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and Bayes' Theorem 
Teddy Seidenfeld 

1. INTRODUCTION 

In celebration of the 100th anniversary of Fisher's 
birth, I want to raise the subject of fiducial inference 
for our reflection. Shortly after Fisher's death in 1962, 
my teacher and friend, Henry Kyburg, addressed a 
conference on fiducial probability. I find it appropriate 
to begin with some of Kyburg's (1963) remarks: 

I am a logician and a philosopher; I have not 
studied statistics for very long, and so I still very 
quickly get out of my depth in a discussion of the 
technicalities of statistical inference. But I think 
it is important, none the less, for people whose 
interests lie in the area of inference as such to do 
the best they can in reacting to -and in having an 
action upon -current work in that particular kind 
of inference called "statistical." That this interac- 
tion is difficult for both parties is the more reason 
for attempting it. (p. 938) 

My purpose in this essay is to try to assist that interac- 
tion by focusing on the rather vague inference pattern 
known as the "fiducial argument." I hope to show that, 
though it really is untenable as a logical argument, 
nonetheless, it illuminates several key foundational 
issues for understanding Fisher's disputes over the 
status of Bayes' theorem and thereby some of the 
continuing debates on the differences between so-called 
orthodox and Bayesian statistics. 

Begin with the frank question: What is fiducial prob- 
ability? The difficulty in answering simply is that there 
are too many responses to choose from. As is well 
known, Fisher's style was to offer heuristic examples 
of fiducial arguments and, too quickly, to propose 
(different) formal rules to generalize the examples. By 
contrast, among those who have attempted to recon- 
struct fiducial inference according to a well-expressed 
theory, one must single out the following five, in chro- 
nological order: Jeffreys (1961), Fraser (1961), Demp- 
ster (1963), Kyburg (1963, 1974) and Hacking (1965). 
So, instead of beginning with a formal definition, let 
us try to find out what fiducial inference is supposed 
to accomplish and then see whether, in fact, any answer 
to our question can be accepted. That is, first we shall 
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determine whether the goals Fisher set for fiducial 
probability are even mutually consistent. 

A convenient starting place for our investigation is 
the distinction between direct and inverse inference (or 
direct and inverse probability). These terms date back 
at  least as far as Venn and appear often in those 
passages where Fisher attempts to explicate fiducial 
probability, for the reason I will give below. As a 
first approximation, the difference between direct and 
inverse probability is the difference between condi- 
tional probability for a specific (observable) event D 
given a statistical hypothesis S, p(DIS), and conditional 
probability of a statistical hypothesis given the evi- 
dence of sample data, p(SlD). For example, an instance 
of a direct probability statement is, "The probability 
is 0.5 of 'heads' on the next flip of this coin, given that 
it is a fair coin." Here the conditioning proposition may 
be understood as supplying the statistical hypothesis 
S that there is a binomial model (a hypotheticalpopula- 
tion) for flips with this coin, 0 = 0.5, and the event D is 
that the next flip lands "heads." An inverse probability 
statement is, "The probability is 0.4 that the coin is 
fair, given that 4 of 7 flips land 'heads'." Direct and 
inverse inference, then, denote those principles of in- 
ductive logic which determine or, at  least, constrain the 
probability values of the direct and inverse probability 
statements. They would explain the probability values 
0.5 and 0.4, assuming those values are inductively 
valid. 

A maxim for direct inference which is commonplace, 
in so far as any inductive rule can be so described, 
is what Hacking (1965, p. 165) labels the Frequency 
Principle. I t  states loosely that, regarding the direct 
probability p(DIS), provided all one knows (of rele- 
vance) about the event D is that it is an instance of the 
statistical "law" S, the direct conditional probability for 
event D is the value specified in the statistical law S. 
If all we know about the next flip of this coin is that 
it is a flip of a fair coin, then the direct probability is 
0.5 that it lands "heads" on the next flip. 

To this extent, direct probability is less problematic 
than inverse probability. There is no counterpart to 
the Frequency Principle for inverse probability. At 
best, p(S1D) may be determined by appeal to Bayes' 
theorem, p(S ID) a p(D IS)p(S): an inverse inference 
which involves both a direct probability p(D1S) and a 
prior probability p(S). I t  is here that Fisher sought 
relief from inverse inference through fiducial probabil- 
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ity for, as we will see in the next section, his idea 
was to reduce inverse to direct probability by fiducial 
inference. Thus, we have to explore the limits of direct 
inference in order to appreciate fiducial probability. 

Of course, rarely do we find our background informa- 
tion so conveniently arranged as posited by the Fre- 
quency Principle. I may know where the coin was 
minted, or who flipped it last, in addition to knowing 
it is fair. Are these relevant considerations about the 
next flip, given the statistical hypothesis ( S )that the 
coin is fair? I may know that the next flip of this coin 
is an instance of a different statistical law, S', as well 
an instance of S .  I t  may be a flip of a coin drawn from 
urn U (0 = 0.6), where half the coins in U are fair and 
the other half biased (0 = 0.7) for "heads." By the 
Frequency Principle, if all I know about the next flip 
is that it is an instance of St,  the direct probability 
that it lands "heads" on the next flip is 0.6, p(DIS') = 
0.6. What if I know that the next flip is an instance of 
both laws S and St? (H. Reichenbach, an advocate of a 
limiting frequency interpretation of probability, called 
this the problem of the reference class for single 
events.) 

Invariably, these difficulties are resolved by some 
version of a Total Evidence principle. However, com- 
peting versions do not lead to the same results. For 
instance, the usual account of Neyman-Pearson statis- 
tical tests is in terms of direct probabilities of type 1 
and type 2 errors. Likewise, the usual interpretation 
of confidence levels is as direct probabilities that the 
confidence interval covers the (unknown) parameter. 
These familiar probability claims are given in terms of 
direct inference based a privileged reference set of 
repeated trials. But how is the "repeated trial" so privi- 
leged? I. Levi argues (1980, Section 17.2) that the so- 
called orthodox theory involves a limitation, imposed 
before the trial, on the evidence that is available after 
the trial. He expresses this through a distinction between 
features of the data used as evidence (for direct probabil- 
ity statements), in contrast with features of the data 
that are used merely as input to a statistical routine. 

, (A similar distinction, useful for reconciling "orthodox" 
and Bayesian methods, is created using I. J. Good's, 
19'71,Statistician's Stooge.) Which features of the data 
are to serve (post-trial) as statistical evidence for direct 
inference are identified (pretrial) by the pragmatics of 
the ~roblem context, for example, by the repetitions 
which arise in a particular quality control setting. Only 
those statistical laws S valid for this distinguished set 
of repeated trials may be ~used. For example, as in 
the Buehler-Fedderson (1963) problem (cf. Section 3, 
below), it may be that conditional on the sample falling 
in a recognizable subset of the sample space, the cover- 
age probability for a particular confidence interval is 
bounded away from the announced confidence level. 
However, because the extra information about the Sam- 

ple is not accepted as evidence, this analysis does not 
invalidate the unconditional confidence level state-
ment. The Neyman-Pearson direct inference about the 
confidence level is pegged to the reference set of re- 
peated trials through a (pretrial) constraint on which 
features of the statistical sample count as evidence. 

Whereas the Neyman-Pearson resolution to direct 
inference is grounded on a pragmatic choice of eviden- 
tial considerations, Fisher offers an epistemological 
criterion. His criterion (reported below) is a balance 
of what we know and what we don't know. Fisher 
incorporates his views about direct inference into what 
he calls a semantics for probability. The following is a 
succinct expression both of Fisher's dissatisfaction 
with the limiting frequency interpretation of probabil- 
ity and a sketch of his positive theory. 

Remark 

In the quotation below, Fisher alludes to an aggre-
gate or hypotheticalpopulation of, for example, throws 
of a fair die to suggest what the binomial magnitude 
0 = 116 is about; to wit, one-sixth of the hypothetical 
population of throws are "aces." I find Fisher's talk of 
hypothetical populations of value only as a metaphor. 
I t  facilitates the additional language of subpopulations 
and relevant reference sets, which are helpful in fram- 
ing the real problems with direct inference. In a differ- 
ent setting- statistical estimation -Fisher (1973) uses 
the concept of a hypothetical population to justify his 
criterion of Fisher Consistency (see Seidenfeld, 1992). 

Indeed, I believe that a rather simple semantic 
confusion may be indicated as relevant to the 
issues discussed, as soon as consideration is given 
to the meaning that the word probability must 
have to anyone so much practically interested as 
a gambler, who, for example, stands to gain or lose 
money, in the event of an ace being thrown with 
a single die. To such a man the information sup- 
plied by a familiar mathematical statement such 
as: 

"If a aces are thrown in n trials, the probabil- 
ity that the difference in absolute value between 
a/n and 116 shall exceed any positive value E ,  

however small, shall tend to zero as the number 
n is increased indefinitely," 

will seem not merely remote, but also incomplete 
and lacking in definiteness in its application to the 
particular throw in which he is interested. Indeed, 
by itself it says nothing about that throw. . . . 
Before the limiting ratio of the whole set can be 
accepted as applicable to a particular throw, a 
second condition must be satisfied, namely that 
before the die is cast no such subset can be recog- 
nized. This is a necessary and sufficient condition 
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for the applicability of the limiting ratio of the 
entire aggregate of possible future throws as the 
probability of any one particular throw. On this 
condition we may think of a particular throw, or 
of a succession of throws, as a random sample from 
the aggregate, which is in this sense subjectively 
homogeneous and without recognizable stratifica- 
tion. 

This fundamental requirement for the applicabil- 
ity to individual cases of the concept of classical 
probability shows clearly the role both of well- 
specified ignorance and of specific knowledge in a 
typical probability statement. . . . The knowledge 
required for such a statement refers to a well-
defined aggregate, or population of possibilities 
within which the limiting frequency ratio must be 
exactly known. The necessary ignorance is speci- 
fied by our inability to discriminate any of the 
different sub-aggregates having different frequency 
ratios, such as must always exist. (pp. 34-36) 

We have here the ingredients for Fisher's solution to 
the direct inference problem. The knowledge he refers 
to is nothing more than knowledge of some statistical 
law S' (e.g., that the coin is chosen from the urn U) 
which applies to the particular event of interest, D 
(e.g., that the next flip lands "heads"). Then, in order 
to apply the statistical law S' to instance D, as in the 
Frequency principle, one must be ignorant of compet- 
ing laws which apply to the particular D. Unfortu- 
nately, Fisher gives only rules-of-thumb, not a formal 
account of when laws compete. For example, suppose 
we know that D belongs also to a proper subpopulation 
of the statistical law S' and that law S (with different 
statistics) applies to this subpopulation. Then knowl- 
edge of S prevents D from being a random event with 
respect to law S'. But knowledge of S' does not prevent 
D from being a random event with respect to law S. 

Accordingly, if you know that the next is a flip of a 
fair coin (0 = 0.5), that information prevents it from 
being a random flip of a coin chosen from the urn U 
(0 = 0.6), since S embeds the next flip in a relevant 
subpopulation with respect to t h e  statistical law S'. 
Roughly put, only half of the flips from U are flips of 
a fair coin. But the situation between S and S' is 
asymmetric. Knowledge about the larger population 
pertaining to S' does not provide relevant information 
about the next flip once you know (S)it is a fair coin 
which is tossed. 

The lack of a formal theory about "relevant" subpopu- 
lations makes Fisher's semantics for probability seri- 
ously incomplete. What shall we say about a case where 
we know that a specific event is an instance of a 
statistical law S* whose hypothetical population is 
narrower than that for the law S we intend to use, but 
we don't know the statistics for this competing law? 

What if we know this is a flip of a fair coin (S), but 
also it is a flip of a fair coin which stays up for more 
than 3 seconds (S*)-and we don't know the statistics 
for the subpopulation of such fair coin flips? Does 
Fisher's theory prohibit the direct probability of 0.5 
that this flip of the fair coin lands "heads" merely 
because we know (also) that it stays up for more than 
3 seconds, though we have no statistical information 
about such extended flips? 

There are two clear options. Fisher's program may 
be completed by adding clauses on direct inference 
which impose the onus for proof: either (A) on the 
challenges to the claim that D is not a random event 
under the statistical law S or (B) on the defense of the 
claim that D is a random event under the statistical 
law S. Under (A), merely knowing that the coin flip 
lasts more than 3 seconds, alone, does not prevent the 
direct probability based on the statistical hypothesis 
that it is a fair coin. That is, unless one knows that 
such extended coin flips have different statistics for 
landing "heads," the direct inference p(D1S) = 0.5 
stands. Under (B), unless one knows that the subpopu- 
lation of extended flips of a fair coin has the same 
statistics of landing "heads" as the larger population 
of fair coin flips, then the extra information unseats 
the direct inference based on the larger population of 
all fair coin flips. As we shall see, Fisher's fiducial 
argument appears to rely on policy (A): additional data 
are not relevant to a direct inference unless you know 
the rival statistical law governing the subpopulation 
created by the added constraints. (See Kyburg's work 
for a systematic development of this strategy, to in- 
clude the important cases where the agent has only 
partial [inequality] information about population sta- 
tistics.) 

2. A SKETCH OF THE UNIVARIATE 
FlDUClAL ARGUMENT 

According to Fisher, fiducial probability is special 
only by its genesis, not by its content. (He says this 
in numerous places, e.g., Fisher, 1973, p. 59.) That is, 
whatever we call fiducial probability must satisfy the 
mathematical calculus of probability, be that a count- 
ably additive or finitely additive (normed) measure. 
The uniqueness of fiducial probability is, supposedly, 
that it provides statements of inverse probability with- 
out admitting into the inference any (unwarranted) 
"prior" probability for statistical hypotheses, that is, 
without relying on Bayes' theorem to derive inverse 
probability from direct probability and prior probabil- 
ity. More accurately, fiducial inference attempts to 
derive inverse probability in the absence of statistically 
based prior probability. As Fisher (1973, p. 59) ex- 
presses it, a precondition for fiducial inference is that 



361 FISHER'S FIDUCIAL ARGUMENT 

there is insufficient background knowledge to determine 
an initial (or "prior") value for probability about unknown 
parameters by direct inference using, say, a hyperpopu- 
lation. By contrast, for example, a hyperpopulation is 
available in genetics when knowledge of the FO geno- 
types provides a direct probability "prior" for the F1 
genotype. Then, that prior may be used in Bayes' 
theorem with evidence of an Fz phenotype, to deter- 
mine an inverse probability about the F1 genotypes. 

In this respect, the ignorance of "priors" for fiducial 
inference is identical to Neyman's assumption when 
he proposes confidence intervals as a replacement for 
inverse inference. However, unlike the situtation with 
confidence intervals, by Fisher's own claim, fiducial 
probability is to satisfy the same formal conditions as 
any other probability statement. In other words, it is 
fair to ask that fiducial probability satisfies the probabil- 
ity calculus for conditional probability, which entails 
there exists some Bayesian model with a "prior," whose 
posterior probability duplicates the fiducial probabil- 
ity. Of course, Fisher thought such models were mere 
mathematical niceties. Their prior probability is no 
more than a pretense to (imaginary) statistical informa- 
tion about a hyperpopulation for the parameter. 

The following is a succinct statement of Fisher's 
(1973) views on the topic of such hyperpopulations for 
a "prior." 

I t  should, in general, be borne in mind that the 
population of parametric values, having the fidu- 
cial distribution inferred from any particular Sam- 
ple, does not, of course, concern any population of 
populations from which that sampled might have 
been in reality chosen at random, for the evidence 
available concerns one population only, and tells 
us nothing more of any parent population that 
might lie behind it. Being concerned with probabil- 
ity, not with history, the fiducial argument, when 
available, shows that the information provided by 
the sample about this one population is logically 
equivalent to the information, which we might 
alternatively have possessed, that it had been tho-

, 	 sen at random from an aggregate specified by the 
fiducial probability distribution. (pp. 124-125) 

Rather than fiducial probability "being concerned with 
history," to use Fisher's polemical prose, his claim that 
fiducial probability is probability served to justify its 
use in Bayes' theorem for a wide range of inference 
problems: inference problems involving data from 
different experiments, problems involving nuisance pa- 
rameters and problems of prediction. I return to this 
theme in Section 3, below. 

What, then, i s  fiducial inference? How may one infer 
a statement of inverse probability without conceding 
Bayes' method of using a prior probability and Bayes' 
theorem? The short answer is as follows: reduce inverse 

inference to direct inference by manipulating the rele- 
vance conditions for applying the Frequency Principle 
to probability statements for a pivotal variable. Hack- 
ing (1965) and Kyburg (1963) made this logic eminently 
clear. Half a century ago, Jefieys sketched the Bayes- 
ian model for fiducial inference. And almost 35 years 
ago, Lindley (1958) used that model to call Fisher (1973) 
on his bold assertion that fiducial probability was, after 
all, no different in "logical content" than "probability 
derived by different methods of reasoning" (p. 59). Spe- 
cifically, Lindley questions whether fiducial probability 
is no different in logical content from inverse probabil- 
ity derived by Bayes' method. In the following rational 
reconstruction of fiducial inference, I try to clarify how 
close fiducial probability comes to that ideal. 

Let us rehearse a familiar illustration of fiducial rea- 
soning. 

EXAMPLE2.1. Consider the random variable x 
which, according to our background statistical knowl- 
edge, S, follows a Normal, N(p, 1) distribution, but 
where we plead ignorance about the "unknown" mean 
p. Fisher might say that, about the next observation 
x, we know only that it belongs to a "hypothetical 
population" of entities whose x-values are normally 
distributed with unit variance. Prior to observing x, 
given S we have no statistical basis for assigning 
probability to statements about p, for example, 
"p(- 1 Ip 5 1)" is undefined for Fisher. (Expressed in 
other words, we do not know statistics for a hyperpopu- 
lation of normal populations containing this one.) Of 
course, given a statistical hypothesis about p, So: p = 0, 
direct probability about x follows by the Frequency 
Principle, for example, p(- 1 Ix I 1ISO)= 0.68. 

Define the pivotal variable v = (x - p). I t  seems non-
controversial to claim v follows a standard Normal N(0,l) 
distribution, a(.),independent of the unknown mean p. 
(But see the remark, below.) Then, equally evident is 
direct probability about the next value v (corresponding 
to the next value x). That is, from the background statis- 
tical assumption, S, that v - N(0, I), by the Frequency 
Principle we assert p(-1 5 v I11s)=: 0.68. 

Fiducial inference rests on the claim that the same 
direct probability statements obtain for the pivotal be- 
fore and after observing the sample data. Fisher asserts 
that, for example, p(-1 I v 5 11s)=p(-1 5 v 5 
1IS, X) =0.68. Fiducial inference takes knowledge of 
the observed random variable to be irrelevant to direct 
inference about the pivotal variable. Then, given the 
datum, for example, x = 7, since the proposition 
"-1 5 v 5 1" is equivalent to the proposition "6 I 
p I 8," we conclude p(6 5 p 5 81S, x = 7)=: 0.68. Ac- 
cording to fiducial inference, inverse probability about 
the parameter p given datum x is reduced to direct 
probability about the pivotal variable v, all in the 
absence of a statistically based "prior" for p. 
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Remark 

Probability about the pivotal v is trivial for a subjec- 
tive Bayesian who holds a countably additive prior 
over the parameter p, p(p) For such a person, p(u) = 
j,p(vlp)dp(p)= j,@(u)dp(p)= @J(v).However, the first 
equality is not guaranteed when the prior is merely a 
finitely additive probability which, unfortunately, is 
the case when an "improper" prior, for example, Le- 
besgue density, is used. But JefFreys' Bayesian model 
for this fiducial inference requires the "improper" uni- 
form prior probability. Hence, the Bayesian model for 
fiducial inference depends upon an additional premise: 
what Dubins (1975) calls "disintegrability" of probabil- 
ity in the partition of the parameter. As a further 
aside, the interesting treatment of finitely additive 
probability by Heath and Sudderth (1978) builds "disin- 
tegrability" into their definition of coherence. Their 
version of a coherent "improper" prior for p leads to 
the familiar equality (above). A very different way to 
conclude u is distributed as a standard Normal variate 
uses what logicians call "universal generalization" over 
the statistical hypotheses for p, relying on a theory of 
"chance" (see Seidenfeld, 1979, Appendix 9.1). 

Are there ready-made pivotals? Generalize this uni- 
variate Normal N(p, 1) example to continuous, univari- 
ate distributions: where, according to the background 
statistical knowledge, S, the random variable x has 
c.d.f. F(x,0), and density f(x, 0) = aFlax (with respect 
to Lebesgue measure). Then the c.d.f., itself, serves as 
a pivotal since, for each 0, VF = F(x,0) is uniformly 
distributed on the unit interval, VF - U[O, 11.By direct 
inference, ~(vFIS)is uniform on [0, 11. If fiducial infer- 
ence is conducted with-respect to the c.d.f. pivotal up, 
that is ifp(vp1S) =p(vp(S, x), then the induced "inverse" 
probability density for 0 given x, pd(0 IS,x) = -8 Fla 0, 
is advertised by Fisher (1973, p. 74) as the fiducial 
density for 0 given x. Not every univariate setting allows 
fiducial inference, even when there is no "prior" for the 
parameter of interest. I shall defer to Section 4 a 
discussion about when inverting on a pivotal induces 
a fiducial probability. In the interim, let the following 
example serve as a warning that sometimes the datum, 
x, may be relevant to direct inference about a pivotal. 

EXAMPLE2.2. Let background statistical knowledge 
S assert that the random variable x has a uniform 
distribution on the closed interval [O, 01 for strictly 
positive 0, that is, the density f(x, 0) = 110 for 0 < 0, 
0 5 x 5 0 and f(x, 0) = 0 otherwise. Then, given S, the 
direct probability is 112 that VF 5 0.5. Suppose the 
background information S also provides an upper 
bound 0' for 0, 0 5 0'. Though this information does 
not interfere with direct probability for the pivotal VF, 
given S, knowledge of 0"locks the fiducial step as 
P(VFIS)# ~(uFIS,x). This is so because given x, as a 

matter of logic, the pivotal VF has a truncated range, 
0 <XI$' 5 VF 5 I. given x, the pivotal UF cannot be 
assigned a uniform probability on [0, 11: logic dictates 
that the datum x is relevant to the c.d.f. pivotal. 
Hence, (simple) fiducial inference is not valid in this 
univariate problem. 

3. FlDUClAL PROBABILITY AND BAYES' THEOREM 

Fisher's claim that fiducial probability is probability 
becomes the basis for its use in Bayes' theorem to solve 
other forms of statistical inference. Here, I illustrate 
three such applications: inverse inference with data 
of two "kinds," inverse inference involving nuisance 
parameters (multiparameter fiducial inference) and pre- 
dictive inference. 

Data of Two "Kinds" 

Suppose datum x admits fiducial inference about 
parameter 0, but that (independent) datum y (where y's 
distribution also depends only on 0) does not allow 
fiducial inference. For instance, 0 may be continuous 
though y is discrete and there is no acceptable pivotal 
connecting y and 8. (This assertion is explained in 
Section 4, in connection with the requirement of 
smooth invertibility.) Bayes' theorem yields: p($lx,y) a: 
p(y10)p(0lx). Fisher relies on fiducial inference to derive 
the inverse probability term "p(0lx)" and uses it in 
Bayes' theorem in this way, as illustrated in the next 
example. 

EXAMPLE3.1 (Fisher, 1973, Section 5.6). Let x be 
exponential F(x, 0) = 1 - exp{-xO} for 0 < 0, 0 5 x. 
Let y be a binomial count of a successes and b failures 
out of n independent trials, each trial with a chance of 
success p = expi-c$). Then, based on datum x, there 
is an inverse fiducial density pd(01x) = xexp{-xOjd0. 
Let h = xlc. Transformed to express inverse probability 
for p, pd(p1x) = hp" ldp. By direct inference, p(y lp) a 

pa (1- p)b. Hence, with the fiducial probability serving 
-as a "prior" for p in Bayes' theorem, pd(p lx, y) a:pa + 

(1- pIbdp. 

Fiducial Inference with Nuisance Factors- 
the Step-by-step Argument 

Suppose, 6, the parameter of interest, is bound to a 
nuisance parameter 5; p(datal6,{) depends on { (Fisher, 
1973, Section 6.12). That is, there is no satisfactory 
pivotal connecting (a sufficient summary of) the data 
with 6 alone. Instead, let the likelihood factor in two 
components, for example, 

where (g,h) are a jointly sufficient reduction of the 
data with respect to the two parameters. Suppose the 
second factor, p(h I{), supports fiducial inference to 
yield p({lg, h). This corresponds to the claim that, in 
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the absence of knowledge of 6, h summarizes all the 
relevant evidence about {. (The claim makes sense, I 
believe, only in connection with the step-by-step 
method, which affords a Bayesian check for the coher- 
ence of the claim.) Last, suppose that the first factor 
supports fiducial inference for 6 from g ,  given { and h, 
~(613;g,  h).Then these terms may be combined, using 
Bayes' theorem, to yield 

This is Fisher's "step-by-step" method for solving the 
infamous Behrens-Fisher problem. 

EXAMPLE3.2 (Behrens-Fisher problem). Let xi be 
i.i.d. N(p,, a2) (i = 1,. . . , n). Likewise, let yi be i.i.d. 
N(py, ay2) (i = 1, . . . , n). All four parameters are un- 
known, but we are interested in the difference in means: 
6 = (p, - p,). The variances (ox2, a,') are nuisance fac- 
tors. Define { = ax2/ay2,the population variance ratio, 
and let z = sx2/sy2,the sample variance ratio. Last, 
define the quantity 

Then, given 5; there is a simple fiducial inference from 
d' to 6, yielding: ~(6ld',{), as p(d116,{) is a Student's t 
(with 2n - 2 d.f.), centered on the parameter of inter- 
est, 6. Fisher uses a fiducial inference from z to 5; 
yielding p({lz), as p(zl{) has Fisher's F distribution. 
(Here is where Fisher assumes z is sufficient for { in 
the absence of knowledge of 6.) Then these fiducial 
probabilities are combined, using Bayes' theorem: 

~(6ldata)=1,p(6Idt, {)p(llz) dl. 

I t  is important to understand that there can be no 
"direct" fiducial argument duplicating this inference 
about 6 (Linnik, 1963). That is, to appreciate the Bayes- 
ian aspects of the Behrens-Fisher solution, where Bayes' 
theorem is used to integrate out the nuisance parame- 
ter {, let us contrast it with the "step-by-step" fiducial 
method for inference about an unknown Normal mean, 
p, when a is a nuisance parameter. 

EXAMPLE3.3 (Student's t-distribution as a fiducial 
probability). Let xibe i.i.d. N(p, d),with both parame- 
ters unknown, but with p, alone, the parameter of 
interest. The two sample btatistics (Z,s2) are jointly 
sufficient for the two parameters. Recall the likelihood 
for the data factors as follows: 

p(Z,s21p, a2) = p(XIp, a2)p(s2)u2).  

The second term, p(s2/u2), supports fiducial inference 

about the nuisance factor u2, given s2. Fiducially, 
p(a21s2)treats u2 inversely proportional to a x2distribu-
tion (with n - 1d.f.). The first term,p(Zlp, a2), supports 
fiducial inference about the parameter of interest p, 
given Z and a2. Fiducially, p(plZ, u2) is normal N(Z, a2/ 
n). These fiducial probabilities may be used in Bayes' 
theorem to solve for the marginal, inverse probability 
for the parameter of interest, just as in the Behrens- 
Fisher problem: 

p ( ~ 1 Z . s ~ )  da.=/ ~ ( p l b $ ) p ( $ l s ~ )  

This yields the familiar Student's t-distribution (n - 1 
d.f.) as a fiducial probability for p. However, unlike 
the Behrens-Fisher distribution for 6, the t-distribution 
may be derived in a "direct" fiducial distribution using 
the pivotal variable: t = Jn(p -%)Is, which of course 
has Student's t-distribution (with n - 1d.f.). 

Wrongly, I believe, Fisher (1973) asserts that the 
"direct" argument here is available as a simple, fiducial 
inference. He says, 

I t  will be recognized that "Student's" distribution 
allows of induction of the fiducial type, for the 
inequality 

will be satisfied with just half the probability for 
which t is tabulated, if t is positive, and with the 
complement of this value if t is negative. The 
reference set for which this probability statement 
holds is that of the values of p, Z and s correspond- 
ing to the same sample, for all samples of a given 
size or all normal populations. Since Z and s are 
jointly Sufficient for estimation, and knowledge of 
p and a a priori is absent, there is no possibility 
of recognizing any subset of cases, within the 
general set, for which any different value of the 
probability should hold. The unknown parameter p 

has therefore a frequency distribution a posteriori 
defined by "Student's" distribution. (pp. 82-84) 

In describing the "step-by-step" method, using Bayes' 
theorem to solve the joint distribution for (p, a) and 
then integrating out the nuisance parameter a, Fisher 
(1973) writes, 

The rigorous step-by-step demonstration of the 
bivariate distribution by the fiducial argument 
would in fact consist of the establishment of the 
second factor giving the distribution of a given S, 
disregarding the other parameter, p, and then of 
finding the first factor as the distribution of p 

given Z and a. Several writers have adduced in- 
stances in which, when the formal requirements 
of the fiducial argument are ignored, the results 
of the projection of frequency elements using arti- 
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ficially constructed pivotal quantities may be in- 
consistent. When the fiducial argument itself is 
applicable, there can be no such inconsistency. 

I t  will be noticed that in this simultaneous dis- 
tribution p and a2 are not distributed indepen- 
dently. Integration with respect to either variable 
yields the unconditional distribution of the other, 
and these are naturally obtainable by direct appli- 
cation of the fiducial argument, namely that 

is distributed as is t for (N - 1)degrees of free- 
dom, while 

S/u2 

is distributed as is X2 for (N - 1)degrees of free- 
dom. The distribution of any chosen function of p 

and a2 can equally be obtained. (pp. 123-124) 

Alas, Fisher's conclusion about the "direct" argument 
is unwarranted. Using the t-pivotal to shortcut the 
step-by-step argument does not produce an instance of 
fiducial reasoning where direct probability about the 
t-pivotal is unaffected by observed, sample informa- 
tion. True, (2, s) are jointly sufficient for (p, u). But that 
premise is logically inadequate for Fisher's conclusion 
about the impossibility of a recognizable reference set 
for the t-pivotal. There is a recognizable subpopulation 
having statistics that conflict with the t-distribution, 
as we see next. 

EXAMPLE3.3 Continued (Buehler-Feddersen prob- 
lem). Let n = 2, so we have two (i.i.d.) observations 
from N(p, a2). Trivially, there is the direct probability 

for each pair (p, 2 ) .  Likewise, the fiducial "marginal" 
t-probability (1d.f.) satisfies, 

for all samples (XI, x2). Define the statistic u = lxl + 
x2l I 1x1 - ~21. Then, as R. J. Buehler and A. P. 
Feddersen proved (1963), within a year of Fisher's 
aeath, 

for each pair (p, a2). If the observed sample satisfies 
(u I 1.5), doesn't the inequality (3.3) point us to a 
subpopulation with statistics different from that for 
the t-distribution (on 1d.f.), summarized in (3.2)? Given 
(u 5 1.5), is not the fiducid step for the t-pivotal 
invalid? Isn't the evidence (u 5 1.5) relevant to direct 
inference about t: p(t) # p(t1 u 5 1.5)? 

Let me propose a way out of this dilemma for fiducial 
probability, but at the expense of the "direct" argu- 
ment. As Fisher asserts in the second of the conflicting 
quotations above, the step-by-step method is the rigor- 

ous demonstration of fiducial inference for problems 
involving several parameters. That is, to avoid para- 
doxes from relevant reference sets, joint fiducial infer- 
ence has to be related to marginal fiducial inference 
through Bayes' theorem. Thus, Student's t-distribution 
is the marginal, fiducial probability for the unknown 
mean p. But that fiducial probability is not derived by 
a "direct" fiducial argument involving the t-pivotal. 

The proposal to base fiducial inference on the step- 
by-step method is incomplete as a resolution of the 
dilemma without some explanation of Buehler and Fed- 
dersen's relevant reference-set "paradox." The answer 
I propose has no basis in any of Fisher's writings I 
am aware of. In fact, as a mathematical rather than 
statistical response, it is likely Fisher would have ob- 
jected to it just as he vehemently objected to what he 
felt were excessively mathematical theories of statis- 
tics. Nonetheless, what follows is that explanation 
which makes the most sense to me. 

The Buehler-Fedderson phenomenon does not pro- 
duce a contradiction with the step-by-step fiducial ar- 
gument, I propose, because fiducial inference uses a 
finitely and not necessarily countably additive theory 
of probability. Recall, by the late 1930s, JefFreys (1961, 
Section 3.4, pp. 137-147) had shown that the Bayesian 
model for fiducial probability in two-parameter N(p, 2) 
inference uses the "improper" prior density, dp dula. An 
improper prior assigns equal magnitudes of "support" 
to each of a countably infinite partition. For example, 
the uniform, Lebesgue density for a real-valued quan- 
tity p assigns equal magnitudes to each unit interval. 
But there can be no countably additive probability 
which duplicates this feat. Only (purely) finitely addi- 
tive probabilities satisfy the condition that each unit 
interval for p has equal prior probability. Of course, 
there are different ways of representing the improper 
prior that mask this feature: it can be thought of as a 
sigma-finite measure (Renyi, 1955), or as a limit of 
so-called "proper" countably additive probabilities 
(Lindley, 1969). Regardless of how it is described, the 
improper prior behaves like the finitely additive proba- 
bility it is! (See also the discussion by Levi, 1980, pp. 
125-131, and by Kadane et al., 1986.) 

The reason for emphasizing this point is that, unlike 
countably additive probability, finitely additive proba- 
bility must admit what de Finetti called "nonconglo- 
merability." 

DEFINITION(Dubins, 1975). Say that probability p is 
conglomerable in an infinite partition a = {h,} if, for 
each bounded random variable x, 

provided k1 5 Ep[x / ha] 5 k2 (for each element of a), 
then k1 5 Ep[x]5 k2, 

where "Ep[ 1" denotes expectation with respect to p. 

As Dubins (1975) has shown, conglomerability of p 
in a partition a is equivalent t o p  disintegrability in a. 
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However, Schervish, Seidenfeld and Kadane (1984) 
have demonstrated that each finitely additive probabil- 
ity that is not countably additive suffers nonconglo- 
merability of probability (for indicator functions) in 
some countable partition. Hence, Bayesian models that 
rely on improper priors can display nonconglomerabil- 
ity without being inconsistent. 

How does this relate to the Buehler-Feddersen "para- 
dox"? With respect to Jefieys' Bayesian model for 
fiducial inference, consider the conditional probability 

If this conditional probability is conglomerable in the 
(two-dimensional) partition of the unknown parame- 
ters, then (3.3) entails 

If the conditional probability is conglomerable in the 
(two-dimensional) partition of the observed random 
variables, then (3.2) entails 

Together, the conditional conglomerability assump- 
tions make an inconsistent pair. Given (u 5 1.5), p 
experiences nonconglomerability in (at least) one of these 
two partitions. Suppose we opt to make p ( .  I u s 1.5) 
conglomerable in the partition of the data, as we may 
with Jefieys' model. Then there is no warrant for using 
the relevant subset argument with the t-pivotal, based 
on direct (conditional) probabilities of the kind in (3.3). 
Moreover, under the same model, we may have p ( . )  
unconditionally conglomerable in both partitions! (See 
Heath and Sudderth, 1978. Thus the event (u 5 1.5) 
has prior probability'o in JefFreys' model.) In short, 
there is a consistent formulation of fiducial inference 
which saves the step-by-step method, leading to the 
marginal fiducial t-distribution for p and which, at the 
same time, places no weight on the existense of relevant 
subsets for direct inference in the form (3.3). What 
more than that can be asked in defense of Fisher's 
theory against the Buehler-Feddersen "paradox"? 

Remark 

To the best of my knowledge, the closest Fisher 
comes to recognizing the finitely additive nature of 
fiducial probability is in one of his discussions of the 
Behrens-Fisher significance test (Fisher, 1973, p. 100). 
There he observes that, given the null-hypothesis, the 
announced significance level for his test may be greater 
than the so-called "coverage!'probability at each value 
of the unknown (nuisance parameter) variance ratio. 
Only at the limiting variance ratios (of 0 and w) is the 
coverage probability equal to the significance level, 
being smaller for each point in the nuisance parameter 
space. Hence, only with an improper prior over the 
nuisance parameter, which agglutinates all its mass at 

the two endpoints of the parameter space, can the 
average coverage probability equal the announced sig- 
nificance level. 

Fiducial Prediction 

Prediction offers a third variety of fiducial inference 
supported by using fiducial probabilities in Bayes' theo- 
rem. Suppose we observe xl - N(p,1)and we want to 
predict an (independent) x2 - N(p, l ) ,  from the same 
hypothetical population. Of course, there is the "direct" 
pivotal argument: let y = (xz - xl) and y - N(O,2). 
However, if we are to incorporate these predictions 
with our fiducial inferences about p, then the following 
use of Bayes' theorem provides the so-called "rigorous'' 
argument. The joint likelihood factors: p(x1, x2(p) = 
p(xllp)p(xzlp). Bayes' theorem leads to the result 

~ ( x z l x l )a ~ p ( x 2 1 ~ l ~ ( ~ l x l ldp. 

Use the fiducial probability p(p(x1) in this consequence 
of Bayes' theorem, that is, where the conditional proba- 
bility p(plxl) is as p - N(x1,l). The result is in 
agreement with the "direct" pivotal conclusion. Fisher 
(1960) gives the same analysis for a more complicated 
case of normal prediction when both p and g2 are 
unknown. That problem involves the joint fiducial pos- 
terior for (p, u2) given an observed sample which, then, 
is integrated out to yield the fiducial prediction for a 
second, independent sample from the same population. 

4. CANONICAL PIVOTALS 

When may the fiducial argument be applied to a 
pivotal variable? When may the observed data be irrele- 
vant to direct inference about a pivotal? If univariate 
fiducial probability using the c.d.f. pivotal has a Bayes- 
ian model, that is, if -8FIaO coheres with Bayes' 
theorem, Lindley (1958) answered the question. Spe- 
cifically, within a fixed exponential family, combine a 
fiducial probability induced by datum xl for unknown 
0 with the likelihood for independent datum xz given 0, 
using Bayes' theorem, to obtain a posterior probability 
pl(0lx1, xz). The probability pl agrees with pz(Oly), a 
direct fiducial probability for 0 given y (where y is a 
sufficient statistic for the composite data) provided 
the problem admits a transformation to a location 
parameter. 

In this section, I want to suggest a Fisherian justifi- 
cation for a restriction on pivotal variables that insures 
the minimal coherence of fiducial probability afforded 
by Lindley's result. Assume a one-dimensional continu- 
ous, parametric model for datum x, with density f(x 10). 
Let v = g(x,0) be a pivotal, that is, a variable whose 
distribution is determinate without knowing the pa- 
rameter 0. If knowledge of x is to be irrelevant to direct 
probability for v, and for this to induce a well-defined 
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fiducial density on 8, then (Tukey, 1957) the following 
three are necessary: (i) that v has the same range for 
each possible value of x; (ii) that v is 1-1, with single 
valued inverse; and (iii) this inverse is continuous with 
continuous derivatives. Tukey calls a pivotal smoothly 
invertible when it satisfies these requirements. Smooth 
invertibility is equivalent to conditions that Fisher (1973, 
pp. 73-74 and p. 179) called for. Evidently, Example 
2.2 involves a failure of clause (i), which helps to explain 
why the fiducial argument does not apply there. 

Smooth invertibility of a pivotal does not suffice for 
coherence of fiducial inference, however, as illustrated 
by Lindley's (1958, p. 229) counterexample or Good's 
(1965, Appendix A). With motivation to follow in due 
course, define pivotal v to be canonical provided it is 
smoothly invertible and its distributionp(v) is the same 
as the conditional distribution p(x lo*) of the observable 
x for some value of the unknown parameter 0 = O*. 

In advance of proposing a justification for this added 
constraint on pivotal variables, examine the following 
illustrations of canonical pivotals for several of the 
fiducial inferences used elsewhere in this essay. In each 
case, Tukey's condition of smooth invertibility is easily 
verified. 

EXAMPLE4.1 (Normal mean). Let x - N(p,1).Define 
pivotal v = (x - p), so v - N(0,I). That is, v is 
canonical for p* = 0. 

EXAMPLE4.2 (Exponential distribution). Let c.d.f. 
F(x,0) = 1 - exp{-x0) for positive x and 0. Define 
pivotal u = x0, so v is exponential with parameter 1. 
That is, v is canonical for 0* = 1. 

EXAMPLE4.3 (Uniform distribution). Let c.d.f. 
F(x,q ) = xi0 for positive 0 and 0 5 x 5 0. Let v = F, 
the c.d.f. itself. Then v is canonical for 19" = 1. Note 
that, with an appeal to the step-by-step method, this 
pivotal provides a fiducial solution to the problem of 
Example 2.2. Treat the information about the upper 
bound 0"s evidence for conditioning. Then, p [O lx, 
(6' I0'11 is simply the conditional probability derived 
from the fiducial probability p(O/x). 

' EXAMPLE4.4 (Normal variance). Suppose s2 is the 
sample variance of n, i.i.d. normal N(p, 2)observations. 
Let the pivotal v = s21a2. Then v has a x2 distribution 
(with n - 1d.f.), and v is canonical for a* = 1. 

Remark 

The fiducial argument associated with Example 4.4 
is one of the steps used in the step-by-step fiducial 
inference for the two-parameter Normal problem of 
Example 3.3. This "step" raises again the knotty ques- 
tion of how to justify the claim that s2 is sufficient for 
a2 in the absence of prior knowledge of p. A similar 
problem was pointed out in connection with example 

3.2. Note, too, that if p is known the pivotal for fiducial 
inference about a2 is not s21a2 since, then, s2 is not a 
sufficient statistic of the data for a2. Instead, if p is 
known, the fiducial inference uses the (sufficient) sam- 
ple sum-of-squares around p. 

There are two justifications for the condition that 
pivotals be canonical, a Bayesian reason and a Fish- 
erian reason. First, regarding Bayesian models for fi-
ducial inference, in the setting considered by Lindley 
canonical pivotals are coherent. That is, with canonical 
pivotals in the exponential family, the inference prob- 
lem can be transformed to a location parameter. (See 
Seidenfeld, 1979, Appendix 9.3.) Second, fiducial infer- 
ence with canonical pivotals supplies a link between 
(Fisherian) tests of significance and fiducial probability. 

As early as 1930, in his first attempt at fiducial 
inference involving the correlation of a bivariate nor- 
mal population, Fisher proposed "fiducial intervals" as 
sets of unrejected null-hypotheses (Fisher, 1930, p. 533). 
Significance tests remain as popular in applied statis- 
tics as they are enigmatic to Bayesian inference. None- 
theless, since fiducial inference with canonical pivotals 
reduces to inference for a location parameter, there is 
a simple tie among fiducial probability, likelihood and 
significance levels. 

Suppose, in location form, significance levels are de- 
termined by a so-called probabilistic discrepancy rank- 
ing-to use the language of H. Crambr (1946). That is, 
call a sample outcome 01 more discrepant with the (null) 
hypothesis H ~ othan sample outcome 0 2  if and only if 
p(o2100)<p(olI00). This ordering makes outcomes "rarer" 
under an hypothesis inversely proportional to their 
probability given that hypothesis. (Recall Fisher's 
[I9731 interpretation of a significance test as conclud- 
ing, 'Either an exceptionally rare chance has occurred, 
or the [null hypothesis] theory of random distribution 
is not true," p. 42.) I t  corresponds to Fisher's (1973, 
Section 4.4) discrepancy ranking for his "exact" test for 
independence in contingency tables. Likewise, identify 
the significance level of an outcome o, for an hypothesis 
H, as the (conditional) probability of the set of out- 
comes as discrepant as o given H. 

We may use the probabilistic discrepancy ranking 
also to predict outcomes of the pivotal variable. That 
is, with probability 0.95, we predict there will not be a 
pivotal outcome with significance level as low as 0.05. 
If we retain this "fiducial prediction" in the face of the 
observed datum, we create a set of parameter values 
with fiducial probability 0.95. These parameter values 
correspond to just those "null" values for which the 
observed datum is not discrepant at the 0.05 signifi- 
cance level (or less). Also, since the prior for the Bayes- 
ian model of fiducial inference is uniform (when in 
location parameter form), this set is the 0.95 fiducial 
probability set of "most likely" hypotheses, given the 
datum observed. 
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EXAMPLE -4.5 (Normal, fiducial intervals). Let x 
N(p, I), with canonical pivotal v = (x - p), and so v -
N(0,l). Under the probabilistic discrepancy ranking 
for outcomes, the 0.05 significance level for hypothesis 
H:p = k, is (approximately) the set {x: Ix - kI > 2). 
Likewise, a prediction about LJ,using the same index 
of discrepancy, is p{-2 5 v 5 2) = 0.95. The fiducial 
prediction about v, then, is p{-2 5 v 5 2 1 x) = 
0.95. But this fiducial prediction yields a 0.95 "fiducial 
interval" of p values coinciding with the set of values 
{p:x - 2 5 ,u 5 x + 2) of hypotheses which are not 
significant at the 0.05 level (or less). As is well known, 
this interval also results from a likelihood ratio test. 
In fact, this agreement between fiducial intervals and 
significance tests requires, only, that "fiducial predic- 
tion" for the canonical pivotal be based on the same 
discrepancy index as is used to determine significance 
levels for the statistical hypotheses. In particular, the 
probabilistic discrepancy index is useful, in addition, 
for establishing the tie to likelihood ratio tests for 
location parameters. 

5. NON-BAYESIAN ASPECTS OF FIDUCIAL 
INFERENCE AND CONCLUSION 

The fiducial argument displays its non-Bayesian 
character through reliance on the sample space of possi- 
ble observations to locate its Bayesian model. That is, 
the prior for fiducial inference may depend upon which 
component of the likelihood is used to drive the fiducial 
argument. 

EXAMPLE5.1 (Inconsistent fiducial inferences using 
Bayes' theorem). Let x - N(p,1)and, independently, 
let y - N(v, I), where p = v3. Such variety of data 
might arise by using different measurement techniques 
for the same (theoretical) unknown parameter. How- 
ever, because p and v are not linearly related, there is 
no real-valued sufficient statistic for the pair (x, y)- 
they are minimally sufficient by themselves -and Lind- 
ley's result does not apply. 

' 
The joint likelihood factors are as follows: 

so there is the opportunity for using Bayes theorem 
with a fiducial probability based on (either) one of these 
factors: 

and 

However, contrary to Bayes' theorem, the inverse fidu- 
cial probability, p(plx, y), depends upon which factor 
of the likelihood is used for fiducial inference. This is 

readily understood in terms of Jefieys' Bayesian model 
for the fiducial argument. When we create p(ply) by 
fiducial reasoning, we use the canonical pivotal (y - v) 
whose Bayesian model requires a uniform ("improper") 
prior over v. When, instead, we createp(p1x) by fiducial 
reasoning, we use the canonical pivotal (x - ,u) whose 
Bayesian model requires a uniform ("improper") prior 
over p. Because p and v are nonlinear transformations 
of the same quantity, it is impossible to have a uniform 
distribution simultaneously over both. 

This fault in fiducial inference, then, is yet another 
version of a very old problem with Laplace's Principle 
of Insufficient Reason. If "ignorance" over a set of 
possibilities is to be represented by a uniform probabil- 
ity, to capture the symmetry which "ignorance" entails, 
then we get mutually inconsistent representations of 
the same state of "ignorance" merely through an equiv- 
alent reparameterization of the set of possibilities. 
Both p and v parameterize the same set of possibilities. 
Through the lens of Jefieys' Bayesian model, we see 
where the fiducial step leads Fisher's assumption of 
prior ignorance into the paradoxes of Insufficient Rea- 
son. That is to say, making the data irrelevant to direct 
probability for the pivotal conflicts with Fisher's claim 
that there is no prior probability over the parameter. 
The contradiction is not that some "prior" is required 
for a Bayesian model of fiducial inference. Rather, it is 
using fiducial probability in Bayes' theorem that leads 
to a contradiction about which "prior" represents the 
same state of ignorance. 

To be fair to Fisher, this problem is not his alone. 
Example 5.1 is a challenging exercise for a wide variety 
of (what Savage called) "necessitarian" theories: theo- 
ries that try to find privileged distributions to repre- 
sent "ignorance." The Example 5.1 applies to Jefieys' 
(1961, Section 3.10) theory of Invariance, which uses 
Information theory to fix symmetries preserved in a 
prior. I t  applies to Fraser's (1968) group theoretic, 
Structural Inference. And it applies to Jaynes' (1983) 
program of Maximum Entropy. 

In his 1957 paper, "The Underworld of Probability," 
Fisher proposes a modified fiducial argument with in- 
equalities in place of equalities of probabilities, for 
example, fiducial conclusions of the form p(0 r 0) > 
0.5 to replace statements like, p(0 r 0) = 0.5. This idea 
relates to current research using sets of probabilities, 
rather than a single probability, to represent an induc- 
tive conclusion. Can ignorance be depicted by a large 
set of prior probabilities? Explicit connection of this 
approach with fiducial inference is found in A. P. Demp- 
ster's (1966) work and in H. E. Kyburg's (1961, 1974) 
novel theory. Perhaps it is premature to say we have 
seen the end of the fiducial idea?! 

In the conference on fiducial probability (from which 
I quoted Kyburg's remarks to begin this paper), Savage 
(1963) wrote: 
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The aim of fiducial probability. . . seems to be 
what I term "making the ~ a ~ e s i a n  omelette with- 
out breaking the Bayesian eggs." (p. 926) 

In that sense, fiducial probability is impossible. You 
cannot reduce inverse to direct inference. As with many 
great intellectual contributions, what is of lasting value 
is what we learn trying to understand Fisher's insights 
on fiducial probability. His solution to the Behrens- 
Fisher problem, for example, was a brilliant treatment 
of nuisance parameters using Bayes' theorem. His in- 
stincts about "recognizable subpopulations" led to 
work on so-called relevant reference sets, a subject of 
continuing research even from the "orthodox" point 
of view. And, exploration of multiparameter fiducial 
inference helped to expose puzzles of improper priors -
an area still ripe with controversy (Seidenfeld, 1982). 
In this sense, "the fiducial argument is 'learning from 
Fisher"' (Savage, 1963, p. 926). So interpreted, it cer- 
tainly remains a valuable addition to the statistical 
lore. 
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