T. SEIDENFELD

R. A. FISHER ON THE DESIGN OF EXPERIMENTS
AND STATISTICAL ESTIMATION

0. INTRODUCTION AND OUTLINE

On this occasion of the centenary year of Fisher’s birth, my purpose in
this talk is to consider the relation between two of Fisher’s major
contributions: his theory of experimental design and his theory of
statistical estimation. It is no coincidence that each of Fisher’s three
principal books on statistics ends with a substantial chapter on statis-
tical estimation:

Statistical Methods for Research Workers (SMIRW) 1925 — 14th

ed. 1970; |

The Design of Experiments (DoE) 1935 — 8th ed. 1966;

Statistical Methods and Scientific Inference (SM&MI) 1956 — 3rd

ed.1973. | '
The thesis of my presentation is that Fisher linked experimental design
and estimation through his technical account of (Fisher-) Information.
In particular, improvements in an experimental design, e.g., better
controls, blocking, or other factorial restrictions, may be quantified by
an increase in the Information provided by estimates derived from the
experimental data.

In Section 1, I sketch Fisher’s theory of estimation with an eye on
explicating the role Information plays in resolving choices of rival
estimates derived from a sample. As an illustration of this approach, I
show how Fisher’s y2-significance test for ordinary contingency tables
may be decomposed to reveal that Information justifies maximum likeli-
hood estimation. The same example indicates the importance Fisher
placed on the principle of ancillarity, to wit: conditioning on ancillary
data. In Section 2, I discuss the application of Fisher Information to
questions of experimental design, and illustrate how added controls (in
matched pairs) lead to data with greater Information. The presentation
concludes with a brief discussion of one difficulty in this reconstruction
of Fisher’s use of Information: the problem of randomization. In estima-
tion it is to be avoided (as a result. of the anciliarity principle), yet more
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than anyone else Fisher is responsible for the theory of randomized
experimental design. How is this conflict to be resolved?

1. INFORMATION AND FISHER’S THEORY OF ESTIMATION —
WITH AN APPLICATION TO 2 X 2 CONTINGENCY TABLES

In his ground-breaking 1922 and 1925 papers on estimation, Fisher
offers formal criteria for determining the adequacy of a statistical
estimator. In particular, the arguments he gives press for supremacy of
maximum likelihood estimation. In rough form, these and later versions
of his theory are orgamized into a hierarchy of criteria, a sequence of
ever finer sieves to distinguish among rival estimates. Those which pass
the simpler tests (e.g., for “consistency”) are subjected to the heightened
scrutiny of more refined tests (e.g., for “efficiency”). But what is the goal
of estimation? How are the test criteria justified? The key to answering
these questions is that for Fisher an estimate is, first of all, a statistic —
a reduction of data. That is, an estimate is appraised as a summary of
evidence, not as a “guesstimate” of some unobserved quantity.

The first requirement in estimation is Fisher’s criterion of consis-
tency. (Fisher-) Consistency of an estimate identifies the quantity (the
parameter) about which the summary is directed. It finds its mature
formulation (Fisher, 1956, §6.2) as follows:

DEFINITION. A (Fisher-) Consistent Statistic is a function of the
observed frequencies which takes the exact parametric value when for
these frequencies their expectations are substituted.

Suppose, for example, the (i.i.d.) N data are categorial, each occupying
one of m cells, with probability p; for the jthecell (j = 1,..., m).
Denote the observed cell frequencies by a/N, where a; is the jth cell
count. Consider a (linear) statistic A of the form A = X .¢a;, for known
.. constants ¢; (j = 1, ..., m). If we substitute for the cell counts their

~.expected values (Np;), we obtain an estimate A/N = X;c;p;, which (by
definition) is a consistent estimate of this (linear) function of the cell
probabilities. For instance, it might be that, as with data relating to the
genetic linkage between two characteristics, the parameter of interest,
0, satisfies 82 = Z.c;p.. Then J(A/N) is a Fisher-consistent estimate of
0. However, the same data may suggest numerous (Fisher-) consistent
estimators for the same parameter of interest.
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ILLUSTRATION (SMIRW, §53). Corresponding to estimation of a
linkage parameter, 0 < 6 < 1 (6 = 0.5 for independence between the
genes), with four cells having respective probabilities of occurrence on
each trial: {(2 + 6%)/4, (1 — 6%)/4, (1 — 6%)/4, 6*/4}, then the following
three all are Fisher-consistent estimates of 6.

Estimator,: J[(a, + a, — a, — a;)/N|

Estimator, (the maximum likelihood estimate): the positive solu-

tion to

a,/NQ2+ 6+ a,/NO*=(a;+ a,)/ N(1 — 6%
Estimator; (the minimum y? estimate): the positive solution to
ai/N* (2 + 6%+ ai/N?*0* = (a} + a)/N*(1 — 6%)~.

What is the reason for insisting on Fisher-consistency of an estimate?
The answer lies in Fisher's semantics (that is his “theory”) of prob-
ability. To assert that the data are an (i.i.d.) sample of NV according to
the parametrized distribution p(@) is to require (among other condi-
tions) that the “hypothet:cal” population from which the sample is taken
has cell frequencies given by distribution p(6) (j = 1, , m). More-
over, the parameter is identified by these population quantities Thus, a
Fisher-consistent estimator for a parameter § meets the quite minimal
condition that, when applied to the population itself, the estimator
recovers the quantity € from such an idealized sample. In that sense,
the estimator summarizes the (idealized) evidence of the whole popula-
tion by the parametric quantity of interest.?

The next two, closely related criteria by which estimators are
assessed involve Fisher’s concept of statistical Information. Formally,

DEFINITION. The (expected) amount of Information about 6,
Ig[xy, . . ., x5), in aniid. sample of N from the distribution p;(8) is

(5
-E [ aBz (log Pi)]

where the expectation is over all possible samples, taken with respect to
- the distribution p;(#). Information is additive for independent samples,
and the Information in a statistic derived from a sample is always
bounded above by the Informatlon in the sample as a whole (Fisher,
‘ 1925a)
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Not surprising, Information serves as a basis in Fisher’s theory for
discriminating among consistent estimators. Besides consistency, a good
estimator 7 is to be an efficient summary of the data from which it is
derived. More precisely, with increasing sample size, the ratio of the
amount of Information in 7, to the amount of Information in the
sample of N from which it is calculated should approach unity:

DEFINITION. Estimator T is (1st order) efficient if limy, _. , I,[T,] +
Llxy,. .., xy|=1.

Among the three consistent estimators presented in the gene-linkage
illustration (above), the maximum likelihood and the minimum chi-
square estimation are efficient. However, the first estimator has an
efficiency increasing with the value of the parameter of interest. For
example, its efficiency is only about 60% when the two genes are
independent (6 = 0.5).

In order to motivate the final criterion for estimates that I will
discuss, consider two statistical extremes with respect to the adequacy
of a statistic in summarizing a data set.

DEFINITION. A statistic 7(X) calculated from a sample x is sufficient
for the parameter 6 provided that p(X| 7, 8) = p(X] T), independent of
6.

DEFINITION. A statistic T(X) calculated from a sample X is ancillary
for the parameter 6 provided that p(7] 8) = p(T), independent of §.

Either by Bayesian or likelihood principles, a sufficient statistic con-
serves all the relevant evidence (about @) in the sample from which it is
derived, whereas an ancillary statistic is irrelevant to 6. From the stand-
point of (Fisher) Information, when T(X) is sufficient for 6, I,[X] =
I[T); T preserves all the relevant evidence in the sample. Likewise,
when T is ancillary for 6, I,[T] = 0; there is no relevant information
contained in an ancillary quantity. Thus, in the case of ancillary quantity
T, the statistical analysis may be carried out given 7. For example, often
it is assumed that sample size, N, is chosen independent of the
unknown quantity of interest. Then, N is ancillary and the analysis
proceeds with N a known constant.?

Much of Fisher’s attention (particularly in his 1934 paper, “Two New
Properties of Mathematical Likelihood’) is devoted to establishing the
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supremacy of maximum likelihood estimation [ml.e]. At first (1922) he
thought the m.Le. is sufficient. He weakened his claim (1935, §3) to say
that the m.l.e. is sufficient whenever a sufficient statistic exists, and that
by conditioning on an ancillary statistic the m.l.e. preserves the greatest
quantity of Information that can be summarized in a statistic.? In order
to see what Fisher had in mind, recall his somewhat controversial
treatment of contingency tables.

ILLUSTRATION. For simplicity, let us attend to the elementary case
of a 2 X 2 table. Consider data from flips of two coins, summarized in
the table below, where we are concerned about the hypothesis that the
coins have a common bias.

2 X 2TABLE
heads tails
coin-1 a ‘ b a+b=n,flips
coin-2 c d ¢ +d =n,flips
a + c heads b +d tails n, + n, = N flips total.

Let 6, be an hypothesized value for the common bias of the two coins.
Then the x’-test for independence (with 2-degrees of freedom) is just
the sum of the two, separate 1-degree of freedom y2-tests for the two
samples (of sizes n, and n,, respectively) about the coins:

x% = (a - Bonl)z/eonl + (b - [1 - BO]HI)Z/[l -— 90]"1
+ (¢ — Oyny)?/ Gyn, + (d — [1 — GJny)¥/[1 — Oy)n,.

Fisher’s controversial proposal for the y2-independence test when 6, is
unknown is to substitute the mJl.e. under the “null” hypothesis, to replace
6, with the quantity (a + c)/N, resulting in a x? test with 1 degree of
freedom. What connection is there between this use of the maximum
likelihood estimate in the x? test and the importance that estimates
conserve Information? The answer is both subtle and rather surprising.

Significance tests offer a rudimentary form of (Fisherian) statistical
analysis against more sophisticated Fisherian tools, e.g., using the
likelihood function or, in the special circumstances where it applies,
using fiducial inference to relate data to hypotheses. Significance tests
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are rudimentary in their conclusion — “Either a rare event has occurred
or the ‘null’ hypothesis is false.” However, to offset this weakness,
Fisher argues that significance tests may be performed even when the
space of alternative hypotheses is vaguely specified — unlike the
conditions for likelihood or fiducial reasoning,

What makes an outcome “rare”? One scheme for making sense of
Fisher’s idea (well stated by Cramér, 1946) is to introduce a discrep-
ancy ranking D on the sample space of possible outcomes Q, D: Q —
‘R. The intended meaning is that outcomes with higher discrepancy are
“rarer” under the null hypothesis. Then, the significance level attained
on a trial is the probability (given A,) of obtaining a discrepancy at least
as great as that observed.

With multinomial data, Fisher (SMfRW, §21.02) favored the “exact
test,” where discrepancy is inversely related to the probability of cell
counts. Call this the probabilistic discrepancy ranking, D,. That is, with
mcellcounts, a;(j =1, ..., m),Z.a;= N, then

Dy{a}=[(N! + gy I1,p] .

Asymptotically, for increasing sample size, the probabilistic discrepancy
ranking agrees with the y2-discrepancy ranking (on m-1 degrees of
freedom), D,.; where outcomes are given a D,. discrepancy according
to their y? values. Hence, with categorical data, y? gives a convenient
approximation to Fisher’s “exact” significant test.

The controversial aspects of Fisher’s treatment of independence tests
in contingency tables stems from his claim that the analysis should take
the marginal totals as given. That is, Fisher treats the 2 X 2 tables as
though the three quantities, N, n,, and a + ¢ are ancillary.’ In the
illustration with the two biased coins, it is commonplace to assume that
the sample sizes (n, and n,, hence also N) are irrelevant to inference
from the data. The assertion that a + ¢, too, is uninformative about the
null hypothesis (of independence) is without foundation. Clearly, it is
false for extreme cases, e.g., whena + c=0.

However, if we grant Fisher’s assumption, that the marginal totals
give no relevant information in the test of the null hypothesis (that the
coins are equally biased), then the “exact” test assumes a convenient
form (independent of the value 6, of the common bias). Then, given the
four marginal totals, Dp({a, b, ¢, d}) = [alb!c!d!]. How does this
compare to the D,. discrepancy ranking for the same null hypothesis?
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In particular, what of Fisher’s use of the mle. in computing the 1-
degree of freedom x?2?
The answer is contained in a decomposition of ¥2. Recall,

x3=(a—6,n)/6n + (b—][1—6]n)Y/[1— Gn
+(c— 90”2)2/00”2 + @d-N1- 30]"2)2/[1 — G)n,.

By some simple algebra,

= [6,—(a+c)/NI* N + 61— 6,)
+ (mn, + N){a/n — c/mf* + [6,(1 — 6,)]. *]

Write the second summand as Q% = (mn,){a/n, — c/m}? + [NO,(1 —
8,)] It is the negative exponent in the asymptotic (normal) density for
the difference in sample “means.” That is, asymptotically, a/n, and c¢/n,
are independently a bivariate normal pair with a/n;, normal N(6,,
6,(1 — 6,) + my), and ¢/n, normal N(6,, 6,(1 — 6,) + n,). Hence, the
quantity (a/n;, — c¢/m,) is normally distributed N(0, 6,(1 — 6)N +
mn,). Thus, Q> provides the “exact,” probabilistic discrepancy for a
significance test of the hypothesis that the coins are equally biased,
using the sample difference in means as the test statistic. By Fisher’s
assumption that the marginal totals are irrelevant, this statistic exhausts
the data.’

The “nuisance” parameter (6,) appears in Q2 as part of the variance
term; however, it may be removed by “Studentizing” the unknown
Normal variance. Here is where the choice of estimate for 6, plays a
role in the decomposition of x2. The left hand summand in [¥] is easily
recognized as [6, — (a + ¢)/NJ* Iy [N], where I, [N] denotes the Fisher -
Information about a binomial parameter contained in a sample of size
N. Upon adopting an estimate T for 8, we see that the left hand
summand in [¥] becomes: [T — (a + ¢)/N]* N = T(1 — T). This term is
positive for all estimates, except when T is the m.le for 6§, that is,
except when T = (a + ¢) + N. Thus, the decomposition [*] of x?
provides a way of distinguishing among (1st order) efficient estimators.
In short; the left hand term, [T — (a + ¢)/N]* N + T(1 — T), indicates
the excess y? discrepancy that results from using an estimator other
than the m.le. For example, though total 2 is reduced by using the
‘minimum %2 estimate compared with the m.le for 6, the minimum 2
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estimate yields a test of significance with a distorted discrepancy in
comparison with the “exact” (asymptotic) test. In fact, Fisher uses a
similar decomposition of x2 in his discussion of rival (Ist order)
efficient estimates (SMfRW, §57, especially Figure 12).” Thus, we have
arrived at one of Fisher’s arguments for the supremacy of maximum
likelihood estimation, based on Information, understood as a response
to the challenge of data reduction without loss of relevant information.

2. INFORMATION AND THE DESIGN OF EXPERIMENTS
2.1. Control and Precision

Allow me to begin the second part of my talk with a typical “horror”
story about the frustration that statisticians experience when they are
called on to consult in “data analysis.” A Professor and Graduate
student from the Agriculture Division of a noted institution appear at
our statistician’s door with reams of data from an experiment concern-
ing the (multi-attnibute) yield of two varieties of corn. Their data have
been carefully collected and recorded. But our satistician is at his wit’s
end. Alas, test variety 1 of corn was planted on field A, test variety 2 of
corn was planted on field B, and the two fields are not alike! If only the
researchers had consulted on the design first. With a few experimental
controls their results could have been more revealing even at half the
sample sizes!
Fisher [1962] expresses the same problem this way.

When, a little more than 25 years ago, I first attempted a systematic exposition of the
subject, known as the Design of Experiments, it is no very grave confession to avow
that I did not fully understand the position among the statistical sciences of this new
discipline. My approach at that time was frankly a technological one. As a statistician I
had often set myself the task of analyzing experimental data, and was much concermed
with those improvements in statistical methods which promised to make such analysis,
. more thorough and more comprehensive. Technically, I could see that some methods
were superior to others in the concrete sense of extracting from the data more
‘information’ on the subject under enquiry, and therefore of leading to estimates of
higher precision, and to tests of significance of greater sensitivity. And so it was in this
atmosphere, borne in upon me that very often, when the most elaborate statistical
refinements possible could increase the precision by only a few per cent, yet a different
design involving little, or no additional experimental labour, might increase the
precision two-fold, or five-fold or even more, and could often supply information in
addition on relevant supplementary questions on which the original design was com-
pletely uninformative.
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It was thus clear at an stage that there were quantitatively large technological gains
to be obtained through the deliberate study of Experimental Design, and that these
gains were to be harvested by making the plan of experimentation and observation
logically coherent with the aims of the experiment, or, in other words with the kind of
inference about the real world, which it was hoped that the experimental results would
permit.

Fisher’s thesis here is that when an experiment is improved, for
example, by introducing better controls or other design considerations,
the resulting data contain more Fisher-Information.

ILLUSTRATION. The research goal is to investigate the difference &
between two experimental treatments. There are two designs to choose
from.

Experiment 1 — Arrange the field trials so that one treatment yields
observations x; (i = 1, ..., n) which are i.i.d. normal N(x, ¢?) and the
second treatment yields observations y; (i = 1, ..., n) which are iid.
normal N(u + 8, 0?). Suppose all three parameters are unknown, but
that 0 is the sole parameter of interest. This design might arise with
random assignments to 2n plots in a given field. Half of the plots are
randomly allocated to the first treatment and the remaining half are
used for the second treatment.

Experiment 2 — Arrange the field trials so that (x;, y; (i = 1, .. ., n))
are n-matched pairs in the field, producing data from a bivariate
normal population with unknown correlation p. Thus, as before, the
data x; (i=1,..., n) are iid. normal N(%, 6®) and they y; (i =1, ...,
n) are iid. normal N(u + 0, 02), but the (x; y;) pairs have correlation
p. This design might be implemented by blocking the 2n plots into n
pairs and randomly assigning one plot/block to each of the two test

groups.

Which is the better experiment? Let us apply Fisher-Information to the
resulting test estimators with which we shall conduct our inferences
about 0. With design 1 (random assignment) there is a simple “Stu-
dent’s” t-test, based on the sample difference (Y — X), and a “pooled”
variance estimate having 2(n — 1) degrees of freedom. In the second
design (randomized blocks), there is a simple ¢-test based on the
sequence of differences z; = y, — x; (i = 1, .. ., n). Specifically, use a ¢-
test with the sample average difference, Z, and the associated variance
estimate having (n — 1) degrees of freedom.
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Which design yields the test-statistic with the greater Fisher-Informa-
tion about 6? The answer depends solely on the sample size n and the
strength of the “matching,” p. The table, below, lists the critical match-
ing strengths (p) for which the second design has more Information
about d.

TABLE OF CRITICAL VALUES FOR p

n (number of paired observations) FoJ
2 0.167
3 0.160
4 0.143
5 0.127
10 ‘ 0.0790
15 0.0569
26 0.0351
50 0.0188
250 0.0049
500 | 0.0020

Thus, the emphasis on match-pairs — a design concern — is justified by
the fact that even with moderate samples sizes there is more Informa-
tion about O in the second design than in the first. Better to increase
the precision by blocking (and use an estimate with n-1 degrees of
freedom) rather than to double the degrees of freedom in a fully
random allocation. Similar analysis indicates when Latin Squares, or
other forms of restricted designs, yield estimates with greater Informa-
tion about the parameters of interest. Information affords a measure of
the efficacy in contemplated experimental controls.

2.2, The Problem of Randomization

Early in The Design of Experiments (§9—10) Fisher argues that
randomization is a sine qua non of sound experimental practice. His
now infamous pedagogical example, “The Lady Tasting Tea,” offers
three methodological lessons. We are to test the hypothesis that a
certain lady cannot distinguish between tea made first by adding the
milk as opposed to tea made by adding milk second.

The design calls for presenting her with 8 cups of tea w1th milk, 4
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prepared each way, and counting how many the lady correctly iden-
tifies. According to Fisher’s reasoning, by rigorously randomizing both
the division of the cups (between the two treatments) and the order in
which they are presented to the Lady, we achieve three goals:

(1) The random order of presentation is supposed to insure against
the tady doing well on the test merely by anticipating the experimenter
if, on an alternative design, the order of cups is decided by the experi-
menter. The randomization, then, is to prevent the experiment from
becoming a game where the subject tries to outfox the experimenter.

(2) By randomizing the treatment allocation, the design is thought to
insure against an unfortunate confounding of treatment with uncon-
trolled factors, which factors might be the actual cause of the lady’s
responses. For example, if the lady reacts to unobserved differences in
the cups themselves, rather than to the tea mixtures, randomization
establishes there is only a 1 in 70 chance the tea-milk combinations will
align with cups so that she correctly identifies all 8.

(3) Randomizing the design, argues Fisher, provides a sound statis-
tical basis for the resulting test of significance. That is, the randomiza-
tion justifies the conclusion that, under the null hypothesis, there is a
probability of 1/70 that all 8 cups are correctly identified, etc.

 There is, however, a serious difficulty incorporating these arguments

into the theory I am attributing to Fisher. That theory attempts to unify
design with analysis, to use Information as the link between experi-
mental design and statistical estimation. The problem centers on the
role of ancillary data. (Recall, statistic 7 is ancillary for @ if it is
probabilistically independent of the parameter of interest, p(T|6) =
p(T)). In Fisher’s theory of estimation, an ancillary statistic contains

no relevant information about the parameter of interest. (The same
- conclusion follows according to Bayesian or Likelihood principles.) In
numerous places Fisher takes pains to argue that, by conditioning on an
- ancillary statistic one creates estimates with greater Information.? Also,
as in the illustration of the 2 X 2 table, conditioning on so-called
“ancillary” data (the margin totals) may create an “exact” significance
test for some composite null hypothesis.

‘The difficulty is simple to state: Randomization in design introduces
ancillary data. That is, the outcomes of the randomization is ancillary
to the hypothesis tests. Unfortunately, each of Fisher’s three reasons
for randomized design is based on probabilities which fail once the
ancillary data of the randomization are given. That is, Fisher’s argu-
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ments for randomization in design are valid using pretrial expectations;
but they are unsupported post-trial, given the (ancillary) randomized
outcome. There is no question that Fisher opposed randomization in
analysis. He used the ancillarity principle to refute randomized statis-
tical tests.” Nonetheless, his support for randomization in design
remained undaunted. Even mild opposition from his longtime ally,
Gosset (“Student,” 1936), earned only (undeserved) scorn (Fisher,
19364, b).!° Among the several enigmas we owe to Fisher, coming to a
proper understanding of the role randomization plays in sound experi-
mental design is an ongoing activity. (See, for example, Rubin 1978.)

3. CONCLUSIONS

The position proposed here is that Fisher’s contributions to the theory
of experimental design are closely tied to his theory of estimation, with
Information serving as the link. Estimation is concerned with data-
reduction — where good estimators give summaries of evidence that
preserve the relevant evidence as that is measured by Fisher-Informa-
tion. Improvements in a design may be gauged by the increase in
(Fisher-) Information of the resulting experimental data. Thus, there is a
unified approach to statistical design and analysis. This approach
serves, also, to explain the widely received view by statisticians that
their role is not limited to post-trial consultation in data analysis.
Statistics has its place in the planning of high quality experiments. In
that sense, for an experimenter, it makes statistical sense to look before
you leap!

The reconstruction I offer has difficulty, however, providing a
rationale for the common methodological practice of randomized
experimental design. The problem is that, in estimation Fisher’s theory
advocates conditioning on ancillary data. But randomization yields
ancillary data. Then familiar (Fisherian) arguments fail when the same
ancﬂlary principle is applied to the outcome of the randomization. It is
reassuring, at least, to know that the debates about randomization
persist more than 55 years after Fisher's methodological innovation.
(See, for example, the papers by 1. Levi, D. Lindley, and P. Suppes in
PSA-1982.)

Carnegie Mellon University
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NOTES

' In SMIRW it is chapter 9, making up 40 pages out of 360. In DoE it is chapter 11,
making up 35 out of 245 pages. And in SM&SI it is chapter 6, 35 of 180 pages.

2 Fisher's earlier attempts to define consistency asymptotically, with increasing sample
size, failed as they placed no restriction on how the estimator behaved in small samples.
The version of F-consistency summarized here applies equally well to samples of
arbitrary sizes, as Fisher notes (SM&SI, pp. 150—151).

3 1 find this assumption troubling. It seems plausible that the sample size is chosen in
accord with the investigator’s pretrial beliefs about the informativeness of the resulting
data. But, except in rare circumstances, this judgment depends then upon the inves-
tigator’s “prior” opinions about the parameter of interest. Hence, as a reader of the
published data, I conclude that sample size is a function of the unknown parameter
through the experimenter’s “prior” for that parameter. That is, as a reader of the
published data, I cannot take N to be ancillary without defaming the experimenter!

* See Savage (1976) for definitive rebuttals to these inaccuracies.

5 See Fisher's statements in (SM&SI, §4.4) and (SMfRS, §21.02). The question is
pursued by G. Barnard in three papers spanning the years 1946—1949.

¢ That is, given the sample sizes n, and n,, the two quantities (a/n, — ¢/n;) and
(a/n, + c/ny) are equivalent to the full data (a, b, ¢, d). Fisher’s stipulation that the
analysis be conducted for fixed lower margins amounts to a further data reduction to
the test quantity, (a/n, — c/my). .

7 The term |T — (a + c)/NP* N + T(1 — T) differs by a factor of N from C. R. Rao’s
measure of 2nd order efficiency. First order efficiency concerns the asymptotic ratio of
information retained in an estimate. Second order efficiency concerns the difference
between information retained and information available. Obviously, this limiting ratio
may be 1 though the limiting difference is not 0. For example, minimum x? estimation
is not, though the m.le is 2nd order efficient in the 2 X 2 table. See Rao (1963) and
Ghosh and Subramanyam (1974) for the key results.

8 See especially Fisher’s discussion of what he calls “The Problem of the Nile” (SM&SI
§6.9 .

Fi)shcr s opposition to a randomized solution of the Behrens-Fisher problem is found
_in SM&SI, §4.7. Additional discussion of this example may be found in Kadane &
Seidenfeld (1990).

10 In fairness, I believe Fisher allowed Gosset the last word in this exchange. Fisher left
~ “Student’s” (1937) final publication unanswered. That gesture, rare for Fisher, signifies
his lasting respect for Gosset'’s contributions. '
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