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Abstract

In this study, the authors consider several indices to indicate whether multidimen-
sional data are ‘‘unidimensional enough’’ to fit with a unidimensional measurement
model, especially when the goal is to avoid excessive bias in structural parameter
estimates. They examine two factor strength indices (the explained common variance
and omega hierarchical) and several model fit indices (root mean square error of
approximation, comparative fit index, and standardized root mean square residual).
These statistics are compared in population correlation matrices determined by
known bifactor structures that vary on the (a) relative strength of general and group
factor loadings, (b) number of group factors, and (c) number of items or indicators.
When fit with a unidimensional measurement model, the degree of structural coeffi-
cient bias depends strongly and inversely on explained common variance, but its
effects are moderated by the percentage of correlations uncontaminated by multidi-
mensionality, a statistic that rises combinatorially with the number of group factors.
When the percentage of uncontaminated correlations is high, structural coefficients
are relatively unbiased even when general factor strength is low relative to group
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factor strength. On the other hand, popular structural equation modeling fit indices
such as comparative fit index or standardized root mean square residual routinely
reject unidimensional measurement models even in contexts in which the structural
coefficient bias is low. In general, such statistics cannot be used to predict the magni-
tude of structural coefficient bias.
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Scientists use latent variable modeling procedures such as structural equation model-

ing (SEM; Bollen, 1989) or item response theory (IRT; Embretson & Reise, 2000) to

operationalize psychological constructs, to scale individual differences, and, when

the scientific goal is to explore the relations among psychological constructs with

SEM, to control for measurement error. To use classic SEM and IRT estimators,

however, researchers often make local independence assumptions that may not hold

in their data. In commonly used IRT models, for example, researchers must assume

(among other things) that only a single common factor underlies the measured items

and produces covariance among them. Similarly, in SEM, researchers often apply a

‘‘unidimensional’’ measurement model in which the correlations among indicators

are zero after controlling for the latent variable.

In IRT, violations of unidimensionality are referred to as local dependencies

among items, whereas in SEM they are referred to as correlated uniqueness. Despite

the different descriptors, the consequences of violating local independence are simi-

lar: When data have been sampled from a population that does not match the model’s

assumptions, the latent variable may be improperly identified, such that the item

parameters (slopes in IRT, loadings in SEM) cannot be estimated accurately; conse-

quently, modeling applications such as scaling individual differences in IRT or

exploring the relations among latent variables in SEM can be inaccurate and

misleading.

Researchers know that, in practice, the great majority of measures of complex psy-

chological constructs simply are not locally independent based on a single factor—

thus, strictly speaking, measures are not unidimensional. This creates a dilemma;

although violations of local independence may result in severe bias levels, they may

not. Thus, in IRT, many experts have provided suggestions for deciding whether data

are ‘‘unidimensional enough,’’ such that model parameters are estimated with limited

bias. In fact, the IRT literature is awash with studies of the robustness of IRT model

parameter estimates to violations of unidimensionality (Drasgow & Parsons, 1983;

Reise, Cook, & Moore, in press; Reise, Morizot, & Hays, 2007), methods for statisti-

cally detecting multidimensionality violations (Hattie, 1985; McDonald & Mok,

1995), controlling for multidimensionality (Ip, 2010; Wainer, Bradlow, & Wang,

2007), and judging whether item response data are ‘‘essentially’’ unidimensional
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(Stout, 1987). These latter ‘‘unidimensional enough’’ indices almost always are some

function of first-factor strength, such as the ratio of first to second eigenvalues

(Embretson & Reise, 2000) or some other index of degree of multidimensionality

such as the DETECT procedure (Zhang & Stout, 1999).

In SEM, although the potential biasing effects of forcing multidimensional data

into a unidimensional measurement model are well known (e.g., biased parameter

estimates can lead to biased structural coefficient estimates), relatively less attention

has been given to statistics that directly assess the degree of structural parameter bias

resulting from this type of model misspecification. One reason is that, until recently,

SEM software allowing for efficient analyses of dichotomous or polytomous item-

level data generally was not available. As such, latent variables commonly were rep-

resented through item parcels, not items. It seemed odd, however, to perform a thor-

ough ‘‘dimensionality analysis’’ for a set of three or four parcels used to define a

latent variable. The troubling practice of burying multidimensionality in the item

responses in parcels, however, finally is attracting attention (e.g., Bandalos, 2002;

Meade & Kroustalis, 2006; Sterba & MacCallum, 2012).

The second reason is that instead of thoroughly examining item-level dimension-

ality, SEM researchers tend to concentrate on establishing the ‘‘fit’’ of the measure-

ment model prior to estimating the full structural model, which includes relations

among constructs. Although seldom stated, generally, it is assumed that if the item

response data fit the measurement model according to commonly employed

goodness-of-fit indices—for example, the comparative fit index (CFI), the root mean

square error of approximation (RMSEA), and the standardized root mean residual

(SRMR)—then parameter estimates in the structural model are unbiased, and it is

safe to proceed with further model enhancement and evaluation.1 When the values of

these indices are used to judge whether a unidimensional measurement model pro-

vides an ‘‘adequate’’ fit to the data, essentially they are being used in the same way

as ‘‘first-factor strength’’ indices in IRT; that is, fit indices are used in practice as

indicators that the data are ‘‘unidimensional enough’’ to avoid serious bias in model

parameters.

In the present article, our primary objective is to examine statistics whose purpose

is not to assess whether a measurement model specified as locally independent or

unidimensional is misspecified but rather to assess the size of the biasing effect of

multidimensionality on structural parameter estimates in an SEM specified as unidi-

mensional. We expect our findings to inform scale construction practice by identify-

ing conditions where the effect of multidimensionality on identifying a common

factor is minimal. The secondary goal is to demonstrate that the standard practice in

SEM described earlier, one that relies on model fit indices, is insufficient and to sug-

gest a better alternative based on computing factor strength indices. Specifically,

drawing from the IRT literature, which emphasizes factor ‘‘strength’’ as opposed to

model ‘‘fit’’ investigations, we conduct a series of demonstrations to clarify the

effects of forcing multidimensional data into a unidimensional measurement model

in an SEM context.2
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Our study of model misspecification and parameter bias differs from others in at

least two ways. First, our model for multidimensionality is neither the commonly

used ‘‘single small secondary nuisance factor’’ (e.g., a reading ability dimension

influencing responses to several items on a mathematics test) nor the standard

‘‘correlated-traits’’ representation (Kirisci, Hsu, & Yu, 2001), so commonly seen in

IRT robustness studies. We use a bifactor model—a latent structure where all items

load on a general dimension and on one of several group factors (Holzinger &

Swineford, 1937). Recently, several authors have argued that a bifactor model is a

more realistic representation of complex psychological constructs (e.g., Chen, Hayes,

Carver, Laurenceau, & Zhang, 2012; Reise, in press; Thomas, 2012). Second, our

chief concern is bias in structural coefficients (sometimes called validity coefficients)

rather than bias in factor loadings. Of course, we recognize that bias in the former

depends in some fashion on bias in the latter. Nevertheless, from an applied perspec-

tive, we believe that researchers are more concerned with bias in structural parameters

(which play a critical role in their theories) than they are with the specific bias in fac-

tor loadings (which rarely are of theoretical interest outside of psychometric reports).

Method

All our populations are determined by a ‘‘perfect’’ bifactor model. We did not con-

sider situations in which the group factors were imbalanced, the items loaded on more

than one group factor, or the group factors were correlated. In the discussion, we con-

sider the generalizability of our results and address potential limits.

Simulation Procedure

To determine a population measurement model MMtrue for our general factor Gen,

we specify the factor loadings (l) for a bifactor model3 (which include the relative

strength of the factor loadings on Gen vs. the factor loadings on the group factors),

the number of items, and the number of group factors. The population model was

‘‘strictly’’ bifactor (Figure 1B; Holzinger & Swineford, 1937)—with each item load-

ing on the general factor and one and only one group factor and with all factors

orthogonal.4 Importantly, within each of our conditions, the bifactor model had

balanced group factors, that is, the same number of items and same loadings.

Next, we specified a criterion latent variable that was measured by three continu-

ous normally distributed indicators. For all conditions, the loadings of the indicators

on the criterion latent variable were .60, .65, and .70 (see Figure 1C). These values

were selected to represent ‘‘good’’ criterion measurement. After specifying a struc-

tural path coefficient for the effect of the target latent variable Gen on the criterion,5

we used the complete model to derive an implied population correlation matrix. In

the following, we illustrate the results when the structural coefficient was fixed to

.50. Our preliminary investigations (not shown) revealed that although the absolute

bias in structural coefficient depends on the size of the true coefficient, the relative
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bias (expected estimated value/population value) does not. As a consequence, all the

critical points we wish to make here can be achieved using a single criterion value.

Given the true population correlation matrix, the final step involves specifying a

unidimensional measurement model for Gen (MMest) and estimating the parameters

(Figure 1A). EQS (Bentler, 2006) was used for all analyses. For each condition, two

analytic models were run. In the first analytic model, only a unidimensional measure-

ment model for the predictor items was specified, so group factors were not esti-

mated. This model was used to record fit indices and factor loadings and reflects a

preliminary investigation of whether the model has sufficient fit to proceed to fit a

structural model. Because group factors were present in the data-generating model

but were not specified in this first analytic model, technically, the model was misspe-

cified. In such cases, we expected that fit indices would not meet typical thresholds

for acceptance of the model, implying that the model should be rejected. Because we

Figure 1. Unidimensional and bifactor measurement models for Gen (general factor) and
structural model where measured variables are boxed, latent variables are standard normal
variates with mean 0 and variance 1, shown in circles
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were interested in assessing structural bias in the presence of model misspecification,

the first analytic model provides evidence of the magnitude of misspecification or

the magnitude of model misfit to the data on the predictor variables. In the second

analytic model, the criterion items and a structural path were included, and estimated

structural coefficients were recorded.

Data Structures

In total, six bifactor data structures were specified that varied in the number of items,

number of group factors, and number of items per group factor. Specifically, these

were as follows:

These data structures were designed to vary in ‘‘percentage of uncontaminated

correlations’’ (PUC). Consider Structure 1, which has nine items, three group factors,

and three items per group factor. There are (9 3 8)/2 = 36 unique correlations among

nine items. If the structure is bifactor, however, correlations among the items within

group factors are affected by two sources of variance (general and group). In

Structure 1, there are 3 unique correlations within each group factor times 3 group

factors equaling 9 correlations that arise from both Gen and the group factor and,

thus, are confounded when estimating factor loadings on Gen with a model specified

as unidimensional. In turn, all correlations among items from different group factors

arise solely from the general factor. In Structure 1, there are 36 2 9 = 27 such corre-

lations. Thus, the PUC for the first condition was 27/36 = .75. PUC values for the

five remaining conditions described above were .71, .88, .69, .86, and .94, respec-

tively. As will be clear shortly, PUC is an important factor in moderating the effects

of factor strength on the biasing effects of forcing bifactor data into a unidimensional

model.

Within each of the six structures, we specified a completely crossed design with

five levels of loadings on the general factor (.3, .4, .5, .6, and .7) and four levels of

loadings on the group factors (.3, .4, .5, and .6).6 The reasoning behind the factor

loading values is that we believed that any item set with average loadings of less than

Structure Number of
items

Number of
group factors

Items per
group factor

Percentage of uncontaminated
correlations

1 9 3 3 .75
2 18 3 6 .71
3 18 6 3 .88
4 36 3 12 .69
5 36 6 6 .86
6 36 12 3 .94
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.30 is not worth considering. Moreover, we limited the average loadings for the group

factors to .60 (note: this limit also prevented computational difficulties). Thus, the

total number of conditions = 6 structures times 5 levels of the general factor times

4 levels of the group for a total of 120 conditions.

Strength Indices

For each condition, two ‘‘factor strength’’ indices were calculated. First, based on the

population loading matrix, we computed the explained common variance (ECV; see

Reise, Moore, & Haviland, 2010, in press; Ten Berge & Socan, 2004), which is the com-

mon variance explained by the general factor divided by the total common variance (see

Equation 1, where Gen is the general factor and GR1 to GR3 are three group factors).

ECV =

P
l2

GenP
l2

Gen +
P

l2
GR1 +

P
l2

GR2 +
P

l2
GR3

: ð1Þ

The ECV index is a natural and easy-to-interpret index of the degree of unidimen-

sionality, or relative strength, of general to group factors. The ECV can be high

whenever there is little common variance beyond the general trait, regardless of the

size of the item loadings on the general trait. Also, note that with the present design,

ECV values are unaffected by the number of items on a test or PUC.

Second, based on the population loading matrix, for each condition, we computed

coefficient omega hierarchical (omegaH; McDonald, 1999; Zinbarg, Revelle, Yovel,

& Li, 2005; Zinbarg, Yovel, Revelle, & McDonald, 2006) as shown in Equation 2,

where R is a population correlation matrix and Gen is the general factor in a bifactor

model. When data are bifactor, relative to ECV, is a more direct index of general fac-

tor strength (sometimes referred to as first-factor saturation) than it is an indicator of

degree of unidimensionality per se (i.e., how much common variance is due to the

general trait).

omegaH =

P
lGenð Þ2
P

R
: ð2Þ

Moreover, values of omegaH can be interpreted as an estimator of how much var-

iance in summed (standardized) scores can be attributed to the single general factor

(McDonald, 1999). All else being equal and assuming that all items load on the gen-

eral factor, omegaH values increase as test length increases; for this reason it is pos-

sible for omegaH to be very high even in the presence of clear multidimensionality.

OmegaH values also are affected by PUC as explained in more detail shortly.

Model Fit Indices

For each condition, we also computed the following three fit indices: (a) the SRMR

(Bentler, 2006; Hu & Bentler, 1999), (b) the RMSEA (Browne & Cudeck, 1993), and
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(c) the CFI (Hu & Bentler, 1999). We chose these three indices for their diversity,

their popularity in the research literature (i.e., at least the normal-theory versions),

and their endorsement by psychometricians. Various authors have recommended dif-

ferent benchmarks for adequate fit or for distinguishing between correctly specified

and misspecified models. Here we use those recommended by Hu and Bentler

(1999); namely, RMSEA = .06, SRMR = .08, and CFI = .95. Given that in the popula-

tion the true factor structures are bifactor and the fitted models are unidimensional, in

theory, these indices should indicate that all models are misspecified. Nevertheless,

given the known confounds and limitations of these indices (West, Taylor, & Wu, in

press), we are not particularly interested in their power to identify that the wrong

model has been fitted. Rather, our interest here is whether these fit values are infor-

mative as to the degree of structural coefficient bias. In other words, are these popular

fit indices good proxies for the degree of structural coefficient bias?

Results

Tables 1 through 6 show the results for each test structure condition. In the bottom

row of each table are means within condition. Within each table, results are ordered

by ECV values (relative general factor strength) from lowest to highest.

Figure 2. Estimated Structural Coefficient as a Function of ECV, OmegaH, and PUC Across
All Conditions.
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Table 1. Structure 1: 9 Items, 3 Group Factors, and 3 Items per Group Factor

General Group ECV OmegaH RMSEA CFI SRMR Loading Validity

.3 .6 .20 .33 .19 .41 .14 .45 .35

.3 .5 .26 .37 .13 .53 .10 .42 .38

.4 .6 .31 .48 .21 .50 .14 .53 .40

.3 .4 .36 .40 .08 .70 .06 .39 .42

.4 .5 .39 .52 .14 .65 .10 .50 .42

.5 .6 .41 .60 .24 .57 .14 .62 .43

.3 .3 .50 .43 .04 .89 .03 .37 .45

.4 .4 .50 .55 .09 .80 .06 .48 .45

.5 .5 .50 .64 .16 .72 .10 .59 .45

.6 .6 .50 .70 .29 .59 .14 .71 .45

.7 .6 .58 .78 .38 .57 .14 .80 .46

.6 .5 .59 .74 .19 .75 .10 .69 .46

.5 .4 .61 .68 .10 .85 .06 .57 .46

.4 .3 .64 .59 .04 .94 .03 .46 .47

.7 .5 .66 .81 .24 .75 .10 .78 .47

.6 .4 .69 .77 .12 .88 .06 .67 .47

.5 .3 .74 .71 .05 .95 .03 .56 .48

.7 .4 .75 .84 .15 .88 .06 .77 .48

.6 .3 .80 .80 .06 .96 .03 .66 .49

.7 .3 .85 .86 .08 .96 .03 .75 .49

.5 .45 .54 .63 .15 .74 .08 .59 .45

Note: ECV = explained common variance; OmegaH = omega hierarchical; RMSEA = root mean square

error of approximation; CFI = comparative fit index; SRMR = standardized root mean square residual.

Percentage of uncontaminated correlations = .75.

Table 2. Structure 2: 18 Items, 3 Group Factors, and 6 Items per Group Factor

General Group ECV OmegaH RMSEA CFI SRMR Loading Validity

.3 .6 .20 .37 .15 .41 .16 .44 .34

.3 .5 .26 .43 .11 .53 .11 .40 .37

.4 .6 .31 .52 .17 .49 .16 .52 .39

.3 .4 .36 .49 .07 .68 .07 .37 .41

.4 .5 .39 .58 .11 .62 .11 .48 .41

.5 .6 .41 .64 .19 .54 .16 .60 .42

.4 .4 .50 .64 .07 .77 .07 .46 .44

.5 .5 .50 .69 .13 .68 .11 .57 .44

.6 .6 .50 .73 .22 .57 .16 .68 .44

.3 .3 .50 .54 .03 .89 .04 .34 .44

.7 .6 .58 .79 .29 .54 .16 .77 .45

.6 .5 .59 .77 .15 .71 .11 .66 .46

.5 .4 .61 .74 .08 .82 .07 .54 .46

.4 .3 .64 .69 .03 .93 .04 .43 .46

.7 .5 .66 .83 .19 .71 .11 .75 .47

.6 .4 .69 .82 .10 .84 .07 .64 .47

.5 .3 .74 .79 .04 .94 .04 .53 .48

.7 .4 .75 .87 .12 .84 .07 .73 .48

.6 .3 .80 .86 .05 .95 .04 .62 .48

.7 .3 .85 .90 .07 .94 .04 .72 .49

.5 .45 .54 .68 .12 .72 .10 .56 .44

Note: ECV = explained common variance; OmegaH = omega hierarchical; RMSEA = root mean square

error of approximation; CFI = comparative fit index; SRMR = standardized root mean square residual.

Percentage of uncontaminated correlations = .71.
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Table 3. Structure 3: 18 Items, 6 Group Factors, and 3 Items per Group Factor

General Group ECV OmegaH RMSEA CFI SRMR Loading Validity

.3 .6 .20 .50 .13 .36 .11 .36 .41

.3 .5 .27 .54 .08 .52 .08 .35 .43

.4 .6 .31 .65 .14 .47 .11 .45 .44

.3 .4 .36 .57 .05 .73 .05 .33 .45

.4 .5 .39 .68 .09 .65 .08 .44 .46

.5 .6 .41 .75 .16 .55 .11 .54 .46

.3 .3 .50 .60 .01 .98 .03 .32 .47

.4 .4 .50 .71 .05 .83 .05 .42 .47

.5 .5 .50 .78 .11 .72 .08 .53 .47

.6 .6 .50 .83 .19 .58 .11 .63 .47

.7 .6 .58 .88 .25 .55 .11 .73 .48

.6 .5 .59 .85 .13 .75 .08 .62 .48

.5 .4 .61 .81 .06 .87 .05 .52 .48

.4 .3 .64 .74 .02 .98 .03 .41 .48

.7 .5 .66 .90 .16 .74 .08 .72 .49

.6 .4 .69 .87 .08 .89 .05 .62 .49

.5 .3 .74 .83 .02 .98 .03 .51 .49

.7 .4 .75 .91 .10 .88 .05 .71 .49

.6 .3 .80 .89 .03 .97 .03 .61 .49

.7 .3 .84 .93 .05 .97 .03 .71 .49

.5 .45 .54 .76 .10 .75 .07 .53 .47

Note: ECV = explained common variance; OmegaH = omega hierarchical; RMSEA = root mean square

error of approximation; CFI = comparative fit index; SRMR = standardized root mean square residual.

Percentage of uncontaminated correlations = .88.

Table 4. Structure 4: 36 Items, 3 Group Factors, and 12 Items per Group Factor

General Group ECV OmegaH RMSEA CFI SRMR Loading Validity

.3 .6 .20 .40 .12 .42 .16 .45 .33

.3 .5 .26 .47 .08 .53 .11 .41 .37

.4 .6 .31 .55 .13 .48 .16 .52 .38

.3 .4 .36 .55 .05 .68 .07 .37 .40

.4 .5 .39 .62 .09 .61 .11 .49 .41

.5 .6 .41 .66 .14 .53 .16 .60 .41

.6 .6 .50 .74 .16 .55 .16 .69 .44

.4 .4 .50 .69 .06 .76 .07 .46 .44

.5 .5 .50 .72 .10 .66 .11 .57 .44

.3 .3 .50 .63 .02 .91 .04 .34 .44

.7 .6 .58 .80 .21 .52 .16 .78 .45

.6 .5 .59 .79 .11 .69 .11 .66 .45

.5 .4 .61 .78 .06 .80 .07 .55 .46

.4 .3 .64 .76 .03 .93 .04 .43 .46

.7 .5 .66 .84 .14 .69 .11 .75 .46

.6 .4 .69 .84 .08 .82 .07 .64 .47

.5 .3 .74 .84 .03 .94 .04 .53 .47

.7 .4 .75 .89 .09 .82 .07 .73 .48

.6 .3 .80 .89 .04 .94 .04 .62 .48

.7 .3 .84 .92 .05 .93 .04 .72 .49

.5 .45 .54 .72 .09 .71 .10 .57 .44

Note: ECV = explained common variance; OmegaH = omega hierarchical; RMSEA = root mean square

error of approximation; CFI = comparative fit index; SRMR = standardized root mean square residual.

Percentage of uncontaminated correlations = .69.
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Table 5. Structure 5: 36 Items, 6 Group Factors, and 6 Items per Group Factor

General Group ECV OmegaH RMSEA CFI SRMR Loading Validity

.3 .6 .20 .54 .11 .33 .12 .38 .40

.3 .5 .26 .60 .07 .47 .09 .35 .42

.4 .6 .31 .69 .12 .43 .12 .46 .43

.3 .4 .36 .65 .04 .69 .05 .34 .45

.4 .5 .39 .73 .08 .58 .09 .44 .45

.5 .6 .41 .78 .13 .49 .12 .55 .46

.5 .5 .50 .82 .09 .65 .09 .53 .47

.3 .3 .50 .70 .01 .99 .03 .32 .47

.6 .6 .50 .84 .16 .52 .12 .64 .47

.4 .4 .50 .78 .05 .78 .05 .43 .47

.7 .6 .58 .88 .20 .49 .12 .74 .48

.6 .5 .59 .87 .11 .69 .09 .63 .48

.5 .4 .61 .85 .06 .82 .05 .52 .48

.4 .3 .64 .82 .01 .97 .03 .42 .48

.7 .5 .66 .91 .14 .68 .09 .73 .48

.6 .4 .69 .90 .07 .84 .05 .62 .48

.5 .3 .73 .88 .02 .97 .03 .51 .49

.7 .4 .75 .93 .09 .83 .05 .72 .49

.6 .3 .80 .92 .03 .96 .03 .61 .49

.7 .3 .84 .95 .04 .95 .03 .71 .49

.5 .45 .54 .80 .08 .71 .07 .53 .47

Note: ECV = explained common variance; OmegaH = omega hierarchical; RMSEA = root mean square

error of approximation; CFI = comparative fit index; SRMR = standardized root mean square residual.

Percentage of uncontaminated correlations = .86.

Table 6. Structure 6: 36 Items, 12 Group Factors, and 3 Items per Group Factor

General Group ECV OmegaH RMSEA CFI SRMR Loading Validity

.3 .6 .20 .67 .08 .37 .08 .33 .45

.3 .5 .26 .70 .05 .57 .06 .32 .46

.4 .6 .31 .79 .09 .49 .08 .42 .47

.3 .4 .36 .72 .03 .85 .04 .31 .48

.4 .5 .39 .81 .06 .69 .06 .42 .48

.5 .6 .41 .86 .11 .56 .08 .52 .48

.3 .3 .50 .75 .00 1.00 .02 .31 .49

.4 .4 .50 .83 .03 .89 .04 .41 .49

.5 .5 .50 .88 .07 .75 .06 .51 .49

.6 .6 .50 .91 .13 .59 .08 .62 .49

.7 .6 .58 .93 .17 .56 .08 .71 .49

.6 .5 .59 .92 .08 .77 .06 .61 .49

.5 .4 .61 .89 .04 .91 .04 .51 .49

.4 .3 .64 .85 .00 1.00 .02 .41 .49

.7 .5 .66 .95 .11 .75 .06 .71 .49

.6 .4 .69 .93 .05 .91 .04 .61 .49

.5 .3 .74 .91 .00 1.00 .02 .51 .49

.7 .4 .75 .96 .06 .90 .04 .71 .50

.6 .3 .80 .94 .01 1.00 .02 .60 .50

.7 .3 .84 .96 .03 .98 .02 .70 .50

.5 .45 .54 .86 .06 .78 .05 .51 .49

Note: ECV = explained common variance; OmegaH = omega hierarchical; RMSEA = root mean square

error of approximation; CFI = comparative fit index; SRMR = standardized root mean square residual.

Percentage of uncontaminated correlations = .94.
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We consider first the strength indices within condition and when aggregated across

conditions. Figure 2 displays the relation between each strength index (omegaH,

ECV, and PUC) and the estimated structural coefficient when results are aggregated

across the six test structure conditions. In Figure 2, a horizontal dashed line is drawn

at structural coefficient equals .45, a 10% bias in the estimate of the structural coeffi-

cient, which we take to be the threshold for ‘‘severe’’ bias. This value was taken from

Muthén, Kaplan, and Hollis (1987), who note that ‘‘bias of less than 10% to 15%

could be considered negligible’’ (cited in Bandalos, 2002, p. 94).

For each structure, there is a monotonic, but nonlinear, relation between ECV and

structural coefficient bias—the higher the ECV, the less the bias. This implies that

holding the model structure constant, variation in ECV accounts for variation in the

bias of the structural coefficient. Across Tables 1 through 6, however, within each

general and group factor loading level, ECV values do not change as a function of

either test length or test structure; the average level of structural bias, however, does

change. Thus, the plot of ECV versus structural coefficient estimates shown in the

top panel of Figure 2 is challenging to interpret. On one hand, high values of ECV

(..60) almost always are associated with relatively low bias in the structural coeffi-

cient. On the other hand, lower ECV values are related inconsistently to bias in the

Figure 3. The Interaction Between ECV and PUC in Predicating Structural Coefficient Bias.
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structural coefficient. Clearly, the relationship between ECV and bias depends on

another factor, specifically, the PUC.

To understand the moderating effects of PUC, consider first the bottom panel of

Figure 2 showing that the average level of structural coefficient bias decreases as

PUC increases. In Figure 3, a set of panels shows the relationship between ECV and

structural coefficient estimates within each test structure condition (PUC level). The

panels are ordered by PUC value, and within each panel, a horizontal line is drawn

at the 10% bias point, and a vertical line is drawn at the lowest ECV value that results

in less than 10% structural coefficient bias. Clearly, the effect of ECV on structural

coefficient bias is moderated by PUC. For example, in the 9.3.3 condition, ECV val-

ues of .50 and higher are associated with validity coefficients of .45 and higher. In the

36.12.3 condition, ECV values as low as .20 are associated with structural coefficients

of .45 and higher. Finally, a regression predicting the structural coefficient based on

ECV, PUC, and their interaction yielded the parameters shown in Equation 3, with

R2 = .94, F(3, 116) = 638, p \ .001, with all coefficients significant at p \ .01.

B = �0:0485 + :647 ECVð Þ+ :529 PUCð Þ � :612 ECV 3 PUCð Þ: ð3Þ

We now turn our attention to an alternative strength index, coefficient omegaH.

Within-condition correlations between ECV and omegaH are around r = .90, and the

correlation is r = .78 when data are aggregated across conditions. Unsurprisingly,

within each test structure condition, omegaH values also are monotonically related to

bias in the structural coefficient but not as consistently as ECV. This inconsistency

occurs because omegaH is more sensitive to the size of the general factor loading,

rather than the relative strength of the general to group factors. For example, con-

sider that within each test structure condition, when the general factor loading equals

the group factor loading, ECV always is .50, but omegaH always is higher for the

condition with the larger general factor loading.

Unlike ECV, the average value of omegaH changes as a function of test length

and particular bifactor structure (PUC). Generally, as test length increases, so does

the average omegaH, but this is not always the case; consider that the 36.3.12 condi-

tion has an average omegaH = .72, whereas the shorter 18.6.3 condition has an aver-

age omegaH = .76. Test structure also plays a role in that, holding test length

constant, omegaH is relatively higher when more group factors and fewer items per

group factor (i.e., the factors that determine PUC). This effect is obvious considering

Equation 2. Specifically, the denominator of Equation 2 simply is the modeled raw

score variance, and thus Equation 2 could be written as Equation 4:

P
lGenð Þ2

P
lGenð Þ2 +

P
lGRP1ð Þ2 +

P
lGRP2ð Þ2 +

P
lGRP3ð Þ2 +

P
i = 1 1� h2

ið Þ
: ð4Þ

When written this way, it is clear that, all else being equal, fewer and larger group

factors result in lower PUC values and relatively lower omegaH, and many smaller

group factors result in higher PUC values and relatively higher omegaH.
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Despite the fact that the average omegaH changes across conditions, the findings

in the middle panel of Figure 2 display much the same effect as for ECV; namely, at

high values of omegaH (..80), structural coefficients display little bias, but at lower

values the relation between omegaH and the structural coefficient is quite variable.

Such findings greatly complicate any attempts to suggest an empirically informed

‘‘benchmark’’ for omegaH values, and, thus, as earlier, we must consider the interac-

tion between PUC and omegaH. Figure 4 displays a set of panels showing the rela-

tion between omegaH and structural coefficients within each PUC level. However,

now the panels are ordered by the average omegaH value rather than PUC, and the

vertical lines now indicate the average omegaH value within condition.

Clearly, both the number of items and PUC play a role in affecting the average

omegaH value within condition and affect the relation between omegaH and struc-

tural coefficient bias. When both are high, omegaH values tend to become larger

with a truncated lower tail (i.e., the minimum value increases). Finally, to discern the

unique role of omegaH in predicting structural bias, we added omegaH into

the regression model shown in Equation 3. This resulted in an R2 value of .95,

F(4, 115) = 518, df = 4 and 115, p \ .001, and the regression weight for omegaH

was only b = .03 (p \ .01). The change in R2 value from model 3 was not

Figure 4. The Interaction Between OmegaH and PUC in Predicating Structural Coefficient
Bias.
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significant, and thus, we conclude that once ECV, PUC, and their interaction are

taken into account, omegaH makes no further direct contribution to the prediction of

bias under the present conditions.

Two findings are of particular note, thus far. First, it appears that relative general

factor strength, as assessed by ECV, is more important in influencing structural

parameter bias than is general factor saturation, as assessed though omegaH. Second,

regardless of how it is assessed, ‘‘factor strength’’ is of critical importance in deter-

mining bias in structural parameter estimates under the present conditions; it by no

means, however, tells the entire story. In understanding and predicting structural

bias, researchers should consider both factor strength and the data structure and, in

particular, the PUC value.

We now consider the performance of practical fit indices. Figure 5 displays three

panels showing relations between fit indices and structural coefficient estimates

across conditions. As noted, one possible use of such indices is as a guide for indicat-

ing when a model is misspecified. In the present case, the unidimensional model is a

misspecified model, but the degree of that misspecification varies, arguably as a

function of ECV, which also can be thought of as a degree of unidimensionality

index. Nevertheless, for each fit index, many models that are wrong in the population

clearly are deemed ‘‘acceptable’’ using standard benchmarks. In terms of the present

Figure 5. The Relation Between RMSE, CFI, and SRMR With the Estimated Structural
Coefficient Across Conditions.
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study, this is not a concern because we have no interest in judging these indices by

their ability to detect that multidimensional (bifactor) data have been fit to a unidi-

mensional model.

The salient question here is whether the values of fit indices can be used to project

bias. The linear correlations between fit and structural coefficient are 2.30, .67, and

2.67 for RMSEA, CFI, and SRMR, respectively. These are in contrast to the r = .77

for ECV and r = .88 for omegaH considered across conditions. In the top panel of

Table 5, unacceptable RMSEA values ranging from .10 to .20 are sometimes coinci-

dent with structural coefficient estimates with relatively small bias, but, under some

conditions, acceptable values of RMSEA are coincident with severe bias in structural

coefficient. This is not too surprising in the present conditions given that RMSEA is

only weakly associated with factors that determine structural coefficient bias, such as

the strength indices ECV (r = 2.24) and omegaH (r = 2.12), and mean RMSEA

changes little with changes in PUC values. A regression equation including RMSEA,

PUC, and their interaction resulted in an R2 value of only .29—arguing against any

attempt to interpret its value as a ‘‘unidimensional enough’’ index.

On the other hand, CFI and SRMR appear more promising as ‘‘unidimensional

enough’’ indices. This is partially because each of these indices is related to the fac-

tors that influence bias. Across conditions, CFI is correlated r = .80 with ECV, r =

.49 with omegaH, but essentially unrelated to PUC (r = .09). SRMR is correlated r =

2.57 with ECV and negatively correlated to approximately the same extent with

omegaH (r = 2.41) and PUC (r = 2.40). In fact, consider that in Table 6 where

PUC is .94, SRMR is no higher than .08 in any condition. Still, a regression predict-

ing the structural coefficient combining CFI, PUC, and their interaction resulted in

an R2 of .74. A similar regression combining SRMR, PUC, and their interaction

resulted in an R2 of .52. These values are far below the R2 of .94 found when ECV,

PUC, and their interaction were used to predict the value of the structural coefficient.

Hence, although both CFI and SRMR are somewhat related to factor strength and

structural coefficient bias under the present conditions, their values are not as prog-

nostic as are the strength indices, especially ECV and PUC.

Discussion

It is easy to show that in SEM, assuming multivariate normality and when data per-

fectly match the measurement model, factor loadings and structural coefficients can

be estimated in an unbiased way. Thus, when item response data are perfectly unidi-

mensional (local independence with one common factor) and a unidimensional mea-

surement model is used, bias is not a pressing concern. Likewise, when item response

data are multidimensional and strictly bifactor and a bifactor measurement model is

applied, the general factor will properly reflect the common variance among all the

items and parameter estimates will be unbiased.

The challenge of applying SEM, however, is that both the unidimensional and

bifactor measurement models are ideal population structures placing very heavy
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restrictions on data (Saris, Satorra, & van der Veld, 2009). In the real world of psy-

chological data, we do not expect that either of these ideal representations is true in

the population (see MacCallum & Tucker, 1991, for details). Rather, given the stan-

dard way that many measures of complex psychological constructs are created (Clark

& Watson, 1995), we expect that all items will be influenced by at least one common

trait. However, because of clusters of relatively more content homogeneous items,

we also expect that additional factors will be needed to fully account for item covar-

iances. That is, some type of multidimensional measurement model may be necessary

to account adequately for all local dependencies in the data.

When local independence violations are small, they are readily addressable

through specifying correlated residual terms. In cases where multidimensionality

clearly is at issue, such as when a set of items reflects the measurement of a single

general construct but also several group factors, alternative multidimensional mea-

surement models such as second-order or bifactor structures may be needed (Chen,

West, & Sousa, 2006). Specifying these more complicated models can create more

problems than they solve, however. Thus, given that item response data are rarely

strictly unidimensional, and given our belief that in many circumstances, a researcher

would much prefer to specify a simple unidimensional measurement model, statisti-

cal approaches are needed for deciding when data are ‘‘unidimensional enough,’’

such that if a unidimensional model were applied, structural parameter bias is not too

severe. As noted in the introduction, many statistical approaches for detecting local

independence violations have been proposed in the IRT literature, a wealth of

research has been published exploring the robustness of unidimensional model para-

meter estimates to various forms of multidimensionality violations, and several com-

monly used ‘‘unidimensional enough’’ indices are recommended to judge the

acceptability of the data for unidimensional modeling.

In considering the application of a unidimensional measurement model in SEM—

perhaps, partially because of the prevalent use of parcels—typically, item responses

are not examined in terms of dimensionality or general factor strength. Rather, a uni-

dimensional model may be fit, and if its fit is deemed ‘‘unacceptable,’’ a researcher

would reject the model and search for some better fitting multidimensional represen-

tation. Indeed, some researchers have taken the logic of SEM evaluation and sug-

gested that SEM fit indices be used to evaluate whether item response data are

unidimensional enough for IRT modeling (e.g., Cook & Kallen, 2009; Reeve et al.,

2007; see also the original work of McDonald & Mok, 1995).

This is unfortunate. The use of fit indices to make judgments about whether the

data are unidimensional enough in either IRT or SEM is not optimal if the data have

a multidimensional bifactor structure. As shown here, factor strength indices are

much easier to link to parameter bias relative to model fit indices. Consider that in

the present study of several population structures in which no sampling error was

present, several concerns arose with popular fit benchmarks. First, all unidimensional

models applied here were misspecified, but in many cases fit values judged the model

to be adequate. Thus, as statistics capable of identifying the wrong model under a
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variety of conditions, these indices performed poorly. Values of fit indices, especially

CFI and SRMR, are somewhat related to factor strength and, thus, to parameter accu-

racy, but the relation is inconsistent.

In contrast, factor strength indices can be linked directly to structural parameter

bias under the conditions studied here. Specifically, negative bias in predictive valid-

ity coefficients increases as the loadings on the general factor in the bifactor model

decrease and the loadings on the group factors increase. In the IRT literature, research

has long shown that parameters are accurate if there is a ‘‘strong common trait’’

underlying item responses. Our results generalize this finding to SEM by demonstrat-

ing that when data are more complex than the measurement model specified, struc-

tural coefficient accuracy also appears to depend on the presence of a ‘‘strong

common trait.’’ Specifically, to the degree that data lack a strong common trait, factor

loadings are overestimated and measurement error is underestimated. Not surpris-

ingly, this produces negative bias in structural coefficients.

A second finding was that both the ECV and PUC can be directly related to bias

in structural coefficient estimates. Thus, one of our recommendations for practi-

tioners is that if unidimensionality is in doubt (i.e., exploratory analyses suggest the

presence of secondary nuisance dimensions caused by clusters of items with similar

content), they should estimate a plausible alternative exploratory bifactor model

(e.g., a Schmid–Leiman solution; Schmid & Leiman, 1957) and report the values of

PUC, ECV, and omegaH. To the extent that PUC is high (..80), the values of the

strength indices are less important in predicting bias. When PUC is lower than .80,

researchers may consider ECV values greater than .60 and omegaH values greater

than .70 as tentative benchmarks. Clearly, however, more work is needed to general-

ize the findings here to a wider variety of conditions.

These conclusions point to two practical suggestions. First, if a researcher suspects

multidimensionality, and that multidimensionality takes a bifactor form, we recom-

mend the computation of PUC and at least ECV in addition to fit indices to better

inform the consequences of forcing multidimensional data into a unidimensional

measurement model. Second, in scale construction, if the goal of the measure is to

assess a single individual difference variable, but multidimensionality in response

arises because of the inclusion of construct-relevant clusters of diverse items, PUC

should be maximized. This is accomplished by having many small group factors,

items that are pure indicators of the general factor, and the avoidance of items that

cross-load on the group factors. When PUC is high, loading estimates in the unidi-

mensional model should be close to the true loadings on the general factor in the

bifactor model. In turn, structural coefficients should be estimated more accurately.

Relative Bias and Its Consequences

Earlier, we cited research that suggested relative bias between 10% and 15% was

negligible. Accordingly, in several of our relative bias plots, we identified the 10%

line and noted some conditions where average relative bias was within this limit.
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Although we recognize the need to provide editors, reviewers, and the general

research audience with benchmark values, we do not believe that it is possible when

it comes to parameter bias. Stated simply, the issue is too context dependent, and, as

found here, absolute bias depends on the size of the predictor–criterion relation but

relative bias does not.

Consider a case where a researcher is interested in the relation between a single

predictor and criterion, and the true relation is .50. Now, because of unmodeled multi-

dimensionality in the measurement model, the observed estimate is .45, which corre-

sponds to 10% relative bias. We can sympathize with researchers who would respond

with little concern, arguing that the relation clearly is identified despite the bias. But

now consider cases where many paths are estimated in a model, some representing

indirect or mediated effects, others serving as control variables, and so forth. In these

more complicated models, even the smallest degree of bias can distort relations among

the system of variables, thus rendering all paths potentially inaccurate. In sum, it is

wise to minimize bias in parameter estimates when possible. When not possible, the

consequences of bias need to be considered within the context of the study goals.

Study Limitations

In the true model for bifactor data, all items loaded on the general factor and only one

group factor (no cross-loadings on group factors allowed), the correlation among gen-

eral and group factors was zero, and the size and strength of the group factors was

balanced so not all possible bifactor structures were included. Nevertheless, these

MMtrue models allowed us to study the effects of model misspecification on important

parameter estimates as demonstrated here.

Ultimately, however, it is fair to ask: To what extent do the present findings apply

to real-world measures, where the covariance structures are much messier (e.g.,

group factors unbalanced and possibly correlated, doublets causing correlated errors,

and so forth)? First, it is impossible to simulate all possible ‘‘real-world’’ modeling

violations in a single study. Second, we are now developing a general method to

allow researchers to study potential consequences of a wider variety of different

model violation types. Nevertheless, we maintain that our overall conclusions, in fact,

are generalizable—unmodeled multidimensionality in the measurement model causes

parameter bias. The specific form and size of such bias, ultimately, will depend on

the specific form and size of the modeling violation.
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Notes

1. This is an understandable practice in that if the data are strictly unidimensional and a unidi-

mensional model is fit, or if the data are perfectly bifactor and a bifactor model is fit, it is

easy to show that, indeed, parameter estimates are unbiased. Thus, it follows that if a spe-

cific model is judged an adequate fit to a set of data, it also should be safe to proceed with

fitting a structural model. The fault in the logic is the underlying assumption that ‘‘ade-

quate fit’’ implies parameter accuracy.

2. We address the topic of fitting multidimensional models to multidimensional data in the

discussion. For now, we assume simply that unidimensional measurement models are used

to represent a single construct. This, by far, is the most common practice.

3. All latent variables are normally distributed with mean = 0 and variance = 1.

4. Each measured variable is assumed to be a linear function of its immediate parents (shown

in the figures) and Gaussian noise (not shown).

5. As Gen and Criterion are made to have standard normal distributions, the path coefficient

b reflecting the linear dependence of Criterion on Gen also is the implied correlation

between Gen and Criterion.

6. Small random values were added or subtracted to prevent linear dependencies.
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