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SUMMARY
There is considerable enthusiasm about the prospect that artificial intelligence (AI) will help to improve the
safety and efficacy of health services and the efficiency of health systems. To realize this potential, however,
AI systems will have to overcome structural problems in the culture and practice of medicine and the orga-
nization of health systems that impact the data from which AI models are built, the environments into which
they will be deployed, and the practices and incentives that structure their development. This perspective
elaborates on some of these structural challenges and provides recommendations to address potential
shortcomings.
INTRODUCTION

Artificial intelligence (AI) has captured medicine’s imagination,

but its long-term prospects hinge on how it grapples with a

paradox that reaches to the very heart of the healing art. On

the one hand, the central and defining moral duty of healthcare

providers is to use medical knowledge, clinical skill, and avail-

able interventions to safeguard and advance the health and

well-being of patients. On the other, medical knowledge is

incomplete, and the learning environment is noisy. The ongoing

coronavirus disease 2019 (COVID-19) pandemic illustrates the

dramatic challenges that arise from novel pathogens for which

safe and effective interventions are unknown. However, in

many areas of medicine, our understanding of the ecology and

pathophysiology of sickness and disease are incomplete and

evolving. As a result, expert opinion about which practices, pro-

cedures, or interventions will advance the duty of care can be un-

certain, disputed, or simply mistaken. This paradox sometimes

leads to clinicians acting from benevolent intent grounded solely

in clinical experience to deliver care, the actual result of which is

ineffective or harmful. In the face of uncertainty, conflicting judg-

ment, or novel circumstances, the duty to care can only be real-

ized in practice if it is accompanied by a duty to learn.1

The widespread enthusiasm for AI in medicine expresses the

ambition of harnessing vast repositories of medical information

to create resources and practices within health systems that

enable stakeholders to learn more efficiently and thereby in-

crease the likelihood that caregivers will produce beneficial

outcomes when they act with therapeutic intent. Part of the

challenge, however, is that some of the very deficiencies that

AI is intended to overcome permeate the data on which those

systems rely for learning, the practices that structure the devel-
Ce
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opment of such systems, and the environments in which AI sys-

temsmust be deployed to produce better outcomes for patients.

These challenges create the prospect that, without thoughtful

reforms, the introduction of AI intomedicine could have three un-

intended consequences. First, it might expand, rather than

reduce, unwarranted variation in medical practice. Second, it

might impede our ability to ensure that innovation produces sig-

nificant social value. Third, it might alter the distribution of effort

and resources in clinical practice without improving outcomes

for patients or making health systems more effective (better abil-

ity to diagnose, prevent or treat sickness, injury, or disease), effi-

cient (better ability to achieve these goals more quickly with

fewer resources), or equitable (better ability to effectively meet

the health needs of the diverse populations health systems

serve). After outlining these challenges, this perspective offers

some recommendations for addressing them and better

ensuring that AI systems will help discharge the duty to learn in

a way that enhances the equity, effectiveness, and efficiency

of health systems.

THE DATA WE NEED FOR SOCIAL VALUE

The ambition of organizing the practices and resources within

health systems to learn more efficiently derives from an impor-

tant moral imperative. This is the imperative to ensure that health

systems can effectively, efficiently, and equitably address impor-

tant health needs of the individuals and populations they serve.2

Learning initiatives that enhance the capacity of stakeholders

within health systems to better function on one or more of these

dimensions are supported by a strong claim to generate social

value—an important requirement for ethical research and

learning.3–5
ll Reports Medicine 3, 100622, May 17, 2022 ª 2022 The Author. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://twitter.com/alexjohnlondon
mailto:ajlondon@andrew.cmu.edu
https://doi.org/10.1016/j.xcrm.2022.100622
http://creativecommons.org/licenses/by-nc-nd/4.0/


Please cite this article in press as: London, Artificial intelligence in medicine: Overcoming or recapitulating structural challenges to improving patient
care?, Cell Reports Medicine (2022), https://doi.org/10.1016/j.xcrm.2022.100622

Perspective
ll

OPEN ACCESS
Relying heavily on data gathered from current practices poses

a challenge for this ambition. In particular, it may be difficult to

ensure that learning activities are directed at questions of impor-

tance for patients and health systems if the problems pursued

are dictated by the availability of datasets rather than by determi-

nations regarding which knowledge gaps have the most signifi-

cant impact on priority health needs.6 The availability of large

datasets may provide useful grist for the mill for computer scien-

tists and researchers interested in developing AI technology, but

in order to produce significant value for patients and health sys-

tems, learning initiatives must align with open questions that

impact clinically important aspects of provider practice and pa-

tient outcomes. If the goals of AI system development are driven

by objectives that are not clearly connected to meaningful pa-

tient outcomes, research productivity (measured by grant fund-

ing, papers published, citations, etc.) is unlikely to translate into

advances that promote health priorities for patients or health

systems.

Relying on data generated from current practice also poses

challenges to the goal of creating practices and health systems

that function equitably in the sense of providing effective care

to the full diversity of individuals and groups who rely on those

health systems. Inequalities in access to high-quality healthcare

often translate into disparities as to which populations are repre-

sented in medical databases. For example, genome-wide asso-

ciation studies play an increasingly important role in drug devel-

opment, but a 2016 study of 2,500 studies involving 35 million

samples showed that 81% of participants were of European

ancestry, while people of African ancestry accounted for only

3% of participants.7 Similar problems have been seen in other

medical databases.8,9 Under-representation of this kind can

lead to the development of AI systems whose utility deteriorates

when applied to groups already under-served in current health

systems—thereby widening pre-existing disparities in quality of

care and health outcomes.

Even when diverse populations are represented in data

routinely generated within health systems, concerns about

whether those data can support research with high social and

clinical value are amplified by the extent to which data are en-

tangled with the practices from which, and the purposes for

which, they are gathered.10 Although some of these challenges

might be addressed through technical solutions, others require

adjustments to the practices and the health systems from which

health data are generated.

In the United States, patterns of exclusion and oppression that

target individuals and groups on the basis of characteristics such

as race, ethnicity, sex, or gender have been encoded into a range

of basic social structures. These social structures include

banking and access to capital, employment, housing, law

enforcement, and the penal system. Injustice in the operation

of these social structures has produced broad disparities in

access to the social determinants of health which, in turn, have

produced higher rates of avoidablemorbidity andmortality in tar-

geted social groups.11–14 Data generated within United States

health systems thus reflect complex interactions between hu-

man biology, socio-economic conditions, and the prior practices

of providers and health systems at a given time. Nevertheless,

these widespread and persistent health disparities have some-
2 Cell Reports Medicine 3, 100622, May 17, 2022
times been treated as reflecting diversity in the baseline biolog-

ical functioning of different classes of people rather than as the

physical effects of cumulative burdens of social and economic

inequalities grounded in the unfair or unjust operation of impor-

tant social structures. This in turn has resulted in practices

such as adjusting diagnostic or treatment criteria across a

wide range of specialties on the basis of race, a social construct

that is often reified as demarcating biologically distinct

groups.15,16 It has been estimated that race-based adjustments

to equations used to calculate estimated glomerular filtration

rate (eGFR) levels for determining the severity of kidney disease

alone results in the under-treatment of 3.3 million Black

Americans who, without these corrections, would be more likely

to receive earlier treatment for a range of complicating

conditions.17

When health disparities are the product of unequal access to

the social determinants of health, hardcoding them into clinical

practice is likely to systematically produce worse outcomes for

groups who are already under-served by health systems and

who are more likely to experience higher rates of morbidity

and mortality. Health data produced from such a system will

reflect this biased view of the biology of different groups and

the biased treatment practices these views have engendered.

This is one example where bias in the data on which healthcare

providers rely for decision-making is shaped by legacies of

injustice within a range of background social structures that in-

fluence the life prospects of people. Healthcare systems are

also social structures with histories of unequal treatment for

marginalized groups, and biased practices and attitudes of pro-

viders can influence the care of patients more directly. In a

recent analysis of over 40,000medical histories and chart notes

from over 18,000 patients, Sun and colleagues found that

‘‘Black patients had 2.54 times the odds of having at least

one negative descriptor in the history and physical notes.’’18

Uncritical reliance on such data thus risks further recapitulating

within medicine some of the background health inequalities

that disproportionately affect members of marginalized or op-

pressed social groups.

Background racial, social, and economic factors that shape

the life prospects of patients and the operation of health systems

are widespread confounders in medical data.19 Increasing the

volume of such data will be of limited value if it continues to

reflect these common background conditions. Such weak-

nesses can sometimes be addressed using techniques from

causal reasoning to better distinguish the relative contributions

of biological, social, or other influences on health.20,21 However,

these techniques often require that we already understand

important elements of the underlying causal system.22 For

example, instrumental variables can be used to distinguish the

relative causal contributions of variables that are associated

with an outcome,23 but treating a variable as instrumental re-

quires that we understand its relationship to the other variables

in question. In medicine, this kind of granular causal knowledge

is often absent. In the absence of such background knowledge,

however, it is particularly difficult to make full and effective use of

powerful tools from causal discovery. In such cases, uncertainty

about the underlying causal relationships between various influ-

ences on health limits our ability to use the data that we generate
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from ordinary medical practice to answer questions of deep

importance to the effective and equitable practice of medicine.

The value of data produced from the normal operation of

health systems is further limited by the fact that healthcare

data reflect the purposes for which it was gathered. Despite

efforts to improve data gathering in medicine, electronic health

records (EHRs) continue to reflect administrative goals, such

as billing, that do not necessarily align with the information needs

of science and learning. For variables to appear in data tables or

models, we must collect the relevant data. But in areas where

medical uncertainty is the greatest, such as central nervous sys-

tem and brain disorders, it may not be clear whether our current

theories of disease pathophysiology are adequately informative

about the features of patients that we need tomeasure. It is likely

that many features that are relevant to disease course or treat-

ment success are not captured in existing datasets.

Alternatively, even in cases where we are capturing features of

patients and treatments that are relevant to particular scientific

questions, that data might not be gathered with the frequency,

granularity, or bandwidth necessary to distinguish relevant rela-

tionships. This is a critical limitation since many bodily systems

are homeostatic, with compensatory feedback mechanisms

that can make it difficult to discover the direction of causation

among relevant variables. In such cases, without a rich time se-

ries of data, variables that are causally related can appear to be

statistically independent. For example, if you drive a car uphill at

a constant speed, the slope of the hill and the position of the

pedal might appear to be independent of speed if the speed re-

mains constant as these variables change. In the body, the dila-

tion of vasculature and the delivery of a particular medication

may appear to be independent of blood pressure if successful

treatment keeps the latter constant. Without sufficiently granular

time-series data, standard machine-learning techniques can fail

to find dependencies between variables or can impute incorrect

relationships.24 Here again, capturing data at appropriate inter-

vals and with sufficient granularity depends on prior knowledge

of the underlying system. It also requires a practice and infra-

structure for data collection and storage that can be more easily

tailored to the specific goals of research and learning.

Finally, uncoordinated practices for assembling and dissemi-

nating data result in datasets that are not well suited to training

AI systems. Some collections of images generated during the

COVID-19 pandemic were expanded, and then the collection

was renamed and recirculated, creating the prospect that the

datasets used to validate AI system performance were not inde-

pendent of the datasets used to train those systems.25 Common

practices for resizing or formatting images create potential con-

founders on which AI systems might condition when associating

images with outcome labels.26 Common clinical practices also

create potential confounders such as when the sickest patients

in a hospital are most likely to have radiographs taken from

portable machines, or from a particular angle, allowing algo-

rithms to improve their performance by conditioning on these

arbitrary features rather than aspects of the underlying pathol-

ogy.27 In this respect, aspects of health data that humans might

overlook in their focus on pathology can pose a fundamental

challenge to AI systems. Creating datasets that better control

for such confounding artifacts requires changes to practices
across the life cycle of data production, acquisition, storage,

and transmission.

Ensuring that AI development addresses questions that are

critical to producing the most significant benefits for patients

and health systems may necessitate a development pipeline in

which research questions derived from these goals determine

the nature, frequency, granularity, and bandwidth of data that

need to be gathered and the standardization necessary to

ensure that they aremost likely to support these specific learning

tasks. Such initiatives, however, would likely require alterations

to clinical, data-gathering, and data-management practices.

THE INTERVENTIONAL AMBITION OF LEARNING
HEALTH SYSTEMS

The ambition of improving the ability of stakeholders within

health systems to learn is fundamentally transformative and in-

terventional; the goal, frequently, is not simply to understand

what is happening, or to predict what is likely to happen in the

future, but to alter and reconfigure clinical, organizational, and

institutional policies, practices, and settings to make healthcare

more effective, efficient, and equitable. This transformative

ambition is in deep tension with the limitations of current AI

technologies.

The most mature AI systems are well suited to two kinds of

tasks: (1) classification, such as detecting or diagnosing pathol-

ogy and (2) predicting or prognosticating outcomes that are likely

to occur under the assumption that current practices remain

consistent with the practices that are reflected in data. Predic-

tions generally take place under this assumption because they

are derived from complex patterns of association between the

variable of interest and the potentially vast range of features or

variables whose past values have been measured and tracked.

The resulting models have been described as atheoretic or the-

ory free, in the sense that models of the relationships between

variables in the domain of interest are constructed from relation-

ships in data and need not reflect the substantive domain knowl-

edge of any expert.28,29 For example, if tobacco-stained fingers

in patients with various symptoms have been associated with

cancer, or with a poor prognosis, then we might use that associ-

ation to estimate the probability that a current patient with yellow

fingers also has cancer or will have a poor prognosis.

The complex statistical relationships that AI systems use for

diagnostic or prognostic purposes often cannot provide a guide

to intervention because intervention involves altering the state of

the world with the goal of changing the variable of interest.

Formally speaking, there is a gap between models that entail

the probability of the value of the target variable t on the basis

of the value m of the measured variables (p(t|m)) and models

that entail the probability of the value t if we intervene to make

m the value of the measured variables p(t| do (m)).30 In other

words, even if tobacco-stained fingers at age 50 are a reliable

predictor of the probability of lung cancer by age 60, intervening

to clean the tobacco stains from the fingers of patients at 50 is

not going to reduce their probability of lung cancer by age 60.

Predictive models can be a sound guide to intervention under

special circumstances. This is the case with Google’s Alpha Go,

where the structure of the board is known, the current board
Cell Reports Medicine 3, 100622, May 17, 2022 3
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positions are known, and the pieces can only move according to

known and clearly determined laws. Under these conditions,

reinforcement learners can explore the way that millions of board

configurations constrain future moves and the probability of

victory.31 The critical point is that few problems in medicine

have this structure. In many cases, the set of relevant variables

might be unknown, especially when we are contemplating novel

interventions. Similarly, the laws by which these variables

interact might remain unknown, so assumptions about how

small changes in one configuration of variables (analogous to

the present state of the board in Go) will constrain the future

states of those variables might be unclear or mistaken.

As a result, hypotheses about counterfactuals such as what

will happen if we allocate resources differently, change treat-

ment practices, or alter the criteria for assigning treatments often

lie outside the scope of questions that existing data can address.

The reason is that, unlike the game of Go, proposals to altermed-

ical practices are often not simply choosing a strategy that will

exploit a set of relationships that are already well represented

in the data we have. Rather, counterfactuals in medicine

frequently involve introducing policies, actions, or interventions

that are novel in the sense that we do not have prior experience

with their effects. If the permutations of actions and outcomes

represented in health data do not capture the alternatives that

are relevant to interventions derived from new theories of organi-

zational behavior, disease pathophysiology, or drugmechanism,

then AI systems will struggle to identify new practices that are

superior to the status quo.32

Recent advances in causal inference and causal structure

learning seek to overcome deficiencies in the more limited pre-

dictive approaches of traditional AI techniques.33 Work in this

area is promising, but it is constrained by many of the same lim-

itations that face any data-driven approach to learning. In partic-

ular, deficits in the completeness of measured variables and in

the granularity, frequency, and bandwidth of those measure-

ments limit the usefulness of these techniques. These ap-

proaches to learning face the additional challenge that the

models they employ rely on more substantive assumptions

about relationships of variables in the domain under study. In

cases where medical uncertainty is the greatest, we may be

most constrained in our ability to supply the knowledge needed

to most effectively utilize advances in this area.

As a result, the clinical utility of diagnostic and predictive sys-

tems hinges on whether improving the accuracy or speed of

diagnosis or prediction can improve patient outcomes by, for

example, reducing unnecessary delays in access to indepen-

dently established effective care without creating new ineffi-

ciencies by over-diagnosing disease that is not clinically

meaningful.

The ambition of streamlining diagnosis and expediting access

to independently established effective care is illustrated by FDA-

approved AI systems for diagnosingmore thanmild diabetic reti-

nopathy from retinal-fundus images.34 These systems seek to

improve patient outcomes by eliminating delays in screening

while maintaining uniformly high degrees of sensitivity and spec-

ificity to better optimize the rate at which high-risk patients are

referred to specialists. The advantage of such systems is that

they seek to streamline the process of identifying patients at
4 Cell Reports Medicine 3, 100622, May 17, 2022
high risk of vision loss and then to link them to carewhose clinical

merits have been independently established.

In contrast, many hospitals sought to use predictions about

the likely cost of care for newly admitted patients to reallocate

clinical services in the hope of improving patient outcomes.

However, using a system that predicts risk in the domain of

cost to support interventions in the domain of care had the effect

of systematically giving lower priority to the health needs of Black

patients who were equally as sick as their White counterparts.35

The reason is that the widespread operation of social forces dis-

cussed above produces both health outcomes and patterns of

medical care in which Black patients who fall into a projected

expense category are likely to be sicker than their White counter-

parts in the same expense category.

In this example, a system that might be actuarially correct at

predicting patient costs was used to alter patient care. The

gap between prediction and intervention was bridged by the

tacit, and ultimately false, background assumption that patients

in the same cost category would likely have equivalent health

status. Rather than reducing unwarranted variation in care and

improving the practice of evidence-based medicine, using cur-

rent AI systems to advance the fundamentally interventional

goals of medicine is likely to increase the proliferation of the

very kind of unwarranted variation in clinical practice that

learning health systems in general, and AI systems in particular,

are supposed to reduce.

If prediction models are not integrated into clinical pathways

that direct high-risk patients to health services that have been

established as effective at reducing or eliminating those risks,

then the rapid development and proliferation of AI systems can

work against the fundamental ambitions of learning health sys-

tems. Rapid advances in prediction that do not link patients to

independently established effective care for the condition in

question might encourage variation in medical practices whose

efficacy is unknown and that are carried out in clinical contexts

in which it is difficult to learn. In such cases, AI systems can

play a valuable role in generating hypotheses about the likely

value of new interventions, practices, policies, and organiza-

tional or institutional configurations that might better address

the health needs of patients. But testing those hypotheses will

likely require reconfiguring the delivery of healthcare to facilitate

the conduct of randomized controlled trials.

An approach to learning that centers patient needs and gives

priority to hypotheses about issues that require departures from

current practice or that do not map neatly onto current datasets

can only be advanced through the creation of novel datasets. To

control for confounding and to isolate the effects of alterations to

clinical practice, it may be important to generate such data using

randomized trials employing pragmatic designs, such as cluster

randomization. This approach has the additional advantage of

seeking to evaluate proposed changes in practice or organiza-

tional behavior before they become widespread and entrenched

into organizational habit or culture. In such cases, AI may have a

valuable role to play, especially with respect to transfer

learning—our ability to extrapolate relationships in one domain

to another—but this requires abandoning the heady ambition

of replacing traditional research methods with AI systems. It re-

quires, instead, incorporating AI into a more diverse portfolio of
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tools for learning, some of which require changes to practices

and systems for delivering care, controlling confounders, and

gathering data.

FRAGMENTATION, REDUNDANCY, AND
UNWARRANTED VARIATION

The push to promote the ability of stakeholders within health sys-

tems to learn is motivated, in part, by the need to overcome frag-

mented, uncoordinated, and unwarrantedmedical practices, but

the ability of AI systems to advance these goals is frustrated by

the degree to which the ecosystems in which these systems are

being developed suffer from these same shortcomings.

The current ecosystem of development for AI systems in med-

icine incentivizes the proliferation of models designed to perform

similar tasks.36 The result is a dispersion of effort across devel-

opment teams that creates a high rate and volume of published

papers and a high degree of redundancy in models, most of

which reflect shallow development trajectories.37

The development trajectory of an AI system can be shallow in

several respects. First, AI models tend to be ‘‘validated’’ in silico,

with few tested on external datasets and still fewer subject to

prospective testing in real-world environments. Wessler et al.

note that 58% of the cardiovascular prediction models (CPMs)

in the Tufts Predictive Analytics and Comparative Effectiveness

CPMRegistry had never been externally validated.37 McDermott

et al. note that ‘‘whereas �80% of computer vision studies and

�58% of natural language processing studies used multiple da-

tasets to establish their results, only �23% of [machine learning

applied to health] papers did this.’’ 19 Wu and colleagues report

that public documents show that all but 4 of 130 AI devices to

receive FDA approval appear to have been evaluated solely on

the basis of retrospective studies, and none of the 54 high-risk

devices appear to have been evaluated prospectively. They

also note that the performance of 93 of these devices appears

not to have been evaluated across multiple implementation

sites.38 Although validation of a model on independent datasets

is important, prospective studies of complete technologies (AI

models plus the practices and procedures and training neces-

sary to implement those models in actual practice) under real-

world conditions provide a more accurate picture of what to

expect from the use of AI technologies in practice. However,

the development of AI systems is often treated as quality

improvement rather than as research, and so high-quality pro-

spective studies that control for bias and have greater relevance

to clinical practice remain rare.39,40

Second, showing that an AI model can perform a desired task

on a range of fixed datasets may shed light on the efficacy of that

model under idealized conditions, but the clinically relevant

question for patients, care providers, and health systems is

whether an AI model can be incorporated into a system that

can be deployed in clinical practice with sufficient effectiveness

in the real world as to offer a net benefit to stakeholders. Models

that perform well in idealized laboratory environments may fail to

provide a net benefit to patients for many reasons. A recent

review of 65 randomized controlled trials (RCTs) found that

two-fifths of the prediction tools evaluated in these trials that

‘‘achieved good performance in observational model develop-
ment and/or validation studies failed to show clinical benefit for

patients compared to routine clinical treatment.’’41

Even if AI systems are deployed on the basis of solid evidence

that they can provide a net advantage to patients at the time of

deployment, changes in clinical practice, background rates of

concurrent disease, and other social and environment factors

can shift the distribution of patient attributes in ways that require

AI systems to be retrained or reevaluated.42,43 This was illus-

trated during the current pandemic by an increase in sepsis

alerts in health systems using AI systems to monitor clinical

care.44 Establishing that AI systems can promote clinical value

is not a threshold that is crossed in development, which can

then be taken for granted once a system is incorporated into

clinical workflows. System performance requires constant moni-

toring, a process that may require alterations to clinical work-

flows and the mix of expertise on healthcare teams.

One ambition for the use of AI in medicine is to capture the

data necessary to reduce unwarranted variation in clinical prac-

tice, thereby weeding out ineffective practices and stewarding

scarce resources toward more effective alternatives. Ironically,

the landscape of AI in medicine reflects a similar proliferation

of systems that perform the same task but whose relative clinical

merits are not well characterized and not easily compared.

Rather than reducing unnecessary variation, the current state

of AI has the potential to simply add another dimension to this

range of variation in clinical care.36

AN UNHEALTHY KNOWLEDGE ECOSYSTEM

Finally, the fact that the knowledge ecosystem surrounding AI in

medicine is cluttered with hype and misinformation jeopardizes

the prospect that AI can help medicine give practical substance

to the idea of a learning health system. By a ‘‘knowledge

ecosystem,’’ I mean the shared understanding of the medical

profession relating to the capabilities and limitations of various

medical technologies. In a healthy knowledge ecosystem, stake-

holders such as clinicians and health-system administrators

should have sufficiently clear understanding of the advantages

and limitations of various technologies that they can interface

fruitfully with specialists who command a deeper and more sub-

stantial knowledge of that technology. A healthy knowledge

ecosystem is thus essential to a fruitful division of social and

epistemic labor, in which the stakeholders who provide care,

manage health systems, and set policy for treatment and pay-

ment can use policies, practices, and interventions to improve

patient outcomes, the efficiency of healthcare delivery, and the

fairness with which scarce resources are shared.

The knowledge ecosystem surrounding AI in medicine is in-

flated with hype. Machine-learning systems are described as ap-

proaching ‘‘problems as a doctor progressing through residency

might: by learning rules from data.’’45 Articles in top journals

speculate about the prospect that AI will render doctors

obsolete,46 and major medical centers have invested millions

in initiatives such as IBM’s Watson.47 Yet, systematic reviews

of AI applications in medicine find that few are ready for clinical

deployment.25,39,40,48 The Watson program in health, once

described as the ‘‘future of healthcare,’’ has been ‘‘sold for

scraps’’ in what some commentators describe as the ‘‘total
Cell Reports Medicine 3, 100622, May 17, 2022 5
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failure’’ of a program that over-promised and under-delivered

from the start.49,50 Descriptions of AI systems as learning from

experience in the way that medical students learn fosters the

impression that the current generation of systems—often brittle

and trained to perform a single task—have access to the kind of

background knowledge and global intelligence that allow

humans to learn across domains, from few examples. This

mismatch between the inflated rhetoric surrounding AI capabil-

ities and practical realities on the ground reflects, in part, the

extent to which stakeholders in medicine have been unprepared

for, and relatively naive in their response to, the self-serving pro-

motional activities of entrepreneurial entities looking to capture a

portion of the $3 trillion United States healthcare market. It also

creates a dynamic in which it can be difficult for clinicians, ad-

ministrators, policy makers, and other stakeholders to use a

detailed understanding of the capabilities and, most importantly,

the limits of current AI systems to counter the bandwagon effects

of inflated enthusiasm.

An unhealthy knowledge ecosystem surrounding AI is a recipe

for misapplication and miscalibrated trust.51 This can take the

form of over-trusting systems whose performance in real-world

settings has not been adequately verified or encouraging the

use of systems trained to make predictions in one domain to

support intervention decisions in another.28 Alternatively, misca-

librated trust can take the form of under-trusting well-designed

and carefully validated systems merely because they are the

application of an algorithm.52 It also makes it difficult for care

providers and health systems to navigate the proliferation of sys-

tems, to make informed decisions about which systems can be

usefully incorporated into clinical workflows, and to clearly and

readily assess what steps might need to be taken to ensure

that such systems provide a net benefit to patients and health

systems.

RECOMMENDATIONS

To ensure that AI initiatives in medicine are better aligned with

the moral imperative to ensure that health systems function

effectively, efficiently, and equitably for individuals and commu-

nities, a wide range of stakeholders should take steps to improve

four features of the knowledge ecosystem relating to medical AI.

First, funding agencies, health systems, clinicians, and AI de-

velopers should invest in efforts to identify areas where the type

of tasks that can be performed by current AI systems would add

significant value to the equity, effectiveness, or efficiency of

health systems. Frameworks from a value-sensitive design can

facilitate this goal through a process of stakeholder engagement

in which technical aspects of system development are evaluated

within a context structured by clinical goals and their relative

value to stakeholders.53 Fostering design practices that fore-

ground questions of clinical value at multiple points in system

development might better align pipelines for AI development in

medicine with the goal of ensuring that innovation targets ques-

tions of high clinical and social value.

Second, a significant part of these initiatives should include an

assessment of the clinical data required to develop these sys-

tems and whether existing data are fit for purpose. Greater

emphasis should be placed on funding and coordinating initia-
6 Cell Reports Medicine 3, 100622, May 17, 2022
tives designed to gather data with the standardization, fre-

quency, granularity, bandwidth, and attention to reducing or

controlling confounders necessary to support the development

of accurate and equitable AI systems. Initiatives like the NIH’s

Bridge2AI, which seeks to gather datasets specifically designed

to support the development of AI systems, might be a step in the

right direction, depending on the extent to which data-collection

efforts are alignedwith priority health needs andwith the require-

ments of the specific scientific questions that such datasets are

anticipated to support.

Third, funding agencies, professional societies, academic

institutions, and health systems should develop incentives for re-

searchers to engage in the sustained, cross-disciplinary collab-

orations that are often necessary to deepen development trajec-

tories for AI systems. This might be facilitated through training

programs focused on expanding the knowledge base of key

stakeholders. This might include training for clinicians and health

system administrators about the capabilities and limits of AI and

clinical rotations to expose researchers in computer science to

the complexities of clinical decision-making and healthcare

delivery.

Fourth, stakeholders from AI and medicine, including re-

searchers, journal editors, and regulators, should develop stan-

dards for better elucidating the maturity of AI systems and the

level of evidence supporting specific claims to clinical utility. A

framework for indicating level of maturity might utilize categories

that characterize the development trajectory for a system, from

basic science, proof of concept, and concept refinement

through confirmatory testing in real-world contexts and post-

deployment monitoring. It should include a clear statement on

the intended clinical use case for a system along with possible

uses for which the merits of the system have not been validated.

It should also include a statement on the extent to which system

performance has been externally validated, the nature of that

validation, whether the conditions necessary to replicate system

performance in actual practice have been established, and

whether the performance of this system, with specified training

for operators, has been evaluated in real-world settings (M.

McCradden, S. Joshi, J.A. Anderson, and A.J.L., unpublished

data).

Finally, implementation science should play a greater role in

structuring and evaluating proposals to implement AI systems

in healthcare settings. Implementation scientists might serve

as a bridge between AI researchers and healthcare teams and

facilitate the evidence-based, longitudinal assessment of such

systems.

CONCLUSION

Many of the ambitions driving enthusiasm about AI in medicine

are worthwhile and important. They include the goals of promot-

ing decisions that are informed by a comprehensive assessment

of available data, ensuring that the relative merits of policies,

practices, procedures, and interventions are clearly assessed

before they are implemented in practice and continuously moni-

toring clinical workflows and practice patterns so that they can

be adjusted in light of changing circumstances. Applications of

AI are likely to play a valuable role in advancing each of these
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goals. In that sense, the point of the present analysis is not to

convey techno-pessimism.

The point of the present analysis, rather, is to emphasize that

when it comes to the goals of promoting the ability of stake-

holders to learn within health systems, AI is neither autonomous

nor exceptional. It is not autonomous in that it cannot decide

which questions to pursue, whether datasets are adequately

complete or fit for purpose, which training and testing methods

promote both accuracy and equity, and which practices for

incorporating AI systems into clinical decision-making increase

the efficiency of health systems. It is not exceptional in that,

like all other methods, tools, and interventions, its ability to

advance important social and clinical objectives hinges critically

on decisions that are made by a wide range of stakeholders,

each of whom faces a series of local incentives that may cohere

with and support or conflict with and undermine socially desir-

able ends to varying degrees.1

Uncoordinated decisions by stakeholders pursuing their own

interests in such an environment do not necessarily ensure that

novel technologies will advance important social and clinical ob-

jectives. In our fascination with the potential for AI, we too often

overlook these mundane limitations. In that regard, our ability to

use AI to promote the goals of learning health systems will

depend on our ability to reshape aspects of health systems on

which this new technology depends, into which it will be in-

serted, and from which it is being developed.
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