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ABSTRACT 

Although learning from multiple representations has been 
shown to be effective in a variety of domains, little is 
known about the mechanisms by which it occurs. We 
analyzed log data on error-rate, hint-use, and time-spent 
obtained from two experiments with a Cognitive Tutor for 
fractions. The goal of the experiments was to compare 
learning from multiple graphical representations of 
fractions to learning from a single graphical representation. 
Finding that a simple statistical model did not fit data from 
either experiment, we searched over all possible mediation 
models consistent with background knowledge, finding 
several that fit the data well. We also searched over 
alternative measures of student error-rate, hint-use, and 
time-spent to see if our data were better modeled with 
simple monotonic or u-shaped non-monotonic 
relationships. We found no evidence for non-monotonicity. 
No matter what measures we used, time-spent was 
irrelevant, and hint-use was only occasionally relevant. 
Although the total effect of multiple representations on 
learning was positive, they also had a negative effect on 
learning, mediated by a higher error-rate. Our evidence 
suggests that multiple representations increase error-rate, 
which in turn inhibits learning. The mechanisms by which 
multiple representations improve learning are as yet 
unmodeled.  
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1. INTRODUCTION 
Learning processes are complex: many factors influence 
learning outcomes and the mechanisms by which 
experimental interventions influence learning are often 
mysterious. Intelligent Tutoring Systems (ITSs) can easily 
capture large amounts of data during learning, and 
combined with sophisticated data mining tools, they have 
the potential to help understand the mechanisms underlying 
the effects of successful interventions. Most ITSs are 
instrumented to collect data on several problem-solving 
behaviors that might mediate learning, such as error-rate, 
hint-use, and time-spent [13]. Variables that assess 
students’ problem-solving behaviors have been used to 

model students’ learning [3,8] and to improve ITSs [17]. 
To make use of the potential of ITS data to gain insights 
into why we see certain learning outcomes, however, we 
have to overcome difficulties in modeling the mechanisms 
of learning outcomes. First, we may not adequately 
understand which variables to use to model these complex 
relationships. We often assume a linear relationship 
between measures of learning behaviors and learning 
outcomes, even though linear relationships may not 
adequately describe such complex relations [1]. Second, 
there are a very large number of possible models that 
describe how learning behaviors and learning outcomes 
relate – how can we know which is the right one? The goal 
of the present paper is to address both of these important 
issues using variable search, path analytic modeling, and 
model search. 
Many ITSs use multiple representations to support 
mathematics learning. Although a vast body of research 
shows that multiple representations can benefit student 
learning [2], we know little about the mechanisms that 
underlie the advantage of learning with multiple 
representations compared to learning with only a single 
representation. We investigated the benefits of multiple 
graphical representations compared to the benefits of a 
single graphical representation in the context of an ITS – 
thus enabling us to make use of the rich log data provided 
in order to investigate the mediating role of student 
learning behaviors. Specifically, students worked with a 
Cognitive Tutor for fractions. Cognitive Tutors provide 
problem-solving tasks and individualized support for 
students during the learning process [10], and have been 
shown to lead to significant learning gains in a variety of 
studies [10,11]. The Fractions Tutor provides error 
messages tailored to specific misconceptions a student may 
have. Students can also request a sequence of hints for each 
step. We chose fractions as the domain for our experiments 
since fractions instruction typically uses multiple graphical 
representations such as circles, rectangles, and number 
lines [12]. Each of these representations emphasizes a 
different conceptual view on fractions [6] and students need 
to understand each of these conceptual views [12]. 
Furthermore, fractions pose a major obstacle for students in 
the elementary and middle grades [12], such that 



 
 

understanding mechanisms underlying successful learning 
is an important educational goal. 
We conducted two in vivo experiments to investigate the 
benefits from learning with a version of the Fractions Tutor 
that uses multiple graphical representations compared to 
learning with a version of the Fractions Tutor that uses only 
a single graphical representation. In experiment 1, students 
worked only with a number line (in the single 
representation condition), or (in the multiple 
representations condition) with a variety of graphical 
representations, including circles, rectangles, and number 
lines. The representations were relatively static: students 
could interact with the representations only by entering a 
number into a text field. The picture updated when the 
student entered the correct number. In each tutor problem, 
students solved a fractions problem. For instance, students 
were asked to add two given fractions and by typing the 
number of shaded sections into a text field, specifying the 
numerator of the sum fraction. We crossed these two 
conditions with a second experimental factor: whether or 
not students received self-explanation prompts to relate the 
graphical representations to the symbolic notation of 
fractions (e.g., ½). For example, students were asked to 
select “adding the number of shaded sections” to the 
question of what action with a circle diagram corresponds 
to adding the numerators using fractions symbols. Results 
based on an analysis of pretests, immediate posttests, and 
delayed posttests showed that learners significantly 
benefited from multiple representations, provided that they 
were also prompted to self-explain [15].  
In experiment 2, we included self-explanation prompts in 
the single representation condition and in the multiple 
representations condition. Students in the single 
representation condition worked either only with a number 
line, only with a circle, or only with a rectangle. Students in 
the multiple representations condition received all three 
graphical representations. In this experiment, the graphical 
representations were interactive: students could interact 
with the representations by dragging-and-dropping sections 
from one representation into another, by using buttons to 
change number of sections, and by clicking on sections to 
highlight them. Results based on students’ test data confirm 
the findings from experiment 1: students in the multiple 
representations condition significantly outperformed 
students in the single representation condition1.  
We hypothesize that multiple graphical representations 
result in more successful learning behaviors in the learning 
phase. We investigated these relationships with the log data 
that the Fractions Tutor recorded during the learning phases 
of both experiments. We assume that students who make 
very few errors, ask for very few hints, and spend very little 
time per step already have a very good understanding of 
                                                                 
1 This effect was significant for number line items and conceptual 

transfer on the delayed posttest. 

fractions and will not benefit from working with the 
Fractions Tutor. On the other hand, inefficient learning 
such as trial-and-error [4], may manifest themselves in 
making many errors, asking for many hints, and spending a 
lot of time per step. We expect that students who show 
these kinds of unsuccessful learning strategies are not 
engaging in deep processing of the learning contents and 
will consequently be less likely to benefit from working 
with the Fractions Tutor. We hypothesize that the most 
successful learning behaviors will manifest themselves in 
moderate levels error-rate, hint-use, and time-spent. This 
suggests that the relationships between error-rate, hint-use, 
and time-spent with learning is not simple and monotonic, 
but rather u-shaped (or inverted u-shaped). We investigated 
this hypothesis by searching for non-monotonic 
transformations of our "raw" variables that better predict 
students’ learning than do the raw variables. We then used 
the best variables in path analysis to investigate the 
mediating role of error-rate, hint-use, and time-spent on 
students’ benefit from multiple graphical representations. 

2. DATA SETS 
The analyses presented in this paper are based on the data 
obtained from the two experimental studies just described. 
Students in both experiments received a pretest on the day 
before they started to work with the Fractions Tutor. The 
day after students finished working with the Fractions 
Tutor, students received an immediate posttest. About one 
week after the immediate posttest, students were given an 
equivalent delayed posttest. In experiment 1, the pretest 
was a shorter version of the posttests, the posttests included 
more advanced items which required students to transfer 
the knowledge covered by the tutoring system to novel 
situations. In experiment 2, all three tests were equivalent 
(i.e., they contained the same type of items, but with 
different numbers). 
In experiment 1, 110 6th-grade students worked with either 
of four versions of the Fractions Tutor (i.e., with a version 
that included a single graphical representation without 
prompts, a single graphical representation with prompts, 
multiple graphical representations without prompts, or 
multiple graphical representations with prompts). Students 
worked with the Fractions Tutor for 2.5 hours of their 
regular mathematics instruction. The average number of 
errors made per step, the average number of hints requested 
per step, and the average time spent per step were extracted 
from the log data obtained from the tutor sessions. Table I 
shows the means and standard deviations per condition per 
and per test. Students had a broad range of prior 
knowledge: the minimum pretest score was 0.00, and the 
maximum was 1.00. As shown in Table I, students in the 
MGR condition with prompts outperformed the other 
conditions both at the immediate and at the delayed 
posttest. Since in experiment 1, the pretest was not 
equivalent to the posttests, the pretest scores are not 
directly comparable to the posttest scores shown in Table I. 



 
 

Table II gives an overview of the tutor log data for each 
condition. While conditions did not differ with regards to 
error-rate, students who received self-explanation prompts 
requested fewer hints than students without prompts. 
Students in the MGR condition with prompts spent 
relatively more time per step than students in the other 
conditions, but the differences were small.  

 SGR w/o 
prompts 

SGR 
with 

prompts 

MGR 
w/o 

prompts 

MGR 
with 

prompts 
Pretest 0.79 

(0.14) 
0.70 

(0.24) 
0.64 

(0.25) 
0.75 

(0.21) 
Immediate 

posttest 
0.77 

(0.16) 
0.70 

(0.18) 
0.61 

(0.23) 
0.83 

(0.15) 
Delayed 
posttest 

0.77 
(0.19) 

0.74 
(0.22) 

0.63 
(0.21) 

0.85 
(0.12) 

Table I. Means and standard deviations (in brackets) of 
standardized performance on pretest and posttests from 
experiment 1 per condition: single graphical representations 
(SGR) with or without prompts, and multiple graphical 
representations (MGR) with or without prompts. 

 SGR w/o 
prompts 

SGR 
with 

prompts 

MGR 
w/o 

prompts 

MGR 
with 

prompts 

Error-
rate 

0.27 
(0.15) 

0.37 
(0.17) 

0.31 
(0.12) 

0.34 
(0.13) 

Hint-use 0.13 
(0.31) 

0.04 
(0.05) 

0.19 
(0.32) 

0.04 
(0.09) 

Time-
spent 

10.37 
(4.98) 

8.47 
(6.77) 

11.93 
(10.18) 

13.99 
(18.46) 

Table II. Means and standard deviations (in brackets) of 
error-rate (# per step), hint-use (# per step), and time-spent 
(in sec) per condition: single graphical representations 
(SGR) with or without prompts, and multiple graphical 
representations (MGR) with or without prompts. 

In experiment 2, 290 4th- and 5th-grade students worked on 
one of two versions of the Fractions Tutor (i.e., SGR with 
prompts, or MGRs with prompts) for about 5 hours of their 
regular mathematics instruction. As in experiment 1, we 
extracted the average number of errors made per step, the 
average number of hints requested per step, and the average 
time spent per step from the log data. Table III summarizes 
students’ performance on each test for each condition in 
experiment 2. Again, students started with a broad range of 
prior knowledge: the minimum pretest score was 0.06, and 
the maximum pretest score was 0.96. Students in the MGR 
condition perform slightly better than students in the SGR 
condition at the immediate and at the delayed posttest. 
Since in experiment 2, the pretest was equivalent to the 
posttests, we can compare the pretest scores to the posttest 
scores: students’ average scores improved from pretest to 

the posttests (see Table III). Table IV shows that students 
in the MGR condition make slightly more errors and ask 
for slightly more hints, while spending the same time per 
step as students in the SGR condition. As in experiment 1, 
the differences between conditions on the log data variables 
are small. 

 SGR MGR 

Pretest 0.54 (0.23) 0.57 (0.21) 
Immediate 

posttest 
0.60 (0.23) 0.63 (0.21) 

Delayed posttest 0.62 (0.23) 0.67 (0.20) 
Table III. Means and standard deviations (in brackets) of 
standardized performance from experiment 2 per condition 
and test: single graphical representations (SGR) and 
multiple graphical representations (MGR). 

 SGR MGR 

Error-rate 0.14 (0.07) 0.16 (0.08) 
Hint-use 0.04 (0.06) 0.06 (0.09) 

Time-spent 0.14 (0.04) 0.14 (0.05) 
Table IV. Means and standard deviations (in brackets) of 
error-rate (# per step), hint-use (# per step), and time-spent 
(in sec) per condition: single graphical representations 
(SGR) and multiple graphical representations (MGR). 

3. DEFINING VARIABLES WITH WHICH 
TO INVESTIGATE MEDIATORS  
In order to investigate whether a u-shaped, non-monotonic 
relationship between error-rate, hint-use, and time-spent 
with students’ learning describes the association between 
problem-solving behavior and learning better than the 
monotonic relationship, we first conducted a search for a 
non-monotonic transformation that best predicts students’ 
learning using the data from experiment 2. We used a 
simple algorithm which computed the “optimal level” of 
error-rate, hint-use, and time-spent by searching for the 
highest correlation with learning gains from pretest to the 
immediate posttest, and from pretest to the delayed posttest, 
respectively. The algorithm used intervals that varied in 
size and position. For each interval, we computed a binary 
variable that for each student indicated whether his/her 
error-rate (or hint-use, or time-spent) was within the 
interval or outside the interval. We then computed the 
correlation of this variable with students’ learning gains. 
For the interval that had the highest correlation with 
students’ learning gains, we identified the mid-point as the 
“optimum” level of error-rate, hint-use, and time spent. 
Next, we created two new, non-monotonic predictor 
variables for error-rate, hint-use, and time-spent, 
respectively: distance from the optimum, and squared 
distance from the optimum. 



 
 

To evaluate whether the non-monotonic variables more 
accurately predict students’ learning, we conducted step-
wise regression analyses separately for error-rate, hint-use, 
and time-spent on both the immediate and the delayed 
posttests. We entered pretest performance, error-rate, hint-
use, or time-spent, and the interaction of pretest 
performance with error-rate, hint-use, or time-spent as 
predictors into the regression model. Table V provides a 
summary of the results from the stepwise regression 
analyses for error-rate. The regression models with error-
rate show that the regression models using monotonic 
variable explain more variance than the non-monotonic 
variables. Similarly, the best models with hint-use using the 
monotonic variable explain more variance than the best 
models with the non-monotonic variables. The most 
successful regression models with time-spent take only 
pretest performance into account; neither the monotonic 
variable for time-spent nor the non-monotonic variables for 
time-spent were significant predictors. 

  pre pre + 
errors 

pre + errors 
+ errors*pre 

mono-
tonic 

IP β1 = 81*, 
R² = .66 

β1 = .81*,  
β2 = -.27*, 
R² = .70 

β1 = .46*,  
β2 = -.48*,  
β3 = .19*,  
R² = .71 

DP β1 = .80*, 
R² = .65 

β1 = .65*,  
β2 = -.24*, 
R² = .68 

β1 = .54*,  
β2 = -.38*,  
β3 = .13(*),  
R² = .68 

distance 
from 
optimum 

IP β1 = .81*, 
R² = .66 

β1 = .76*,  
β2 = -.17*, 
R² = .68 

β1 = .63*,  
β2 = -.37*,  
β3 = .23*,  
R² = .69 

DP β1 = .80*, 
R² = .65 

β1 = .78*,  
β2 = -.13*, 
R² = .66 

β1 = .71*,  
β2 = -.22*,  
β3 = .11,  
R² = .66 

squared-
distance 

IP β1 = .81*, 
R² = .66 

β1 = .76*,  
β2 = -.16*, 
R² = .68 

β1 = .73*,  
β2 = -.25*,  
β3 = .09,  
R² = .68 

DP β1 = .80*, 
R² = .65 

β1 = .77*, 
 β2 = -
.13*, R² = 
.66 

β1 = .77*,  
β2 = -.12,  
β3 = -.01,  
R² = .66 

Table V. Regression with error-rate: standardized 
regression weights and variance explained by each 
regression model for performance on immediate posttest 
(IP) and delayed posttest (DP). The best model is displayed 
in bold-italics. β1 = pretest (pre), β2 =error-rate (errors), and 
β3 = errors*pre. 
In sum, the results from the stepwise regressions show, the 
non-monotonic variables do not predict performance on the 
immediate or the delayed posttest better than the monotonic 
variables do. For that reason, we decided to use the 

original, monotonic variables of error-rate, hint-use, and 
time-spent for the subsequent path analytical analyses. 

4. HYPOTHESES AND PATH ANALYSIS 
MODELING 
In order to investigate the mechanisms by which the 
intervention (multiple graphical representations) might 
have affected learning, we first specified, estimated and 
tested two path analytical structural equation models [5,20] 
for each of the two experiments. Structural equation models 
provide a unified framework within which to test mediation 
hypotheses, to estimate total effects, and also to separate 
direct from indirect effects. The models that represented 
our hypotheses in both experiments were decisively 
rejected by the data, and in such a case it is not appropriate 
to use the model to test mediation hypotheses or estimate 
effects. Our strategy was to use the Tetrad IV program2 to 
search for alternative models that are both theoretically 
plausible and consistent with the data. In this section, we 
describe the path analytic models that represent our 
hypotheses, describe the search algorithms we use to search 
for alternative models, and briefly summarize the results of 
our search. 

4.1 Modeling Our Hypotheses 
We hypothesized that multiple representations lead to 
learning via the three different mechanisms discussed 
above: error-rate, hint-use or time-spent per step. As each 
of these variables might also be affected by a student’s 
prior knowledge of fractions, our hypothesis included paths 
from our intervention variables to each of these mediator 
variables as well as paths from pretest to each of these 
variables. One of the path models we specified to represent 
and test our hypothesis about mediation for experiment 1 is 
shown in Fig. 1.3 Fig. 2 shows one of the models we 
specified for experiment 2. Each node in the path models 
refers to a variable in the data set: mult_rep = single vs. 
multiple representations, se = self-explanation prompts, 
mr*se is variable representing a intervention interaction, 
pre = pretest, time, errors, hints = average time spent, # of 
errors, and # of hints requested per step, post = 
performance on the immediate posttest, delpost = 
performance on the delayed posttest. For both experiments, 
we hypothesize that pretest performance predicts 
performance on the immediate and on the delayed posttests, 
as well as error-rate, hint-use, and time-spent. 
                                                                 
2 Tetrad, freely available at www.phil.cmu.edu/projects/tetrad, 

contains a causal model simulator, estimator, and over 20 model 
search algorithms, many of which are described and proved 
asymptotically reliable in [20].   

3 In path models of this type, also called "causal graphs" [20], 
each arrow, or directed edge, represents a direct causal 
relationship relative to the other variables in the model.  For 
example, in Fig. 1 the conditions are direct causes of the 
mediator variables, but only affect the post-test indirectly 
through these mediators.   

http://www.phil.cmu.edu/projects/tetrad


 
 

 
Fig. 1. Path model for experiment 1. 

In addition, we predict that in experiment 1, multiple 
representations (mult_rep), self-explanation prompts (se), 
and the interaction between multiple representations and 
self-explanation prompts (mr*se) predict error-rate, hint-
use, and time-spent. In other words, we predict that the 
effects of the intervention variables are entirely mediated 
through students’ learning behaviors. Similarly, for 
experiment 2, we predict that the effect of multiple 
representations (mult_rep) predicts error-rate, hint-use, and 
time-spent, which corresponds to a full mediation of the 
intervention through learning behaviors. Hence, the path 
model for experiment 2 corresponds to the one shown in 
Fig. 1, except that self-explanation prompts (se), and the 
interaction between multiple representations and self-
explanation prompts (mr*se) were not present in 
experiment 2. 
Using normal theory maximum likelihood to estimate the 
parameters of these models, we find that in each case the 
deviation between the estimated and the observed 
covariance matrix is too large to be explained by chance 
(for the model for experiment 1 in Fig. 1: χ² = 53.8, df = 16, 
p < .0001,4 and for the model for experiment in Fig. 2: χ² = 

                                                                 
4 The usual logic of hypothesis testing is inverted in path analysis. 

The p-value reflects the probability of seeing as much or more 
deviation between the covariance matrix implied by the 
estimated model and the observed covariance matrix, 
conditional on the null hypothesis that the model that we 
estimated was the true model. Thus, a low p-value means the 
model can be rejected, and a high p-value means it cannot.  The 
conventional threshold is .05, but like other alpha values, this is 
somewhat arbitrary. The p-value should be higher at low sample 
sizes and lowered as the sample size increases, but the rate is a 
function of several factors, and generally unknown.   

59.41, df = 6, p < .0001), thus the models do not fit the data 
and the parameter estimates cannot be trusted.5  
4.2 Model Search 
To search for alternatives, we used the GES algorithm in 
Tetrad IV along with background knowledge constraining 
the space of models searched [7] to those that are 
theoretically tenable and compatible with our experimental 
design. In particular, we assumed that our intervention 
variables are exogenous, that in experiment 1 our 
intervention variables are causally independent but direct 
causes of the interaction variable, that the pretest is 
exogenous and causally independent of intervention, that 
the mediators are prior to the immediate posttest and to the 
delayed posttest, and that the immediate posttest is prior to 
the delayed posttest. Even under these constraints, there are 
at least 232 (over 4 billion) distinct path models of 
experiment 1 that are consistent with our background 
knowledge, and 225 (over 33 million) distinct path models 
of experiment 2.  
The qualitative causal structure of each of these linear 
structural equation models can be represented by a Directed 
Acyclic Graph (DAG). If two DAGs entail the same set of 
constraints on the observed covariance matrix,6 then we say 
that they are empirically indistinguishable. If the 
constraints considered are independence and conditional 
independence, which exhaust the constraints entailed by 
DAGs among multivariate normal varieties, then the 
equivalence class is called a pattern [14,20]. Instead of 
searching in DAG space, the GES algorithm achieves 
significant efficiency by searching in pattern space. The 
algorithm is asymptotically reliable,7 and outputs the 
pattern with the best Bayesian Information Criterion (BIC) 
score.8 The pattern identifies features of the causal structure 
that are distinguishable from the data and background 
knowledge, as well as those that are not. The algorithm’s 
limits are primarily in its background assumptions 
involving the non-existence of unmeasured common causes 
and the parametric assumption that the causal dependencies 
can be modeled with linear functions. 

                                                                 
5 We also tested variations of these models in which we added 

direct paths from the condition variables to the post-test and 
delayed post-test. These variants are also clearly rejected by our 
data.  

6 An example of a testable constraint is a vanishing partial 
correlation, e.g., ρXY.Z = 0. 

7 Provided the generating model satisfies the parametric 
assumptions of the algorithm, the probability that the output 
equivalence class contains the generating model converges to 1 
in the limit as the data grows without bound. In simulation 
studies, the algorithm is quite accurate on small to moderate 
samples. 

8 All the DAGs represented by a pattern will have the same BIC 
score, so a pattern’s BIC score is computed by taking an 
arbitrary DAG in its class and computing its BIC score. 



 
 

 
Fig. 2. The model found by GES on data from experiment 
1, with parameter estimates included. This model fits the 
data well: χ2 = 22.11, df = 19, p = .29.  

 
Fig. 3. The model found by GES on data from experiment 
2, with parameter estimates included. This model also fits 
the data well: χ2 = 6.89, df = 10, p = .74.  

Fig. 2 shows a model found by GES on the data from 
experiment 1, with path coefficient estimates included. The 
model fits the data well (χ2 = 22.1, df = 19, p = .28), and 
contains a number of interesting properties. For one thing, 
students with higher pretest scores spend much less time 
per problem, but none of our intervention variables had any 

influence on time, and the apparent effect of time spent per 
step during the learning phase is minimal. Multiple 
representations had a positive effect on learning, but only 
when self-explanation prompts were also part of the 
learning environment.9 Further, there is no evidence that 
the positive effect of multiple representations is mediated 
by either error-rate, hint-use, or time-spent. When not 
combined with multiple representations, self-explanation 
prompts appear to slightly increase error-rate and thus 
inhibit learning, but slightly decrease hint-use, which, 
because they appear to inhibit learning, have an overall 
positive effect on learning.  
Fig. 3 shows a model found by GES for experiment 2 that 
fits the data very well (χ2 = 6.89, df = 10, p = .74). This 
model indicates that although multiple representations (mr) 
have a positive direct effect on both the immediate posttest 
and the delayed posttest, they also have a negative indirect 
effect on both outcomes through error-rate. Learning with 
multiple representations seems to cause students to make 
slightly more errors during learning, possibly because the 
greater variability in tutor problems leads to higher 
cognitive processing demands. The higher error-rate during 
the learning phase seems to have a negative influence on 
test performance. Note that there are two paths from 
multiple representations to the posttests in the model in Fig. 
3, and that the positive direct effect (a bit over 3 ½ 
percentage points on both) is larger than the indirect 
negative effect through errors in both cases (2 percentage 
points on the immediate posttest and about ½ a percentage 
point on the delayed posttest). 
As in experiment 1, hint-use and time-spent do not 
discernibly mediate the influence of multiple 
representations on learning. However, students appear to 
ask for more hints in response to making more errors, and 
they spend more time on a problem when they have asked 
for hints.  

5. DISCUSSION 
We used data mining in two ways: first to search for 
mediator variables that are monotonically related to 
learning outcomes and thus amenable to analysis with 
standard tools like linear regression and path analysis, and 
second, to search for causal models of learning that allowed 
us to investigate mediation relationships and to estimate the 
total and indirect effects of multiple representations on 
learning.  
Contrary to our expectations, we found that raw measures 
of error-rate, hint-use, and time-spent were as predictive of 
learning as any of the non-monotonic variants we searched 
over. One might suspect that our variable search failed to 

                                                                 
9 The paths from the interaction variable mr*se track the effect of 

both treatments compared to either one alone or neither. The 
paths from the individual treatments track the effect of each 
treatment when the other is absent.  



 
 

improve on the apparent monotonicity of the raw measures 
because our sample did not include high prior knowledge 
students. However, students’ pretest scores covered a broad 
range from very low to very high (see Tables I and III). 
Although surprising, our findings can be taken as 
encouraging for the community of educational data mining 
and for the community of researchers who study ITSs. 
Analyzing raw measures of error-rate, hint-use, time-spent 
and learning is much easier than analyzing non-monotonic 
variants. Furthermore, most research that uses log data 
obtained from ITSs assumes monotonicity. Our findings do 
nothing to undermine this practice. 
Our findings from path analysis modeling demonstrate the 
importance of model search. None of our initial hypotheses 
fit the data, but there are millions of plausible alternatives, 
only a small handful of which could be practically 
investigated by hand. Further, estimating path parameters 
with a model that does not fit the data is scientifically 
unreliable. Parameter estimates, and the statistical 
inferences we make about them with standard errors etc., 
are all conditional on the model specified being true 
everywhere except the particular parameter under test.  
Even if our initial hypotheses had fit the data well, 
however, it would have been important to know whether 
there were alternatives that explained the same data. The 
GES algorithm implemented in Tetrad IV enabled us to 
find plausible models that fit the data well. The models we 
found in Fig. 2 and Fig. 3 allow us to estimate and test path 
parameters free from the worry that the model within which 
the parameters are estimated is almost surely mis-specified, 
as is the case for the model in Fig. 1.  
Several caveats need to be emphasized, however, lest we 
give the false impression that we think we have “proved” 
the causal relationships that appear in the path diagrams 
shown in Fig. 1 and Fig. 2. First, the GES algorithm 
assumes that there are no unmeasured confounders (hidden 
common causes), an assumption that is almost certainly 
false in this and in almost any social scientific case, but one 
that is routinely employed in most observational studies.10 
In future work we will apply algorithms (e.g., FCI) that do 
not make this assumption, and see whether our conclusions 
are robust against this assumption. Second, although we did 
include intervention interaction in our model search for 
experiment 1, and did test for interactions between pretest 
and mediators in experiment 2, by no means were our tests 
exhaustive, and by no means can we rely on the assumption 
that the true relations between the variables we modeled are 
linear, as the search algorithms assume. Nevertheless, many 
of the bivariate relationships in the data we modeled appear 
approximately linear, so the assumption is by no means 
                                                                 
10 Although our data are from a study in which we intervened on 

intervention, we did not directly intervene on our mediator or 
outcome variables. Thus these parts of our model are subject to 
the same assumptions as a non-experimental study.  

unreasonable. Third, we have a sample of 290 students, and 
although that is sizable compared to many ITS studies, 
model search reliability goes up with sample size but down 
with model complexity and number of variables, and is 
overall impossible to put confidence bounds over on finite 
samples [19].  
Nevertheless, our searches for causal models suggest that 
there are indeed path models that are consistent with our 
background theory and with the data, and which indicate 
that multiple representations enhance learning, but not 
through any detectible mechanism involving error-rate, 
hint-use, or time-spent. In experiment 1, multiple 
representations have a positive influence on learning, but 
have no detectible effect on any of the mediators we 
measured. In experiment 2, in which interactive graphical 
representations were part of the intervention, it appears that 
there is a mediated influence on learning through error-rate, 
but it is a negative influence. Research from a variety of 
domains shows that some interventions that decrease 
performance during the learning phase by increasing the 
variability of learning tasks result in better long-term 
retention and transfer performance [9,16]. In other words, 
interventions that are beneficial in the long run often come 
at some cost, for instance in the form of lower performance 
during the learning phase. Our results show that “costs” 
which become apparent during the learning phase are 
indeed associated with lower performance also on the 
posttests. However, we have not yet identified the 
mediators of the benefits of learning with multiple 
representations. Given the results from the two experiments 
described in the present paper, it is unlikely that the 
advantage of multiple representations is mediated through 
error-rate, hint-use, or time-spent. Taken together, the 
results from our two experiments suggest that researchers 
need to look elsewhere for the cognitive mechanisms by 
which multiple representations improve students’ learning.  
The finding that error-rate partially mediates the effect of 
multiple representations in experiment 2 (but not in 
experiment 1) is an interesting one as well. One difference 
between experiment 1 and experiment 2 was that the 
graphical representations in experiment 1 were not 
interactive tools, but static pictures that updated when 
students entered the correct answer into a text field. By 
contrast, the graphical representations in experiment 2 were 
interactive: students could drag-and-drop sections from one 
representation into another and use buttons to partition the 
representation into fewer or more sections. It is conceivable 
that interactive representations provide a more direct 
learning experience for students, which will have a 
different effect on problem-solving behavior (as, for 
example, on error-rate) than relatively static representations 
[18]. There is currently very little research that 
systematically investigates the impact of interactive versus 
static representations on students’ problem-solving 
behaviors and consequent learning outcomes. Our findings 



 
 

demonstrate, that the impact of interactive representations 
is an interesting question to address in future research.  
In conclusion, our results are of interest both to the 
educational psychology literature and to the intelligent 
tutoring systems literature. First, we can gain insights into 
the effects of instructional interventions: although multiple 
representations seem to overall be beneficial, they also 
seem to lead students to make more errors during the 
learning phase, which is associated with lower performance 
on posttests. Second, once we gain knowledge about which 
learning behaviors are adaptive and which are not, we can 
use these insights to improve our tutoring systems. For 
example, perhaps multi-representational ITSs should be 
designed to prevent errors in the practice and learning 
phase. Perhaps we can help students avoid practice errors 
by providing more worked examples, or by designing better 
error feedback messages. Or perhaps the increase in errors 
is simply a cost associated with multiple representations 
that instructors have to live with. These questions and 
others arose from path analysis and model search and lead 
almost directly to new hypotheses that we, and hopefully 
others, will address in future research. 
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