.  The reasoning for the upper-Brier score is similar. 
Let p = minP∈P  P[E] and q = maxP∈P  P[E], so that ∀P ∈ P   p ≤ P(E) ≤ q, and these bounds are tight.  The lower-Brier 
score of the forecast [r, s] for E depends solely on r.  The P-Expected score for forecast [r, s] is: 

EP[b[r, s]] = P(E)(1-r)2 + (1-P(E))(1+r2)  
   = (1-r)2 + 2r(1-P(E)).    

By simple dominance, 0 ≤ r ≤ 1.  For a given forecast r, this expected penalty score is greatest among P ∈ P  at P(E) = 
p, when the expected score is (1-r)2 + 2r(1-p).    But since lower-Brier score is strictly proper, this worst value is best, 
i.e., the worst of these expected scores is smallest uniquely for a forecast with r = p.� Lemma 1 
 
Lemma 2: Under the E-admissibility-followed-by-Γ-Maximin decision rule, respectively, the lower- (upper-) Brier score 
is strictly proper for the lower (upper) endpoint of the IP-forecast [p,q] of event E. 
 
Proof of Lemma 2: Again, we give the argument only for the lower-Brier score.  Since lower-Brier score is a strictly 
proper scoring rule for determinate forecasts, the E-admissible forecasts are exactly those of the form [r, s] where p ≤ r 
≤ q, and r ≤ s.  That is, consider P ∈ P  with P(E) = r.  Only forecasts of the form [r, s] maximizes the P-expected lower-
Brier score.  Hence, relative to lower-Brier score, the set of E-admissible forecasts with respect to the IP-set P are 
interval forecasts of the form {[r, s]: p ≤ r ≤ q, and r ≤ s}. Then, by Lemma 1, the Γ-Maximin solution from this set is 
uniquely solved at r = p.� Lemma 2 
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By Proposition 5, unfortunately, the real-valued composite score obtained by adding together these two scores,           
b ([r,s])  =  b([r,s]) + b ([r,s], is not an IP-proper scoring rule, which we verify with Example 6. 
 
Example 6: We illustrate the impropriety of the real-valued IP-score, b ([r,s]), in accord with Proposition 5. 
Consider an extreme case where the forecaster is maximally uncertain of event E, so that the vacuous probability 
interval [0, 1] represents her/his uncertainty. The precise forecast [.5, .5] has constant b -score, i.e.,  

b ([.5, .5], ω) =  1 + ¼ + ¼ = 1.5,  
which is independent of ω. 
The straightforward forecast [0,1] has the constant score   
 b ([0, 1], ω) =  1+1 = 2,  
which also is independent of ω.  So forecast [.5, .5] strictly dominates forecast [0,1] under the b -scoring rule.◊ 
 
Instead of a real-valued IP-scoring rule, we use a 2-tier lexicographical (non-standard) composite scoring rule to 
combine these two scores in a manner that creates a strictly proper (but non-standard) IP-Brier score. 
Definition: The two-tier, lexicographic IP-Brier score for the interval forecast [p, q] of event E, which we write as 
bLU([r, s]), is the 2-tier lexicographic loss function  

bLU([r, s], ω)  = < b([r, s], ω), b ([r, s], ω) >. 
That is, lexicographically, first apply the loss function b([r, s]), and among those forecasts have equal b-value, then 
apply the b ([r, s]) loss function.  By the preceding two lemmas, under the two decision rules named in Proposition 6, 
only the interval [p, q] is bLU-optimal for forecasting event E when the forecaster’s uncertainty for that event is the IP-
interval [p, q].� 

Aside:  It is evident that the order of the components is irrelevant in this 2-tiered, lexicographic IP-Brier score.   
 
To elicit an IP-forecast set F = { {pi, qi}: i = 1, …, n} for the events {E1, E2, …, En} use, e.g., the 2n tiered 
lexicographic IP-Brier score  

< b1([r1, s1]), b 1([r1, s1]), …, bn([rn, sn]), b n([rn, sn]) >. 
Then the following is immediate from Proposition 6. 
 
Corollary. The 2n-tiered, lexicographic IP-Brier score is strictly proper under either the Γ-Maximin or E-admissibility-
followed-by-Γ-Maximin decision rules.   
As above, the order of the 2n-terms in the lexicography is irrelevant. 
 
In the light of Proposition 5, the theory of IP-coherence2 developed in Section 3 does not produce a strictly-proper IP-
scoring rule.  In section 3 all IP-forecasts have real-valued scores.  The strictly proper, lexicographic IP-scoring rules 
identified in Proposition 6 do not satisfy that structural assumption of the theory in Section 3.  Thus, the analyses of 
Sections 3 and 4 do not yet provide a unified account of IP-coherence2 and IP-proper scoring rules.  In the next Section, 
we discuss our ideas about this challenge, which was pointed out to us by one of the Readers.  
   
5. Summary 
When coherence1 of 2-sided previsions is not enough, and elicitation also matters, then Brier score offers an incentive 
compatible scoring rule with an equivalent coherence criterion: coherence2 – avoid dominated forecasts.  This is de 
Finetti’s analysis, Proposition 1.   
 
We extend Brier scoring to IP-coherence2 of interval-valued forecasts, analogous to the familiar use of 1-sided (lower 
and upper) previsions for defining IP-coherence1.  Subject to an IP-scoring rule for forecasting events, the coherent 
forecaster gives lower and upper probabilistic forecasts for a particular set of events that characterize elements of an IP-
model class M – e.g., the ε-contamination class is characterized by IP-forecasts for the atoms of the measure space – 
Proposition 4.  Coherence2 of the set of IP-forecasts requires that these lower and upper forecasts are not dominated by 
any more determinate IP model within the model class M, subject to the same IP scoring rule.  
 
However, a distinguishing feature between coherence1 and coherence2, namely that Brier score is incentive compatible 
for elicitation of 2-sided (real-valued) forecasts for events, does not extend to 1-sided forecasts.  That is, according to 
Proposition 5, there is no strictly proper, continuous real-valued IP-scoring rule for events.  However, by relaxing the 
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conditions on scoring rules to permit a lexicographic utility, subject to either of two IP-decision rules that we 
investigate, there do exist strictly proper IP-scoring rules for eliciting closed, interval-valued probability forecasts. 

There are numerous open questions relating to the preliminary work reported in this paper.  We list four topics on which 
we are currently at work. 

1) The central results reported here about IP-coherence2 (Section 3) and IP-incentive compatible scoring (Proposition 6 
of Section 4) are based on Brier scoring, which is the basis of de Finetti’s approach to coherence2.   As we showed in 
[21], each strictly proper scoring rule can serve in place of Brier score to provide a foundation for subjective probability 
based on forecasting rather than on the prevision game.  We conjecture that the positive results reported here about IP-
coherence2 can be duplicated using other strictly proper scoring rules in place of Brier score.    

2) As noted in Section 2, neither coherence1 nor coherence2 constrains, respectively, a called-off prevision for an event 
or a called-off forecast for an event, given a null-event. However, lexicographic expected utility [14] is one approach 
among several others available [7, 16, 28] for improving the treatment of 2-sided conditional probability with called-off 
previsions given a null-event.  (See [2] for a review of some of the open issues.)  Proposition 6 identifies a class of 
lexicographic scoring rules that satisfy IP-propriety with respect to interval valued forecasts for events.  But those 
lexicographic scores do not conform to the structural assumption of the theory of IP-coherence2 developed in Section 3, 
which uses only real-valued scores.    

Can we use lexicographic scoring rules to provide a unified theory that provides both an IP-coherence2 (including 
called-off forecasts given a non-empty event) and an IP-incentive compatible scoring rule? 

3) A different challenge to elicitation, even when probability is determinate, is the problem posed by state-dependent 
utilities.  This arises in the choice of the numeraire that is to be used, either with outcomes of previsions for coherence1, 
or in scoring forecasts for coherence2.  (See [20] for discussion of the problem in the setting of coherence1.)   

Does forecasting afford any advantage over betting in this context and is there a difference also with IP-elicitation? 

4) De Finetti’s theory of coherence is designed to accommodate all finitely additive probabilities.  That is, countable 
additivity is not a requirement of coherence1 or coherence2.  This is achieved by insisting that incoherence, i.e., a failure 
of simple dominance, is achieved using only finitely many previsions or only finitely many forecasts at one time.  In 
other words, a coherent set of previsions or forecasts may be dominated when more than finitely many are combined at 
once, even though they cannot be dominated when only finitely many are combined.  It is interesting, we find, that even 
with determinate probabilities, coherence1 and coherence2 are not equivalent in this regard.  There are settings where 
countably many coherent2 forecasts may be combined and remain (simply) undominated by all rival forecasts, though 
these same previsions may result in a sure-loss when countably many are combined into a single option [25].   

In order to accommodate all finitely additive probabilities, when does IP-coherence2 depend upon the restriction 
that violations of dominance matter only when finitely many forecasts are scored at the same time? 
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Appendix 1 
The Atomic Lower-Upper Probability [ALUP] class.   This IP-class consists of closed, convex sets of probabilities 
defined by lower and upper probabilities for atomic events.  That is an ALUP model is the largest (closed) convex set of 
distributions that satisfy such bounds, where the bounds are achieved by the lower and upper probability values given 
for the atoms of the space.  See [10] for discussion about this IP-class of models.   

IP-coherence2, where rival forecasts are taken from the ALUP class, arises when the forecaster is called upon to give 
lower-and-upper forecasts for each atom, ω, and for the complement to each atom, ωc, in the space.  That is, in order to 
duplicate Proposition 4 for the ALUP class the forecaster is called upon to give 2n-many forecasts when Ω = {ω1, …, 
ωn}.  Example 7 illustrates this. 

Example 7 (a continuation of Example 4):  An illustration of ALUP-coherence2.  We provide 3 forecast sets for the 
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atoms, and their complements in a space defined by  Ω = {ω1, ω2, ω3}.   That is, each forecast set includes IP-forecasts 
for 6 events.  Forecast sets Fj (j = 2, 3, 4) are given as 6 pairs: {pi, qi} for ωi, ωi

c   i = 1, 2, 3.  Each of the corresponding 
3 score sets is comprised by 3 points, corresponding to the 3 states in Ω.  Each point in a score set has 6 coordinates, 
corresponding to the scores for forecasts of (ω1, ω1

c, ω2, ω2
c, ω3, ω3

c). 
 
            ω1              ω1

c                  ω2              ω2
c
            ω3         ω3

c 
F2 =      {{.25, .50}  {.50, .75} {.25, .50} {.50, .75} {.25, .50} {.50, .75}}  

 

S2    =     (.50, .50, .25, .75, .25, .75)   for ω1 
    (.25, .75, .50, .50, .25, .75)    for ω2 
    (.25, .75, .25, .75, .50, .50)    for ω2 
 
              ω1             ω1

c                   ω2              ω2
c
            ω3         ω3

c 
F3 =     { {.20, .45}  {.55, .80}  {.20, .45} {.55, .80} {.20, .45} {.55, .80} }   
 
S3    =   (.45, .55, .20, .80, .20, .80)   for ω1 
  (.20, .80, .45, .55, .20, .80)   for ω2 
  (.20, ,80, .20, .80 .45, .55)}  for ω3 
 
                      ω1               ω1

c                  ω2             ω2
c
             ω3      ω3

c 
F4 =    { {.10, .35}  {.65, .90}  {.10, .35} {.65, .90} {.10, .35} {.65, .90} }  
 
S4    =   (.35, .65, .10, .90, .10, .90)  for ω1 
  (.10, .90 .35, .65, .10, .90)  for ω2 
  (.10, .90, .10, .90, .35, .65)}  for ω3 

 
Forecast sets F2 and F3 are ALUP-coherent.  There do not exist more precise forecast sets from the ALUP-model that 
dominate either of these sets of forecasts. Their score sets lie in the probability simplex for these 6 events. 
 
Forecast set F4 is ALUP-incoherent.  A de Finetti projection of S4 produces a more determinate rival ALUP forecast 
with dominating IP Brier score.  In fact, the projection produces a more informative ε-contamination model that 
dominates.  The respective IP-Brier scores for F4 and for F2 are independent of ω:  For F4 the score is a constant penalty 
of 0.885.  For F2 it is a constant penalty of 0.750. 
 

Appendix 2 
Example  8 – This construction provides a more complicated illustration of Proposition 4 where the fixed point F* of 
the process is a limit of the recursive procedure given in the proof of (4.2).  Let Ω = {ω1, ω2, ω3}.  Forecast sets Fj are of 
the form  {{pi, qi} : for events ωi: i = 1, 2, 3}.  
 F = F0 = { {.25, .60}, {.20, .50}, {.10, .40} }   
 S = S0 = {(.60, .20, .10), (.25, .50, .10), (.25, .20, .40)} 
 
(Step 1)  Project score set S0 to form set  
T1 = { (.6 3 , .2 3 ,, .1 3 ,), (.30, .55, .15), (.30, .25, .45)} 
Form the new forecast and score sets F1, S1 based on the probabilities in set T1 
F1 = { {.30, .6 3 } {.2 3 , .55} {.1 3 , .45} }   
S1 = {(.6 3  .2 3  .1 3 ) (.30, .55, .1 3 ) (.30, .2 3 , .45)} 
 
(Step 2) Project set S1 to form set  
T2 = { (.6 3 , .2 3 , .1 3 ) (.30 5 , .5 5 , .1 5 ) (.30 5 , .2 5 , .4 5 )} 
Form the new forecast and score sets F2, S2 based on the probabilities in set T2 

F2 = { {.30 5 , .63 3 } {.23 3 , .55 5 } {.13 3 , .45 5 } }  
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S2 = {(.6 3 , .2 3 , .1 3 ) (.30 5 , .5 5 , .1 3 ) (.30 5 , .2 3 , .4 5 )} 
 
(Step 3) Project S2 to form set 
T3 = { (.6 3 , .2 3 , .1 3 ) (.30 047 , .55 047 , .13 047 ) (.30 047 , .23 047 , .45 047 )} 
Form the new forecast and score sets F3, S3 based on the probabilities in set T3 
F3 = { {.30 047 , .6 3 } {.2 3 , .55 047 } {.1 3 , .45 047 } }  
S3 = {(.6 3 , .2 3 , .1 3 ) (.30 047 , .55 047 , .1 3 )  
         (.30 047 , .2 3 , .45 047 )} 
(Step 4) Project S4 to form set  
T4  ≈ { (.6 3 , .2 3 , .1 3 ) (.308, .558, .134) (.308, .234, .458)} 
Form the new forecast and score sets F4, S4 based on the probabilities in set T4 

F4 = { {.308, .6 3 } {.2 3 , .558} {.1 3 , .458} }  
S4 = {(.6 3 , .2 3 , .1 3 ) (.308, .558, .1 3 ) (.308, .2 3 , .458)} 
 
Iterate the process which converges to forecast set    
F* = { {.308 6 , .6 3 } {.2 3 , .558} {.1 3 , .458} } 
and score set    
S* = {(.6 3 , .2 3 , .1 3 ) (.308 6 , .558, .1 3 (.308 6 , .2 3 , .458)} 
F* is an ε-contamination model whose IP-Brier score dominates F’s score.  F* has greater informativeness (greater 
determinacy) than forecast F as the hull H(S*) is isomorphic to a proper subset of the hull H(S). 
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