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Abstract

Students interacting with educational software generate dn their use of soft-
ware assistance and on the correctness of their answers.da@ta comes in the
form of a time series, with each interaction as a separate pizint. This data
poses a number of unique issues. In educational researthtsrehould be in-
terpretable by domain experts, which strongly biases Irgrtowards simpler
models. Educational data also has a temporal dimensionigtgenerally not
fully utilized. Finally, when educational data is analyzesing machine learning
techniques, the algorithm is generally off-the-shelf wittle consideration for
the unique properties of educational data. We focus on tbbl@m of analyz-
ing student interactions with software tutors. Our objexts to discover differ-
ent strategies that students employ and to use those s¢smtegoredict learning
outcomes. For this, we utilize hidden Markov model (HMM)stlring. Unlike
some other approaches, HMMs incorporate the time dimemsiothe model. By
learning many HMMs rather than just one, the result will in# smaller, more
interpretable models. Finally, as part of this process, ae examine different
model selection criteria with respect to the models préasfistof student learning
outcomes. This allows further insight into the propertiesnadel selection cri-
teria on educational data sets, beyond the usual crostatialn or test analysis.
We discover that the algorithm is effective across multipkasures and that the
adjustedR? is an effective model selection metric.

1 Introduction

Educational software is an increasingly important parturhan education. Many schools use ed-
ucational software as a major component in classroom cuarend individuals are using special-
ized software for diverse purposes such as second-langueggesition and extracurricular tutoring.
Likewise, the analysis of data from educational softwaral$® a growing field. Individuals in-
teracting with an educational system generate sizabletigiearof time-stamped data, ranging in
granularity from individual mouse movements to attemptdtons. This data offers insight into
an individual's underlying cognitive processes and hagtitential to guide future educational in-
terventions.

However, the temporal-sequential aspect of educatiortalisi&equently underutilized. In brief, the
usual approach to analyzing educational data is to compsiét af features, e.g. average number
of attempts, and to then input those features into an ofistiedf machine learning algorithm in an
attempt to predict learning between separately admimidtpre-tests and post-tests. These features
usually do not incorporate a significant temporal aspecteasom the student’s response time, i.e.
the time between a stimulus, such as a problem statementhangsponse, such as a solution



attempt. By not incorporating the entirety of the data, ipatarly the ordering of actions, such
analyses falil to realize the data’s full potential.

In a computer tutoring system, the log data may be treatediazeaseries with variable intervals
of observation. If the performance on each task is conditlgindependent given the student, i.e.
solving a math problem step does not require successfui@adto prior steps, then each task can
be treated as a separate sequence of observations. Thastepor sequence can be considered
a segment of a time-series. For example, if a student regjbef at the beginning of the step and
then attempts solutions until they solve the step, thakelia different strategy than if a student
attempts to solve the step and, upon failing, requests help.

In this paper, the concept of student strategies is ingtatiby hidden Markov models (HMMs).
HMMs are graphical models which treat observed data as areddequences of symbols. HMMs
will be discussed in more detail in the Background sectiaowéwver, the primary observation is,
by learning many different HMMs from educational data, eBdliM can be treated as a model of
a different student strategy. Prior work in educationahdatning has largely focused on learning
single, complicated models that describe all possibleesttidehaviors. The advantages of collec-
tions of HMMs are four-fold: they have disjoint observatiothe observations are ordered, they are
much easier to interpret, and they provide extremely ateypeedictions. Further, the algorithm
we propose offers several advantages over standard HMMediug algorithms: it has adaptive
parameters, biases strongly towards smaller models, anithcarporate external measures.

The remainder of this paper is divided into several sectiofise Background section covers the
relevant machine learning literature. The Method sectiescdbes a number of unique properties
to our method, including data preprocessing. The Datamedegscribes the two data sets used in
this study. The Results section includes both model priedistand interpretations, reported across
multiple parameterizations and data sets.

2 Background

A hidden Markov model (HMM) is a set of unobserved states goe@ by the Markov property
where the relationship between an unobserved state andttied abservations derives from a prob-
ability distribution. In short, an HMM is a probabilisticriiction of an unobserved Markov chain.[3]
More specifically, graphical models are a series of dis@&tes with the transitions between states
determined by a probability matrix. The Markov propertyuiegs that the state of a model at time
t is exlusively dependent on the state of the model at timel. No prior states are relevant. An
HMM additionally requires that the probability of obsergia symbol at time depends only on
the model’s state at time For this paper, symbols will correspond to types of stu@etibns in

a computer tutoring system. Observed symbols are calledsgnis in the HMM literature and, in
this paper, all HMMs will use discrete emissions.

In general, the following parameters uniquely describévastate discrete HMMV/: the statess;
(0 <i < N); the initial probability of M starting in state;, written asr;; the transition probability
from stateS; to S}, t;;; the alphabet of symbols; and the emission probability of a symho] for
statei (o, € X, 0 < k < |X|). A detailed introduction to HMMs is available in Rabinef hd a
thorough treatment of inference in HMMs is available in Gapp al.[4]

For this paper, a series of observed symbols will be calleshaence. The Baum-Welch algorithm
allows for efficient estimation of the parameters of an HMMagi a set of observed sequences.[2] In
short, given that a set of student sequences are associgehvtiMM, the Baum-Welch algorithm
can relearn the parameters of that HMM to better fit the olkesbdata. Given an HMM and an
observed sequence, the Forward-Backward algorithm canles the probability of that observed
sequence conditioned on the parameters of the HMM. Thesalgarithms are the core of any
HMM clustering algorithm.

2.1 Clustering

The Baum-Welch algorithm only learns the parameters fomglsiHMM, but the extension to
learning sets of HMMs with clustering is trivial. First, dedia set of HMMs\V/ as a collectiorC.
Given a set of observed sequenégsvhere each sequengg € @ is a series of observed symbols



o € X, a partition of the observatior@ for a fixed number of partition& is P = (Py, ..., Pk),
whereVg; € Q3k s.t. ¢; € P,. The goal of a clustering algorithm is to maximize the ohject
function:

F(P) =T II PralMy) (1)

k=14€Py

wherePr(q;| M) is the probability of observing a sequenggiven the paramaterization of a model
M. Replacing the probability with the likelihood and takidgetlog of the objective function, the
result is a standard clustering objective function:

K
FPY =" Uil My) )

k=14i€Py

Objective functions of this form have long been optimizethvExpectation-Maximization (E-M)
algorithms and, for HMM clustering, given an initial set olvis, the usual algorithm is of the
form:

Input: sequence s&p, model county, initial collectionC® of modelsM?, 0 < k < K

Output: collectionC'

iterationt = 0;

while termination criteria not satisfiedo

iterationt = ¢ + 1;

create partition set8, 0 < k < K;

foreach sequence; € @ do

‘ find the best modet = arg maxy I(g;| M}~ ");

assign sequengg to partition P;

end

foreach M}~' € C*~' do
M} = Baum-Welch(z;~*,P});
assignM; to C*

end

end

returnC?;
Algorithm 1: HMM-Cluster

Possible termination criteria include any of the followingjng below some threshodd
e Change in log-likelihoodA . 1(g:|C)
e Number of changed label3”, ., 6(q: € PL ', q: € Pk #1)

e Maximum change in the size of a partitiomaxo<,<x A|Pg|

HMM-Cluster converges to a local maximum because Baum-Welch convergeda any given
clustering iteration, both relearning the parameters apantitioning the observed sequences are
monotonic operations with respect to the likelihood. FertilMM-Clusterwill never change the
size of the collectior or the number of states per mod€l In general, if seeded with a collection
of initial models (chosen randomly or with a heuristic), bassic structure of each model will remain
constant; only the parameters and partitions will change.

There have been many prior uses of similar E-M HMM clustegatgprithms. One of the earliest
uses was by Rabiner et. al. for word recognition. [9] Moreergly, the predominant domain has
been gene expression data. [11] Others have also looked &t elitering algorithms for analyzing
text cohesion [5]. There have been many improvements steghjéscluding processing sequences
with dynamic time warping, [7] more principled ways of gesmtang candidate HMMs,[12] and



Student Step Action | Duration
S01 | ARCS-3 ARC-EG-MEASURE| Attempt | 11.446
S01 ARCS-3 ARC-EG-MEASURE| Attempt | 4.847
S01 | ARCS-3 ARC-EG-MEASURE| Attempt| 19.588
S01 | ARCS-3 ARC-EG-MEASURE| Attempt | 6.179
S01 | ARCS-3 ARC-EG-MEASURE| Attempt| 10.535

Table 1: Example Tutor Step

using spectral clustering instead of partition-basedtehirsg. [6] Jebara et. al.'s work on spectral
clustering with HMMs is especially important as a potergiatnue for future work. [6]

Some of the prior work on E-M HMM clustering uses fixed values K and for the number of
states {V) per initial model[7]. Other examples use fixed initial vadufor K, but allow the merging
or splitting of clusters. For example, Schliep uses "modejery”, which merges and splits clusters
based on the total size of each cluster[11]. However, it idaar which merge/split criteria are
optimal. We will instead uselMM-Clusteras a subroutine for another algorithm, and so will limit
it to fixed values off{ andN.

3 Data

We consider two data sets extracted from log files of the Gégn@ognitive Tutor. In the tutor,
students are presented with a geometry problem and sevepsy éext fields. A step in the problem
requires filling in a text field. The fields are arranged sysitically on each problem page and
might, for example, ask for the values of angles in a polygdioothe intermediate values required
to calculate the circumference of a circle.

Both data sets originate in earlier experimental studiesugh only the control groups for each
study will be used.

In each data set, a problem is defined as a series of steps @mdtep as a series of transactions.
A student transaction is defined by the following four-tugl&tudent,Step,Action,Duration An
action can be either an "Attempt” or "Help Request’. Eachadsdt consists of a series of these
transactions, categorized by step and student. An exarggéssshown in Table 1.

02This data set originates in an experiment published in 20QZhe control condition includes 21
students and 57204 actions divided into 3740 steps.

06This data set originates in an experiment published in 2[1@4.The control condition includes
16 students and 16374(FIX) actions divided into 5217 (FE&ps.

Both data sets are similar in that they cover the same gegruaits and use the same general
interface, though there are some differences in both doowitent and interface layout. The most
important differences in the data lie in the students’ distion of actions and steps. In the 06 data,
students exhibit far fewer actions per step, which comfggany direct comparison between results
for the two data sets.

4 Method

A student action is defined by the following four-tupléStudent,Step,Action,Duratipn Once
actions are conditioned on students and steps, what remsatmstuple( Action,Duratior) . While

it is technically possible to directly analyze the data iis thvo-dimensional, partially continuous
space, the results are difficult to interpret. Instead, icems threshold of seconds which divides
actions into "fast” and "slow” actions. There exists a maggpirom the bivariatéAction,Duratior)
tuple to a single four-category variable, shown in Table 2.

Guessing and Trying are fairly self-explanatory: a guessssispected attempt to solve using the
system’s correctness-feedback while a try is a suspectethjat to solve using actual problem-
solving techniques. A drill is rapidly requesting hintsppably without reading them, either to get



Attempt | Help Request
Fast | Guess Drill
Slow Try Reason

Table 2: Mapping fron{ Action,Duratior) to one variable

a more concrete hint or to reach the solution (final hint). &saned hint request is when the student
is assumed to read the hint. These four categories will beealgtedG, D, T', andR.

Define a sequencg € () to be thei-th step performed by a studentEach sequence is then a series
of observations front. = {G, D, T, R}. After applying some learning algorithm, e.g. a randomly-
seededHMM-Cluster,  will be partitioned such that eagff is assigned to one modél;,. Let

qr = {¢?|¢; € My} be the set of all sequences in partitioriThere are then several approaches for
estimating the relationship between the partitidrand external measures of learning (denoted by
G):

e Maximum Correlation with the Absolute Count (per modelyixo<x<x p(qr, G)

e Maximum Correlation with the Ratio (per modehiaxo<x« p(ﬁ, G)
- o<i<ri 1

¢ Linear Regression, i.e. fitting a regression model and &atiog R? or adjusted??

For this paper, all learning gain measures are pre-testdbtpst learning gain, by student. There is,
however, an additional subtlety with respectipit can be measured in absolute terfpsst— pre),

in terms of adjusted gai ?ftgper)a ), or in terms of z-scores. This paper will focus on the a@jdst

gain, as the data sets used are significantly non-normat @lfects) and absolute learning gain is
not an interpretable concept between curricula.

Within this framework HMM-Clusterhas several problems:

o HMM-Clustergets trapped in local maxima that can be significantly wdnse the global
maximum, potentially requiring many random restarts torapimate the best fit.

e The choice of values fof{ and N will determine the effectiveness éfMM-Cluster. If
they are too large;’ will overfit Q; if they are too small, no collectiof’ will fit Q well.

e By default, direct measures of fit will bias towards largdues of K andN. The resulting
collections will not only overfit, but be very difficult to iatpret.

e K andN are fixed and non-adaptive.

In principle, a better algorithm would search over valuegiodnd N with a bias towards smaller
and fewer models, allowing for higher test-set accuracyeasier interpretation of models. It would
also do this in a way that would allow the algorithm to increwadly find better local maxima. One
such algorithm isStepwise-HMM-Clustewhich is toHMM-Clusterwhat stepwise regression is to
normal regression. Lédew-HMMgk,n) be shorthand for a function that returnsew HMMs with

n states each.

A critical step inStepwise-HMM-Clusteis the selection of "good models” from a collectigh
This choice is determined with regression. In this papemngeforward stepwise linear regression.
The number of sequences classified by each model for eacdnstisdised as the input (along with
the total sequences per students) and the learning gaiadsasghe output. For example Mify was
the best fitting model on 20 sequences for Student 0 and 1@Begs for Student 1, and; was
the best fitting model on 15 sequences for Student 0 and 2®Begs for Student 1, the regression
approximations would be:

Go =~ o+ B1%20+ B2%10
Gy Bo + B1 % 15+ B2 * 25

Q



Inp

ut: sequence sép,student seb, student learning gairs

Output: collectionC'
iterationt = 0;
modelsK = 2;
statesV = 2;

coll
whi

end

ectionC® = New-HMMs(K ,N);
le termination criteria not satisfiedo
iterationt =t + 1;
relearnC*—! = HMM-Cluster@, K ,C*~1);
create partition setg}, 0 <k < K,0 <5 < 5,
foreach sequence; € @ do
find the best modet = arg maxy, I(g;| M} ");
let s; € S bet the student acting in sequenge
assign sequencg to partitionP;;
end
ignificant modelsk = Regression®,[ Fo,. . . ,Px]);
oreach M, " € C*~' do
if M}~' € Rthen
| assignM} ' to O
end

ol )]

end
if model count criteria satisfiethen
| K=K+1;
end
if state count criteria satisfiethen
| N=N-+1;
end
C' = C'U New-HMMs(K — |C*t|,N);

returnC*;

Algorithm 2: Stepwise-HMM-Cluster



T | MAC(Train) | MAC(Test) | MRC(Train) | MRC(Test) | Adj-RZ(Train) | RZ(Test) | Adj-RZT(Train) | RZ>T(Test)
6 0.62 0.73 0.7 0.73 0.29 0.33 0.29 0.33
8 0.66 0.72 0.76 0.67 0.31 0.25 0.35 0.25
10 0.67 0.72 0.75 0.66 0.33 0.29 0.37 0.29

Table 3: Best possible metric scores for 02

There are a variety of possible termination criteria, magint incrementing criteria, and state
count incrementing criteria. In this paper, we will use tire@est: given a constant limit on con-
secutive iterations, a constant limit on the number of modelsand a constant limit on the number
of states per model, if the overall regression fit (adjuste®f) does not improve significantly after
at least/ consecutive iterations, increment the number of statessed byNew-HMMs If N = v
already, increase the number of allowed stdteand resetV = 2. Terminate the algorithm when
there have beenconsecutive non-significant iterations, but béth= x and N = v.

In generalNew-HMMscan generate candidate HMMs using heuristics or througlet@redearning
paradigm, but for our purposes, candidate HMMs are gereereith randomly chosen parameters.
We will use a value of = 2, allowing for one extra "bad” result before continuing te thext level
of complexity.

5 Results

There are five metrics we will consider for estimating theliqpaf a collection:

e Bayesian Information Criterion (BIC)
e Maximum Absolute Correlation (MACYhaxo<k<x p(qk, G)
e Maximum Ratio Correlation (MRCnaxo<<k p((zqik G)

)
0§L<qu)

o (Adjusted-)R? of a linear regression without total count (R2)

o (Adjusted-)R? of a linear regression with total count (R2T)

The first metric (BIC) forms a baseline. BIC offers a cheaftloé-shelf method for controlling for
overfitting, but it also has known biases and limitationswideer, it is a standard method that still
sees frequent use, and is included here for comparison.

The correlations, MAC and MRC, describe the best prediatioany single HMM in a collection.
They are useful for three reasons. First, itis easier topnét a single HMM, rather than interpreting
a mathematical function over a set of models (such as witlgeession). Second, it is easier to
construct an intervention from only one model at a time. Bnas will be shown later, in most
cases, two (almost linearly dependent) model-partitimmsidate other model-partitions in the same
collection. When two models classify the majority of obsshsequences, there is little difference
between the maximum correlation and the bigdtvalue. However, MAC and MRC also "cheat”.
While they are ostensibly based on the correlation of only MM with learning gain, that one
HMM is part of a greater collection. It classifies a subseggfieences because other HMMs classify
some sequences better; without the other models, even acbigélating HMM is useless as its
partition would contain all observed sequences. The gémaeapretation of these collections will
be that two models are usually the "best” classifiers, butdtizer models serve to remove specific,
non-useful sequence types from those models’ partitions.

R? and R?T are the metrics that best match the construction processoftections inStepwise-
HMM-Cluster. Linear regression is the simplest method of incorporatifgrmation from all mod-
els in a collection into a single prediction. In genedat,T will provide the best fit on training data,
in part becausStepwise-HMM-ClustensesR>T to select optimal collectionsR? and RT are
adjusted for the number of parameters when reported onrgadata, but are not adjusted when
reported on test data. In general, the adjustment will notdied here after, except in table column
he2aders. Instead, the difference will be indicatedR3yTrain) versusk?(Test), and similarly for
R°T.



Models | Max States | MAC(Train) | MAC(Test) | MRC(Train) | MRC(Test) | Adj-RZ(Train) | RZ(Test) | Adj-R>T(Train) | RZT(Test)

T
6 5 3 0.61 0.58 0.7 0.71 0.29 0.24 0.29 0.24
8 5 4 0.58 0.51 0.73 0.59 0.31 0.18 0.31 0.11
10 4 4 0.57 0.54 0.71 0.53 0.325 0.23 0.3125 0.25

Table 4: Best collections for 02, chosen By(Train)

Figure 1: Dominant model for = 6, 02 data

Table 3 is taken from the 02 data and details the maximum sdimeeach gain metric across
different values of the time threshotd for both the training data and withheld0%) test data.
Each row represents one run$tiepwise-HMM-Clusteat a fixed value of.

The primary purpose of Table 3 is to show the optimal, beseaaetrics, especially faR?(Test)
and R?T(Test). In practice, we have to choose a single collectarfidture predictive purposes,
and cannot select using our test measure. However, thedatwes our optimal test-set result, if we
could choose perfectly, is about 0.33.

Table 4, also taken from 02 data, shows the results from é¢hgdise "best” collections, i.e. the
collection, per choice of, with the highest adjusted R2(Train) score. It also showesiimmber of
models in the best collection and the maximum number of S{a¢e model in that collection. The
R?(Test) andR?T(Test) columns are particularly important as they represest-set validity. For
7 = 6 andr = 8, the R?(Test) results represent at least 80% of the best possiilsde prediction.

Additionally, whereR?(Train) andR2T(Train) are equal, there was no significant improvememhfro
adding the total count to the stepwise regression. The shige's that, for the 02 data, this is usually
the case. However, when= 10, R?(Train) andR>T(Train) are not identical. From empirical tests,
it is generally true that on the 02 data, selecting the bdkatmn with R?(Train) is more effective
than selecting wittR?T(Train); this will not hold for the 06 data.

The test-sefz? and R?T fits are all reasonable, with fairly predictive models for= 6 andr = 10.

A 0.25 R? value is equivalent to a 0.5 correlation, which is very respele for predicting overall
unit pre-post learning gain using only logged tutor data.difidnally, this methodology uses no
domain knowledge, which makes the result more impressideganeralizable.

To better understand the results, it's worth noting thatlinhaee optimal collections shown, there
is a single dominant HMM that classifies at least 40% of theisages and has a 0.5 or better
correlation with learning gain (when computed on the tragnilata). In all three collections, the
model generates predominantly Tries and Guesses. Showw beé two examples of dominant
HMMs for 7 = 6 andT = 8. The emissions are shown &gmbolProbability), e.g7'(0.8) emits a

Try symbol with 80% probability. Only symbols emitted withlaast a 20% probability are shown.

In both cases, the models emit Tries and Guesses with hidhapility and emits both symbols
equally often (over the course of many sequences). Onelpessiplanation is that these models
actually select short sequences where the student alreamyskthe answer and thus, where they
can solve the step in one try. This would indicate that thdesttihas learned the material. However,
a quick correlation between the frequency of first-try-eotrsequences and learning gain nets a
—0.24 correlation. Instead, an alternative interpretation @&sthmodels is that they represent a
persistence-trait. Students who attempt to solve repkeieel more likely to learn the material than
those that rely on hints. This is borne out by the durationeatjc nature of the model, which emits
both Tries and Guesses, as well as the lack of hints as a gecb@ission.
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Figure 2: Dominant model for = 8, 02 data
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Figure 3: Try-Guess model far= 10, 02 data

However, this raises a conflict between the results and cansmiese. The models shown in Figure
1 and Figure 2 have a high probability of emitting a sequeridgpe TGGGGG, i.e. a single Try
followed by many Guesses. This is, in the educational liteea considered a very poor learning be-
havior. Intuitively, it represents a failed attempt to sofallowed by repeated, unthinking guessing.
This disagreement can be resolved by noting that no singlgefrio any collection can be inter-
preted alone. Each model exists only as part of the entileat@n, and as such, other models in
the collection can remove specific degenerate sequendestiier = 10 collection as an example.
It contains a model, shown below, that has a high probalafigmitting Try-Guess type sequences.

The general interpretation of these results is that stedeatn more when using persistence-type
strategies, so long as they don’t just guess repeatedlgrdstingly, this is largely independent of
the choice of threshol@. This suggests that, at least for this rangeradind for persistent-type
strategies, the duration is not relevantlong asstudents do not engage in repeated guessing. This
issue will be further addressed in the Conclusions section.

It's possible, however, that selecting with a different rivetsuch as BIC, would yield better col-
lections. Figure 4 shows the BIC scores for collections om&®a forr = 6, plotted against the
AdjustedR?(Train) andR?(Test) metrics. Figure 4 clearly shows that the BIC scoreehasn-
linear relationship with learning gain prediction, on hiaig or test data, and that thus BIC is a poor
metric for choosing collections of HMMs. There may existtbemetrics than BIC ofz?(Train) for
this task, but it's clear thak?(Train)’s success is non-trivial.

Still, this result may be data-set dependent, so an expatiorea second data set is essential. For
this, there is the 06 data, which, compared to the 02 datadiffasent students in different class-
rooms using a different version of the Geometry Cognitiveor.uJnfortunately, a direct application
of the above method is ineffective: if the best collections eéhosen using th&2(Train) metric,
none of them have decent test-set results. In fact, noneedbth5R?(Train) collections for each
choice ofr have test-set performance on par with the 02 data results.

Practically, there are reasons to suspett(Train) is a better metric for the 06 data, regardless of
the test-set performance. There is more variation in thebauwf sequences between students in the
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Models | Max States | Adj-RZ(Train) | RZ(Test) | Adj-R>T(Train) | R2T(Test)

p
6 3 8 0.26 0.26 0.35 0.26
8 3 5 0.18 0.19 0.28 0.22
10 6 5 0.44 0.19 0.49 0.17

Table 5: Best collections for 06, chosen By T(Train)

06 data than in the 02 data, which suggests a greater impertanthe total number of sequences in
any regression. Unfortunately, at first glance, selectingbr (Train) does not improve results. The
top collections still have poor test-set performance, irt pacause they have 7 or 8 models apiece.
However, within the top 3 collections for each choicerpthere is a collection with a nearty2 R?
score on test-data. These collections all have one thingriimuon: fewer models. They are shown
in Table 5.

ForT = 6 andr = 8, the otherR?T(Train) collections have at least 7 models, so if a stricter
complexity penalty was used, it would likely select the 3dw®locollections. For = 10, this is not

as clearly evident. However, putting aside the choice déctibn, these best collections exhibit the
same overall form as was seen in the 02 collections. For eleqiinge dominant model for = 6 is
shown in Figure 5. The interpretation of this model is the sa® the models from Figure 1 and
Figure 2, namely that of persistence. The presence of thitehio the best collections across data
sets and values of is highly suggestive that persistent-attempts is a verit@mt strategy.

In general, across all collections shown, hint-heavy stjias are negatively associated with learn-
ing. However, this should not be interpreted too broadlynivaf the more complex collections (4
or 5 models) contain a "noise” model which generates mostiplessequences with nearly uniform
probability. Thus, the hint-heavy strategies are actuadlyy focused on specific types of hint re-
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Figure 5: Dominant model for = 6, 06 data
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quests, usually Drill requests. Some positive-learningef®involve hints as well. For example, in
Figure 5, there is actually a 30% chance of generating a Resd®n as the first action, before a
series of attempts.

6 Conclusions

Using a traditional HMM clustering algorithm with fixed valsi of K, the number of models, and
N, the number of states per model, it is possible to find caastof HMMs that predict learning.
These models not only predict learning, but because the Hitelselatively small, they are human-
interpretable as classes of student strategies. Howénghasic learning algorithm requires many
random restarts, and it's unclear how to prevent the algoritrom "fishing” for results and thus
overfitting.

An alternative approach is to iteratively increase the &alof X' and NV, keeping at each iteration an
optimal collection of HMMs from prior iterations. This apggach, calledstepwise-HMM-Clustere-
quires fewer clusterings to converge to a highly prediatiaglel. Further, it avoids pre-hoc choices
for K and NV, biases strongly towards smaller models, provides betttrset predictions, and in-
corporates external measures of learning gain.

We showed that usin§tepwise-HMM-Clustefound collections with high training-set prediction
accuracy, even after adjusting for the number of models inlleation. Further, for the 02 data,

withholding part of the data as a test-set still resulteddcugate predictions, on the order of a 0.5
correlation. For the other data set, a more heavily perthlsdection criterion also gave similar
correlations. This algorithm satisfies the primary goalsiofeducational data mining method: it
produces interpretable models, provides good fits acrasssa#s, and not only fits the tutor data,
but predicts actual learning outcomes.

Additionally, generalization from a learning sciencesspective is not a simple matter of successful
predictions on test data: it requires the production of galnearning principles that can be applied
independently of any given parametric mod@&tepwise-HMM-Clusteproduced such a general
principle. Our results provide a strong argument that ba#ffolding as it is presently used is not
actually very effective and that most learning results fprsistent attempts to solve. This suggests
a new paradigm for tutoring system design that emphasitempts and provides hints or worked
examples only when strictly necessary to keep the studemainathg in the curriculum.

There are several directions for future work. First, presearch has shown that spectral clustering
of HMMs tends to outperform E-M clustering of HMMs. Spectchlstering had an additional ad-
vantage of returning only a single result. However, it iselear how to constrain spectral clustering
algorithms to produce interpretable models. SecondsStepwise-HMM-Clustetthe choice ofr

is a difficult one. A more principled method for choosing theeshold value would be useful, but
more importantly, an understanding of the role of time irdstut-tutor action sequences would be
invaluable. For example, it's possible that there are thypes of actions ("Fast”,"Medium”, and
"Slow”), or that there are different optimal thresholds @isiferent types of actions. One approach to
resolving this question would be to learn models that uséimoeous distributions for emitting dura-
tions and to use those distributions to set the thresholdsesholding the duration is still essential
in the long-run to produce general learning principles.

There are also questions of generalization. First, doesntgthod or these models generate to
other domains? Can a single collection be learned suchttbanibe used (perhaps after some data
preprocessing) to predict learning in other data sets? éfchurse, can the principle of persistence

be applied to either future tutor designs or to the creatf@dacational interventions?
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