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Abstract 

Upper and lower probabilities may become uniformly less precise after conditioning. We call this dilation. 

We review some results about dilation, present some examples and explore the effect of Bayesian updating. 

Also, we show a connection between dilation and nonconglomerability. Finally, we consider the implica- 

tions of this phenomenon. 
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1. Introduction 

Let (0, &) be a measurable space and let M be a nonempty, closed, convex set of 

probability measures. The lower expectation of an &-measurable function X is 

defined by FX = inf,,, PX, where PX = s X(0) P(d0). Upper expectations and upper 

and lower probabilities are defined in the obvious way. If P(B)>0 then the lower 

conditional expectation of X given B is defined by p(X 1 B) =kfPEM P(XB)/P(B). Let 

S? be a measurable partition. If P(B)=0 for all BES? then the above definition is 

replaced in the usual way by conditional probability given a CJ field (Ash, 1972, p. 252). 

We say that g dilates X if p(X 1 B) <pX 6 PX d P(X 1 B) for all BEG with the lower 

or upper inequality being strict for all BE&?. If the outer inequalities are strict, we say 

that strict dilation has occurred. 

When dilation occurs, there is a uniform loss of precision by conditioning. This 

conflicts with a familiar Bayesian result (Ramsey, 1990; Good, 1967) that cost-free, 
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new information is worth acquiring before making a terminal decision. In Seidenfeld 

and Wasserman (1993), we explore the phenomenon and characterize dilation prone 

sets of probabilities. Here we review these results and investigate some cases in greater 

detail. We also make a connection with nonconglomerability. Further, we note that if 

we demand dilation immunity and admit the existence of fair coins, nontrivial upper 

and lower probabilities are ruled out. 

Before proceeding we give a simple example. A coin is flipped twice. Let Hi mean 

heads on flip i and let Ti mean tails on flip i. Suppose P(H,) = P(H,) = P(T,)= 

P(T,)= l/2, and let M consist of all probabilities with this constraint. Then 

lj’(H2)= P(H,) = l/2 but Z’(H, 1 x)= 0 < l/2 < 1 = P(H, 1 x) regardless of whether 

x= HI or x= T1. Thus, dilation occurs; see Walley (1991 pp. 298-299). 

Levi and Seidenfeld pointed out the dilation phenomenon to Good in relation to his 

argument (Good, 1967) about the value of new information. Good’s reply is given in 

Good (1974). Other discussions related to dilation and conditionalization are in 

Kyburg (1961, 1977), Seidenfeld (1981), and Walley (1991). 

2. Review of results 

Here, we briefly review the results from Seidenfeld and Wasserman (1993). Given M, 

define M,(A)={PEM; P(A)=f(A)), M*(A)=(PeM; P(A)=P(A)), M,(AIB)= 

{PEM;P(AIB)=P(AIB)}~~~M*(AIB)=~PEM;P(AIB)=P(AIB)}.F~~PE~,~~~ 

set of all probabilities, define Sp(A, B) = P(AnB)/(P(A)P(B)), dp(A, B) = P(AnB)- 

P(A)P(B), C + (A, B)= (PEG?; dp(A, B)>O) and C (A, B) = (PEP; dp(A, B) < O}. The 

surface of independence for events A and B is defined by $(A, B)= (PEP’; 

dp(A, B) = O}. Finally, define 

so= inf &(A, B), So= sup S&I, B), 
PEM.V IB) PEM*(A IB) 

and 

PO= inf P(A), PO= sup P(A). 
PEMO PEMO 

Result 1. Suppose that g = {B, B”}. A necessary and sufficient condition for strict 

dilation is that 

s < P(A) <I< eA) <so. 
O p,(A)‘ ‘PO(A) 

Result 2. Let a= {B, B”}. If &J dilates A, then Mn$(A, B)#@. 
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Result 3. If g strictly dilates A, then for every BE%$ M,(A 1 B)cC -(A, B) and 
M*(AIB)cC+(A,B). 

Result 4. If for every BE.@, 

M,(A)nZ-(A, B)#O and M*(A)nC+(A, B)#@, 

then g strictly dilates A. 

The next result says that if we include independent coin flips, then dilation always 

occurs. 

Result 5. Suppose that O<P(E)gP(E)< 1 for some EEL. Extend the algebra g to 
a larger algebra %?* to include events A and B and extend M to M* so that (i) A, B 
and E are independent under every PEM *, (ii) P(A)= l/2 for every PEM * and 
(iii) P(B) =I. for every PEM *. Then there exists k(0, 1) and an event F in the enlarged 
algebra such that {A, A”} dilates F. 

Now let M be an s-contaminated class (Huber, 1973, 1981; Berger, 1984, 198.5, 
1990) i.e. M = { (1 -E) P + EQ; QE~}, where P is a fixed probability measure and E is 
a fixed number in [0, 11. To avoid triviality, assume E>O and that P is an internal 
point in the set of all probability measures. 

Result 6. Dilation occurs for this class if and only if E > c, where 

4 4 4 6 
C=max P(A)P(B’)‘P(A’)P(B)‘-P(A’)P(B”)‘_P(A)P(B) 

We see that dilation occurs if A and B are ‘sufficiently independent’ under the 
measure P. If P is a nonatomic measure on the real line, then there always exist A and 
B with positive probability that are independent under P, hence, dp=O, and dilation 
occurs for every s>O. 

Define the total variation metric by d(P, Q)=sup, IP(A)-Q(A) 1. Fix P and E and 
assume that P is internal. Let M = (Q; d(P, Q) < E). Then P(A) = max { P(A) - E, 0) and 
P(A)=min{P(A)+s, l}. Also, 

PVlB)= 
max { P(AB) - E, 0} 

max(P(AB)-s,O}+min(P(A”B)+~,l} ’ 

Let d =dp. There are four cases: 
Case 1: P(U), P(AB’)<e. Dilation occurs if and only if 

E > max { -d/P(W), d/P(B)}. 
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Case 2: P(D) < E < P(AB”). Dilation occurs if and only if 

s>max{ -d/P(B), -d/P(F), d/P(B)}. 

Case 3: P(AB’)fs <P(AB). Dilation occurs if and only if 

E > max{d/P(B’), -d/P(F), d/P(B)}. 

Case 4: &<P(AB), P(AB’). Dilation occurs if and only if 

s>max(-d/P(B), d/P(F), -d/P(F), d/P(B)}. 

A question that arises is whether dilation with respect to a binary partition (B, B”} 

is implied by dilation on a more general partition. A partial answer is given by the 

following result. 

Result 7. If M is an s-contamination model, then dilation on a partition {B, , . . . , B,} 

implies dilation on a binary subpartition. 

Further progress may be made by focusing on neighborhoods of the uniform 

measure on the unit interval. Let Q = [0, 11, let Y?(Q) be the Bore1 sets and let p be 

Lebesgue measure. Given two measurable functions f and g, say that f and g are 

equimeasurable and write f-g if p( {o; f(o) > t}) =p( {o; g(o) > t}) for all t. Given f, 

there is a unique, nonincreasing, right continuous function f* such that f* -f: The 

function f * is called the decreasing rearrangement off: We say that f is majorized by 

g and we write f<g if iAf=S,‘g and j”,f* <s”,g* for all s. Here, jf means 

jf(o) p(da). Let n(f) be the convex closure of (g; g-f}. Ryff (1965) shows that 

A(f) = {g; g < f}. We define the increasing rearrangement off to be unique, nondec- 

reasing, right continuous function f, such that f, -f: 
Let u(w)= 1 for all WEQ. Let m be a weakly closed, convex set of bounded density 

functions with respect to Lebesgue measure on Q, let M be the corresponding set of 

probability measures and let P and P be the upper and lower probability generated by M. 

We call m a neighborhood of u iffErn implies that gErn whenever g-f: This condition is 

like requiring permutation invariance for neighborhoods of the uniform measure on finite 

sets. All common neighborhoods satisfy this regularity condition. From Ryff’s theorem, it 

follows that if&m and g<A then gEm. The properties of such sets are studied in 

Wasserman and Kadane (1992). If m is a neighborhood of u, we shall say that M is 

a neighborhood of p. To avoid triviality, we assume that M# (p}. For every f define 

ess sup f 
p(f)=----- ess inff ’ 

where esssupf=inf{t; p({o;f(~)>t})=O} an essinff=sup{t; ~({w;f(w)<t-})=O}. d 
For k> 1, define yk= {f; p(f)<k}. This is the density ratio neighborhood of p 

(DeRobertis and Hartigan, 198 1). 
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Result 8. Suppose that M is a neighborhood of p. Then M is dilation immune if and 

only if m=y, for some k. 

We may summarize all this by saying that A is dilated by B when they are sufficiently 

independent. Result 8 says that it is the shape, not the size of M that determines whether 

dilation occurs. In particular, density ratio classes have just the right shape to avoid 

dilation. Wasserman (1992) shows that they have other wonderful properties. 

3. A closer look at a simple case 

Here we examine the case M = hull( {P, Q}) more closely. The results so far show 

that the independence surface must cut through M to induce dilation. Let PEC -(A, B) 

and QEC+(A,B), otherwise there is no dilation. Without loss of generality, suppose 

that P(A) < Q(A). Let yp = 1 P(D) - P (A)P(B) I. Fix y for both P and Q to be equal so 

that yP=P(A)P(B)-P(AB)=Q(AB)-Q(A)Q(B)=,, say. Define e=IP(A)-Q(A)1 
and define the standardized distance i(M) from the independence surface by 

i(M)=; {max{P(B”), Q(B”)}}-‘. 

After some algebra, we see that there is dilation if and only if i(M)> 1. 

To summarize, if P and Q give dependence to A and B in the same direction so that 

there is no uncertainty about the direction of dependence, there is no dilation. But if 

P and Q are separated by the independence surface, then dilation occurs if the extreme 

points are sufficiently far from independence, i.e. if the uncertainty about the depend- 

ence between A and B is large relative to the uncertainty about P(A). Perhaps, this 

may be interpreted as a statement about the distance between the projections of P and 

Q onto the independence surface. 

4. Bayesian updating 

So far, we have considered the effect of conditioning, but we have not explored more 

general Bayesian updating. Now consider a parameter space 0, which we take to be 

the real line. Let H= (h,, . . . ,hk} be a partition which is assumed to be a set of 

contiguous intervals. Let p = (pl, . . . , pk) where pi > 0 and C pi = 1. A useful class of 

priors is M = {P; P(hi) = pi, i = 1, . . . , k}. Let A = hi be such that pi < 1 and let B be such 

that AnB and A -B are nonempty. Then, P(A I B) = 0 < e(A) = pi = P(A) < 1 = P(A I B) 
and !(A ) Bc)=O<f(A)=pi=P(A)<P(A I B'). Thus, we have dilation. But now let 

L”(B) be a likelihood function for data Y=y. Assume that Ly is bounded and 

continuous. Dilation in this context means !(A 1 y) d&‘(A) d P(A) d&A I y) for all y in 

the sample space cV. 
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Result 9. Dilation occurs if and only if, for all y~g, 

&{f c wjiy and L;>, c wjLjy, 
j#i j+i 

where Ey = sup OehiLV), LY = infeehi Ly(B) and Wj=pj/ Crfi pr. If there exists y such 

that Ly(8)> L’(0’) for all &h,, e’~hP, then dilation does not occur. 

Proof. Note that 

PvlY)= 
Pi&Y 

PiLY+xj#iPjLJ 

Set this less than pi to obtain the first inequality. Similarly, for the second. The final 

claim is obvious. Cl 

Thus, it seems that likelihoods mitigate dilation. Dilation might still occur for 

y such that the mode is not in A. This might be a high probability event. Further 

investigation is needed to determine if this is so. 

Consider an example. Let Y be Bernoulli(p) and let h, = [0,1/k), . . . ,hk= 

[(k-1)/k, l] and p1 = . . . = pk = l/k. Then dilation occurs for hi if and only if 

k2-kk2 
2kZ bP< 

Let p be Lebesgue measure. Then p(h*)= 0(1/k) so that dilation disappears with 

increasing precision in the class of priors. 

5. Nonconglomerability and dilation 

In this section, explicitly, we do not assume that probabilities are countably 

additive. A bounded random variable X can be thought of as a deFinetti-act, 

a function from states to cardinal utilities, also called a gamble. Let 8=(X; pX>O} 

be the set of acceptable gambles. (We remind the reader that we assume the set M is 

closed. We use the topology of pointwise convergence. This assumption allows us to 

avoid the distracting complication that, with open sets, PX > 0 for every PEM does 

not entail XE~). Similarly, let gB= {X; E(X (B)>O} be the set of conditionally 

acceptable gambles. (Recall that X is a B-called-off gamble provided X (0) = 0 for 8 not 

in B. Where P(B)=0 for some PEM, FfB may be larger than the set of acceptable 

B-called-off gambles, i.e. larger than the set of B-called-off gambles that have positive 

expected utility for each PEM.) 
Now assume that 98= {Bi) is countable. M forms B-conglomerable preferences if: 

(C) XE% whenever there exists s>O such that, for every BiE98, X-EELS,. 
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Say that M forms conglomerable preferences if it forms B-conglomerable preferences 

for every countable partition @. 

Claim. A singleton M ={ P} forms conglomerable preferences just when P is 

countably additive. (This follows from Theorems 2.3, 3.1 and 3.3 in Schervish et al. 

(1984).) 

The conglomerability condition suggests to us the following dual principle: 

(D) If there exists E>O such that for each Bide, X+E$~~,, then X$9. 

In the case of a singleton M = (P}, it is easy to see that conditions (C) and (D) 

are equivalent; hence, each is equivalent to countable additivity of P. The situation 

is more interesting when M is not a singleton. Then, in light of dilation, even with 

a finite partition, a set of countably additive probabilities can fail (D). More 

precisely, 

Result 10. If there is dilation then condition (D) is violated. 

Proof. LetX=Z,-P(A).ForeveryPEM,PX=P(A)-P(A)2OsoPX~OandXE~. 

But, P(X(B)=infP(X(B)=infP(A(B)-P(A)=P(A(B)-P(A)<0 for every B. 

Hence, X$YB for every BE&?. 0 

Curiously, Walley (1991) declares violation of (C) ‘incoherent’, but failures of (D) 

carry no parallel sanction. 

6. Interpreting dilation: imprecision versus indeterminacy 

There are at least two ways to approach upper and lower probabilities and sets of 

probabilities more generally. Following Levi (1985), we need to distinguish imprecise 

from indeterminate probabilities. One position is to regard traditional ‘Bayesian’ 

theory, with its single precise probability, as the ideal for a rational expression of 

uncertainty. Then sets of probabilities arise from an incomplete specification of that 

ideal, as might occur in partial elicitation. An alternative point of view (Smith, 1961; 

Walley, 1991) is to change the norm and to allow that sets of probabilities provide 

a complete description of an agent’s degrees of beliefs - only they are indeterminate 

degrees of belief. Of course, both factors may operate at the same time. There can be 

imprecise evaluation of indeterminate beliefs. 

The difference is nontrivial. For one, imprecise probabilities can, in principle, be 

sharpened and dilation can thus be made to disappear or, at least, fade away as the 

Bayesian ideal is approached through more accurate elicitation. But with an indeter- 

minate set of probabilities, there is nothing to be sharpened through further elicitation 
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and we face dilation; hence, indeterminacy in probability leads to violation of 

condition (D) through dilation. 

Failures of conditions (C) and (D) are unacceptable to many, including one of us 

(W). Can dilation be avoided? In the light of Result 5, upper and lower indeterminate 

probabilities lead to dilation once the apparatus of coin flips is available. And given 

Result 8, even with imprecise upper and lower probabilities, many robust Bayesian 

models have a transient problem with dilation - ‘transient’ until the extra work of 

eliminating the imprecision is expended and the robustness question is resolved. 

We conclude with some pragmatic questions. When does dilation arise in practice? 

How can we indicate the intensity and frequency of its appearances? We point out that 

real examples of dilation exist. Weichselberger and Pbhlmann (1990) noted the 

dilation phenomenon in an expert system scenario and suggested that the information 

leading to dilation not be gathered. Lavine (1987) also noted that dilation occurs in 

predictive inference for an exponential distribution when standard neighborhoods are 

used for robustifying the inferences. At present, however, we have no measure of how 

often dilation occurs with respect to the events of interest. In a dilation prone set M, 

there will be some events 23 that are dilated. But the event of interest may not be in 9. 

Further work is needed to measure the size of 9. At present, robust Bayesians should 

not worry. But neither should they dismiss the phenomenon as unimportant. 
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Discussion on ‘The dilation phenomenon in robust Bayesian inference’ 
by Larry Wasserman and Teddy Seidenfeld 

Constantinos Goutis 

University College, London 

First of all, I would like to thank Larry Wasserman for presenting us an interesting 

paper describing the dilation phenomenon which I was certainly not aware of. 

There are two general questions that could be asked here. What is the intuitive 

meaning of dilation and why does it occur when it does occur? A nonrigorous way of 
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describing dilation is to say that we know less about P(A IL@‘) than we knew about 

P(A). That seems counterintuitive at the first sight. I believe that the main poblem is 

that we knew little about P(An9) to start with. This may or may not be evident when 

we consider only the upper and lower probabilities of the event A itself. We can think 

of the marginal P(A) as the projection of P(An9l) to some ‘subspace’. The projection 

might be a point, hence, precise, but this does not guarantee that P(An98) is also 

precise. The imprecision of P(An@ is hidden if we look only at P(A) and surfaces 

when BEG becomes known. In that sense, dilation does not introduce any new 

uncertainty, but it helps revealing it. 

In order to do a proper updating of P(A), i.e. some updating that would not show 

more uncertainty than we had, we need the relation of the event A with any B in any 

33 which may occur. In other words, we must be able to say in which sense A 

and B depend on each other. This is exactly the reason why quantities like 

P(AnB)-P(A)P(B) are so crucial as to when dilation occurs. Thinking of all possible 

g and the relations with A might be too large a task, but failing to do so leads to 

dilation, as Result 5 shows. 

A point I would like to discuss further, relevant to Bayesian robustness and dilation, 

is the meaning of the word uncertainty itself. If we take probability to be a measure of 

our own subjective unertainty, being uncertain about it appears to be a pleonasm. If 

probability is a property of the system then, of course, uncertainty is perfectly 

justifiable. It is interesting to contrast the two meanings with the statistical physicists’ 

perception of uncertainty, where probability seems to be a little bit of both: some kind 

of subjective uncertainty which is a property of nature itself. 

Following Walley (1991) and his slightly different terminology, there may be 

indeterminate or incomplete probabilities. The sources of indeterminacy are, among 

others, lack of or conflicting information, a physical indeterminacy in the system, etc. 

Essentially, the probability assessor will resist any attempt to be more precise. On the 

other hand, incompleteness while making probability statements implies a ‘true 

probability’, but the assessor is too busy to think about it. In the first case, a probabil- 

ity does not really exist whereas in the latter it certainly does. 

A question we might ask ourselves is which approach do robust Bayesians take. It 

seems that it is a little bit of both, though in most cases there is an implicit assumption 

that using robust priors is a safeguard against the prior that does not really express the 

beliefs (hence, it is ‘wrong’) rather than the acknowledgement that there is no such 

prior. In both cases, the result is that the process of obtaining the prior information is 

not through. Whether the situation is transient or not, I do not know. Although 

specifying a probability of a single event might not be a major problem, practitioners 

are busy people and are unlikely to have the time or the energy to think about 

uncountably many probabilities to construct an appropriate prior density. The result 

in either case is that they end up with imprecise probabilities and they somehow have 

to live with them. Dilation shows that it is not always a satisfactory situation. I fully 

agree that dilation cannot be easily dismissed. 
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The main problem with dilation is not that, when it occurs, people do not obey 
some rationality criteria, arising from gambling scenarios. Thinking about gambling 
might be useful operationally since it guarantees that you can make some kind of 
probability statement. It should not be forgotten that probabilities arose as answers to 
questions about fair games by the great grandparents of modern statisticians. How- 
ever, not too much weight should be attached to the fact that people might not obey 
certain axioms, especially if it is not immediately obvious where a violation of the 
axioms would lead. After all, people are not rational in so many other aspects of life, 
why would somebody expect them to be so when stating probabilities? Of course, I do 
not dismiss the usefulness of the gambling approach, it should just not be taken too 
seriously. 

Some more comments on details of the paper. Result 9 tells us in rigorous terms that 
dilation occurs for sets with low likelihood. In a somewhat different context Pericchi 
and Walley (1991) observed that posterior upper and lower probability of intervals 
tend be far apart for sets where the likelihood is low relative to the prior information. 
I was wondering if this is simply a coincidence or if there is some deeper relation. Do 
both phenomena represent the difficulty that upper and lower probabilities have when 
processing too ‘little information’, where information is translated here as (relative) 
height of likelihood? 

Another general, though somewhat unformulated, question which might be of 
interest is whether one can demonstrate phenomena analogous to dilation for other 
measures which are not defined as simple expectations. Is there any satisfactory way, 
for our purposes, of defining some global uncertainty for distributions? If yes, how is 
the prior uncertainty related to the posterior uncertainty? Could one exhibit similar 
behaviour? 

Additional reference 

Pericchi, L.R. and P. Walley (1991). Robust Bayesian credible intervals and prior ignorance. Internat. 
Statist. Rev. 59, l-23. 

Rejoinder 

Larry Wasserman and Teddy Seidenfeld 

We thank Dr. Goutis for his stimulating comments. Dr. Goutis makes a good point: 
conditioning does not create indeterminacy, rather, it reveals it. The indeterminacy is 
already lurking in AnB. Conditioning merely lets dilation out of the bag. Seen this 
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way, dilation is a diagnostic for revealing indeterminacy hidden in the initial joint 

space. 

We agree, also, that many robust Bayesians use sets of probabilities because of 

imprecision, not because of indeterminacy. In practice, imprecision is common, hence, 

dilation is an issue for all kinds of robust Bayesians. 

Regarding popular claims about systematic descriptive failings of Bayesian theory 

and the fault of particular axioms, the situation is complex. Just because people have 

predictable difficulties adding two large numbers is no reason to reprogram our 

computer with a new addition rule. In that sense, subjective probability is normative. 

Nonetheless, we think there are good normative reasons for liberalizing the theory of 

personal probability to allow for indeterminacy. For us, the key is to relax the 

so-called ‘ordering’ postulate. (The axiom requires that each pair of events be compar- 

able by a qualitative probability, ‘. . . is more probably than . . .‘.) The verdict, of course, 

depends on what kind of theory is possible without the postulate - see Seidenfeld 

et al. (1990). 

Dr. Goutis writes: ‘Pericchi and Walley (1991) observed that [the] posterior upper 

and lower probability of intervals tend [to] be far apart for sets where the likelihood is 

low relatively to the prior information’ and asks whether this is related to dilation. 

Perhaps, he is referring to the result on page 15 of Pericchi and Walley (1991). They 

consider normal i.i.d. data with a prior s-contamination class around a conjugate 

prior. When the sample average is far from the prior mean, the upper and lower 

posterior probability of the standard likelihood interval diverge. (This happens also, 

as sample size increases or as prior variance increases.) This result is different from out 

Result 9. We show that, in a prior class defined by fixed probabilities on a partition, 

dilation is limited to sets that do not have extreme likelihood. 

Finally, Dr. Goutis asks the following: For which indices of uncertainty U( .) on 

a set of probabilities is it the case that U (. 1 y) > U ( .) for all outcomes y~?Yy? This is an 

excellent question - currently we do not have an answer. 

Reference 

Seidenfeld, T., M. Schervish and J. Kadane (1990). Decisions without ordering. In: W. Sieg, Ed., Acting and 
Rejecting. Kluwer, Dordrecht, 143-170. 


