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THE BIGGER PICTURE How to holistically evaluate artificial intelligence (AI) tools in healthcare remains a
challenge. Frameworks like regulatory guidelines and institutional approaches have focused narrowly on
the tool’s performance alone, but we know that proper use of tools requires knowing the right way to use
it and under what conditions. Tools are not neutral—they reflect our values. So, AI tools can be considered
‘‘sociotechnical systems’’—meaning that their computational functioning reflects the people, processes, and
environment. A ‘‘normative framework’’ for AI tools in healthcare supplies the practical guidance for opera-
tionalizing our values that incorporates not just the tool’s properties but the systems surrounding its use to
achieve benefit.
SUMMARY

Artificial intelligence (AI) tools are of great interest to healthcare organizations for their potential to improve
patient care, yet their translation into clinical settings remains inconsistent. One of the reasons for this gap is
that good technical performance does not inevitably result in patient benefit. We advocate for a conceptual
shift wherein AI tools are seen as components of an intervention ensemble. The intervention ensemble de-
scribes the constellation of practices that, together, bring about benefit to patients or health systems. Shifting
from a narrow focus on the tool itself toward the intervention ensemble prioritizes a ‘‘sociotechnical’’ vision
for translation of AI that values all components of use that support beneficial patient outcomes. The interven-
tion ensemble approach can be used for regulation, institutional oversight, and for AI adopters to responsibly
and ethically appraise, evaluate, and use AI tools.
INTRODUCTION

It can be challenging to assess whether new artificial intelligence

(AI) or machine learning (ML) healthcare applications promote

the legitimate interests of patients and health systems. Stake-

holders need a normative framework that can both assist them

in navigating challenges and provide benchmarks against which

new applications can be evaluated. Normative frameworks that

provide guidance about algorithmic development tend to

narrowly focus on attributes of the AI model, neglecting knowl-

edge, practices, and procedures that are necessary to fruitfully

integrate the model within the larger social systems of medical

practice. The challenges and frictions associated with inte-

grating these tools into clinical practice have been fruitfully

studied by social scientists, who understand AI as part of a soci-

otechnical system.1 However, this work tends to be retrospec-
This is an open access article und
tive and descriptive. We propose a normative framework for

advancing the responsible integration of AI systems into health-

care that captures the status of ML models as key pieces of a

larger sociotechnical system. Using the concept of an interven-

tion ensemble, we argue that AI systems should be evaluated

as one element within a larger ensemble of knowledge, prac-

tices, and procedures that are jointly necessary to ensure that

these innovations advance the legitimate interests of patients

and health systems.

To motivate our perspective, we turn first to the current ap-

proaches to responsible translation. Guidance surrounding the

development of ML models focuses heavily on the model as

the main product of translation. Work in this area includes road-

maps and frameworks for responsible translation, the regulatory

landscape, institutional governance, and explainability/interpret-

ability.2–8 Typically, the goal in these frameworks is to identify the
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scientific practices necessary to make and maintain a ‘‘good’’

model. Although what makes a model good takes on a number

of different meanings, this work is often limited to measures

that narrowly focus on characteristics of the model and its out-

puts. These include criteria such as reliability, reproducibility,

true/false negatives/positives, and a variety of technical mea-

sures of accuracy. Although clinical relevance is often empha-

sized as a criterion for evaluating model quality,9,10 this is often

reduced to ensuring that the model is accurate at a prediction

problem that clinicians feel is important.

Regulatory frameworks increasingly include rules requiring ev-

idence for good clinical performance of models11—a welcome

improvement given work demonstrating that a large proportion

of FDA-approved AI systems have been granted on the basis of

retrospective performance alone.12 However, regulatory bodies

have not gone so far as to specify the methodology (e.g., pro-

spective, controlled, quasi-interventional clinical trials) by which

evidence is gathered. There is substantial variability regarding

how performance should be assessed, which methods of evalu-

ation to use, and what measures of performance are best.

Otherworkaimedatpromoting responsibleAI development fo-

cuses on producingmodels that are trustworthy, interpretable, or

explainable, whichwe define broadly here as any attempt to sup-

port the users’ understanding of the way a model generates out-

puts from a set of inputs. Adjuncts like the ‘‘Model Facts’’ label

offer information to satisfy the need for basic knowledge about

the model and its validation process.13 Efforts in post hoc ex-

plainability are sometimes proposed as answers to questions

about responsible clinical decision-making,14,15 but others

have pointed out the computational16 and ethical17,18 limitations

of current explainability methods for satisfying ethical decision-

making in medicine. Others have remarked that explainability is

not strictly needed to encourage clinical use of model outputs.1

Common among trustworthy, interpretable, and explainable ap-

proaches is the presumption that understanding how a model

made a particular prediction is sufficient for responsible use.

In contrast, social science work has rejected a narrow view of

AI as a technical product in favor of a broader frame in which

these products are part of a larger sociotechnical system.1,13

For example, Madeleine Clare Elish’s unique work documenting

the social dimensions of SepsisWatch demonstrated that its effi-

cacy was heavily reliant on the work of the nursing staff charged

with encouraging care teams to attend and respond to model

outputs.19 Sandhu et al.20 observed that a model’s perceived

clinical utility would be related to its overall ability to support

the management of a clinical problem in a given unit rather

than specific performance metrics. Henry et al.21 remarked that

clinicians often did not feel the need to understand how a model

arrived at its predictions to use it effectively, but they also noted

that clinicians held inaccurate beliefs about the model’s capabil-

ities. These descriptive findings demonstrate how clinicians can

develop schemas to feel confident using ML tools at the point of

care, predominantly drawing from their own personal observa-

tions of model performance and secondary mechanisms such

as trustworthiness. However, they also highlight the lack of an ev-

idence-based foundation for clinicians to draw from in using ML

tools at the bedside. There is a limited understanding of the

knowledge, practices, and procedures necessary for stake-

holders to use AI systems to produce value for patients.22
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To bridge this gap, we suggest a recognition of ML tools as

one element within a larger intervention ensemble.23–25 This

broader conception connects the fields of responsible AI and so-

cial sciences. The framework we propose is normative in the

sense that it is offered as a guide to both facilitate responsible

development of AI systems and to evaluate the decisions and

practices of stakeholders who are developing, procuring, or im-

plementing them.We hope that this framework is also relevant to

shaping emerging commitments from regulatory bodies

exploring the kind of evidence that should be collected to sup-

port the oversight of AI systems. Additionally, given that recent

systematic reviews identified that two-fifths of AI tools evaluated

through clinical trials fail to demonstrate superiority to standard

of care,26 we hope that this framework offers a means to lend

precision to prospective evaluation so as to increase the likeli-

hood of positive results, thereby reducing research waste.27

THE INTERVENTION ENSEMBLE WITH
HEALTHCARE ML

The intervention ensemble evolved from the recognition that in-

terventions like drugs23–25 and other technologies such as

autonomous vehicles28 are incapable of producing clinical

benefit on their own. To realize their benefits, they must be

embedded within an ensemble of knowledge, practices, and

procedures that govern the use case for the intervention and

include the conditions under which the intervention is likely to

be effective, ineffective, or harmful and the steps that are

required to monitor safety and efficacy.

Interventions, drugs, devices, and other tools cannot further

the interests of patients unless they are used appropriately. For

example, for pharmaceuticals, whether they have no effect, pro-

duce fatal toxicities, or confer clinical advantage is a function of a

set of parameters including the indication(s) for which the drug

provides benefit, the dosage at which the drug provides benefit,

the window above which it is toxic and below which it is ineffec-

tive, the schedule on which the drug must be provided, and any

additional diagnostic criteria needed to specify the populations

most likely to benefit or be harmed by the drug. The intervention

ensemble consists of the intervention itself (the drug) plus the set

of parameters that modulate its effects in practice. Exploratory

clinical research identifies (1) the boundaries within which the

intervention is clinically useful and outside of which it is harmful

and (2) approximate optimal values on key dimensions. Once

these windows and optima have been identified, prospective

confirmatory trials ascertain whether this intervention ensemble

confers clinical benefit and under what conditions.23–25

Like pharmaceuticals, ML models alone do not improve out-

comes for patients. Our contention is that responsible clinical

development involves (1) identifying and properly characterizing

the ensemble of knowledge and practices that must be under-

stood and enacted if the system is to be used for clinical benefit

and then (2) generating the evidence necessary to substantiate

the claim that this ensemble is likely to produce a net benefit rela-

tive to alternative approaches in clinical practice.

To explore the idea of ML models as elements within an inter-

vention ensemble, we conducted a narrative search of existing

regulatory frameworks and reporting guidelines to identify com-

ponents that each deemed important to translation of ML



Figure 1. The intervention ensemble of
clinical machine learning systems
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products. While there are many proposed frameworks to facili-

tate translation of ML,29 we chose to prioritize those which are

predominantly oriented toward the explicit aim of evidence

collection to support integration.30–32 We also drew from pub-

lished reporting guidelines evaluating AI in clinical settings33–35

as these are explicitly geared toward establishing the required

knowledge for clinical adoption. Further, drawing from some of

these authors’ own experiences translating models at the point

of care, we considered the set of elements that clinicians felt

were necessary to support them in making decisions at the

bedside.

We identified the following set of elements that would sur-

round the use of an ML model and constitute the intervention

ensemble for said model’s clinical use (Figure 1). Prioritizing

the collection of this constellation of information as the product

of a translation process for AI systems establishes the necessary

and relevant set of information to guide clinical use.

(1) The use case: a well-defined use case explains how a pro-

posed system is expected to produce clinical or social

value by advancing patient interests or enhancing the

capability of health systems to function more efficiently

or more equitably.

(2) The task and outcome: a clear specification of the task(s)

the system performs to effectuate the use case, including

the way system outputs are to be integrated into clinical

decision-making, practices, or procedures.

(3) Performance threshold setting: clinically relevant bench-

marks necessary to evaluate the success or failure of

the tasks and outcomes a system is designed to generate,

their ability to achieve the intended use case, and the sys-

tem’s ability to produce the desired clinical benefits rela-

tive to relevant alternatives.

(4) Performance across subpopulations: criteria and consid-

erations for equitable performance and system use

across the diversity of populations whose care may be

influenced by the system’s outputs.
(5) Use parameters and limitations: a spec-

ification of the conditions within which

the system can be used to achieve

such benchmarks and outside of which

itsperformance is expected todegrade,

alongwith protocols or practices for im-

plementing the system within these

conditions under real-world conditions.

(6) Monitoring: a protocol for monitoring

systems that are deployed in practice

to ensure that their use satisfies these

conditions and that changes in the clin-

ical environment or updates to the sys-

tem do not degrade its performance.

A case study approach of the IDx-DR

system illustrates how an intervention

ensemble might work. We chose IDx-DR
because it is a widely recognized AI system that has been at

the forefront of advancing health AI and has been used as a

case example for many seeking to develop best practices

around evaluation and oversight. Additionally, there are

numerous publications to draw from surrounding the develop-

ment of IDx-DR, which enriches our ability to test the applicability

of the intervention ensemble. While detailed exploration of IDx-

DR allows us to explore the intervention ensemble across all

phases of development and implementation, we have also sup-

plemented this case study with additional examples from the

literature to enrich the discussion of the intervention ensemble.

The selection of IDx-DR should not be taken as an endorsement

specifically, nor are we suggesting it sets the standard.

IDx-DR is an FDA-approved AI system intended to screen for

and detect mild diabetic retinopathy.36 The outputs are provided

at the point of care accompanied by a recommendation for

further evaluation by a specialist or a 6-month follow-up scan.

IDx-DR’s approval followed a large observational trial testing

the accuracy of its diagnostic properties.36 Table 1 depicts an

intervention ensemble for IDx-DR.

A well-defined use case
Per the FDA, ‘‘IDx-DR is indicated for use by health care pro-

viders to automatically detect more than mild diabetic retinop-

athy (mtmDR) in adults diagnosed with diabetes who have not

been previously diagnosed with diabetic retinopathy.’’ The use

case thereby clearly defines a particular population (adults diag-

nosed with diabetes who have not been previously diagnosed

with DR) and the task the system performs (detect pathologies

of the eye that are established as valid indicators of mtmDR).

Outside of these parameters (e.g., used to detect DR in patients

without diabetes or to detect other eye pathologies), the use of

IDx-DR would not be indicated based on the same evidence.

Ensuring a tight, logical link between the computational task

and the use case is ideal. Passi and Barocas37 describe ‘‘prob-

lem formulation’’ wherein the knowledge about the label being
Patterns 4, November 10, 2023 3
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predicted should be legitimately linked to the clinical problem to

be addressed. Defining the use case can be relatively straightfor-

ward or it can be more complicated. Though there are ‘‘gold

standards’’ for a plethora of disorders, there are few tests that

are perfectly sensitive and specific.38 In other contexts, such

as predicting short-termmortality risk or long-term benefit, there

may not be an objective expert consensus on how to define the

outcomes. The use case as defined sets out the precise scope of

the ML tool’s application.

A clear specification of the relationship between the use
case and the desired clinical benefit
The task performed by an ML model must be integrated into a

larger chain of actions and decisions in a way that plausibly gen-

erates benefit. Because the relationship between diagnosis in a

primary care environment and a relevant patient outcome (e.g.,

disease progression, time to access specialist care) was not

directly tested in the trial of IDx-DR, an observational trial allows

us only to hypothesize about the potential benefit. Keane and

Topol39 note that while observational studies are valuable,

‘‘such studies will not address the issue of clinical effective-

ness—do patients directly benefit from the use of such AI

systems?’’

There are many examples of diagnostic aids, tools, and sys-

tems that demonstrate strong accuracy but have failed to yield

benefits to patients. Advanced screening for various cancers

through the use of computer-aided detection is emblematic of

this gap: we can reliably identify abnormalities, but given how

many are benign, identification itself might only result in

increased anxiety, low-value testing, and waste of healthcare

dollars rather than a benefit to patients.40–42 Accordingly, to

ensure appropriate use of healthcare resources and to practice

evidence-based adoption of novel technologies, many strongly

advocate for testing AI’s systems through prospective, interven-

tional trials prior to scaled adoption.39,43–45

Prospective interventional trials are increasingly pursued to

test the association between the use of AI systems and a relevant

clinical outcome. These can be patient-centered (e.g., mortality)

or clinician/workflow-centered. As an example of the latter,

BoneXpert is a system that automates bone age calculation su-

perior to the current standard and significantly speeds up a radi-

ologist’s workflow.46,47 On the patient-centered side, recent

studies have sought to explore the relationship between the

use of these tools and in-hospital mortality.48 Ensuring clear

articulation of what evidence is gathered during a particular clin-

ical study, and how this evidence contributes to knowledge of

the reliable conditions of the system’s use, is central to respon-

sible use of AI.

Clinically relevant benchmarks necessary to evaluate
the success or failure of the use case and its ability to
produce the desired clinical benefit
IDx-DR’s outputs were defined to be consistent with estab-

lished, consensus-based grading protocols.36 The confirmation

of the outputs was then established against expert performance

by having images interpreted by three expert readers masked to

the AI output, where a majority voting paradigm established the

final diagnosis. The pre-set thresholds to define the success or

failure of IDx-DR’s diagnostic capabilities accounted for poor im-
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age quality and defined success as exceeding 75% for sensi-

tivity and 77.5% specificity with an appropriate sample size.

The authors contextualize this performance in light of reports

that under similar parameters, board-certified ophthalmologists

achieve sensitivity rates between 33% and 73%.36

Similarly, for BoneXpert, clinical evaluations first compare the

accuracy of its bone age estimation against the performance of

radiologists using the gold standard approach.47,49 Secondly,

they assessed the amount of time radiologists spend performing

the taskmanually compared with the use of the tool. Both time to

task completion and accuracy of the task are the benchmarks by

which the system is judged to succeed or fail.

Criteria for equitable clinical performance across the
diversity of populations on which the system is likely to
be used
While it is important to ensure that accuracy is established

against a reference standard or current practice, it is nonetheless

important to question whether the status quo itself is effective for

all patients. Health disparities are noted in diagnosis, prognosis,

and access patterns within medicine. When AI systems replicate

these patterns accurately, at scale, we risk further entrenching

disparities.50,51 It is therefore essential to evaluate the success

or failure of an ML tool within the entire population in which it

will be used, both in aggregate and in relevant subgroups.50,52,53

Prospective clinical evaluation focused on patient outcomes can

more reliably identify whether a model’s impact is equitable or

not. For example, in some cases, algorithmic approaches might

be preferable to an existing standard.54 However, confirmation

on patient outcomes is needed to assess whether a ‘‘fair’’ algo-

rithm translates to fair treatment.53

The trial report for IDx-DR identifies no significant effects in the

performance of the system observed according to race,

ethnicity, or sex.36 They note a mildly increased specificity

among those over 65 years of age. The authors described the

demographic range of participants in the study according to

age, sex/gender, and ethnicity/race and stated that the bio-

markers of DR are considered ‘‘racially invariant.’’ Notably, it

must be acknowledged that these are somewhat imprecise

terms that are proxies for factors that causally influence the out-

comes of interest. For example, ‘‘sex’’ is often captured by either

the gender or sex specified on a health card or insurance docu-

mentation or by the clinician’s impression. These are distinct

from features that may well influence outcomes, such as hor-

mones, experiences of sexism, anatomy, etc., though reducing

performance to certain markers risks inappropriately essential-

izing differences as a function of patient identity.55 Considering

what is directly measured with a given label forms a part of a ho-

listic assessment of the overall fairness properties of a given

system.52

Health equity scholars are re-asserting their long-standing

advocacy for moving away from a neutral approach that fails to

recognize differences between patients on the basis of demo-

graphic factors.56–58 The importance of disaggregating prospec-

tive (clinical) model performance according to patient groups is

increasingly recognized in medicine.50,59 Clinical trial reporting

guidelines include provisions for dis-aggregated reporting as a

standard item.33 In one example, while BoneXpert performs well

overall, a prospective study noted a higher error rate among girls



Table 1. The intervention ensemble for IDx-DR: Linking the intended goals and benefits of the system with the evidence base to

warrant empirical claims

Rationale for thinking this system can be

incorporated into practices and procedures

that provide a specific benefit to

patients/health systems Evidence base to warrant relevant claims

Use case detection of mtmDR in non-expert settings

can facilitate timely referral for

specialist-level care in the hopes of

obtaining early treatment and

minimizing diabetes-related vision

complications

real-world impact on aggregate outcomes

of health system efficiency (e.g., access to

specialist care, speed of referral) has not yet

been studied; no patient outcomes have yet

been directly evaluated, such as access to

DR-related care or a reduction in

diabetes-related ophthalmological

problems

Task and outcomes automated detection of mtmDR

among adults with diabetes not

previously diagnosed with DR;

system outputs are (1) positive for

mtmDR, recommended referral to

ophthalmology, or (2) negative for

mtmDR, recommend re-screening

in 12 months

prospective evaluation of the true clinical

accuracy of the system’s ability to detect

mtmDR across 10 primary care sites; the

outcome assessed was the system’s

performance against the reference

standard, established by an expert panel;

established the ability of non-specialist

personnel to use IDx-DR in a clinical setting

to detect mtmDR

Performance threshold setting comparison to ophthalmologist

accuracy rates at detecting mmDR

under analogous conditions, as

established by previous studies

evaluation demonstrated the accuracy of

mmDR identification to be as follows:

sensitivity 87%, specificity 90%, positive

predictive value 73%, negative predictive

value 96% (based on a prevalence of 24%

for minimal DR)

Performance across subgroups evaluate system performance across a

range of relevant patient characteristics to

detect differences in performance in

anticipated subgroups

subgroup analysis for sensitivity and

specificity by race, ethnicity, and sex to be

equivalent; mild increase in specificity for

adults >65 years of age; other metrics

(e.g., failure case analysis) not reported

Use parameters and limitations evaluate the relevant population and

establish pertinent contraindications,

warnings, standard operating procedure

requirements, quality control measures,

and conditions where the system fails

trial included patients with diabetes not

previously diagnosed with DR, using

standardized camera and equipment, using

non-specialist technicians from study sites

with 4 h of training, in a primary care setting;

evaluated rate of images judged to be of

insufficient quality and number of attempts

to capture a sufficient image

Monitoring practices necessary to monitor system

performance, anticipate distribution shift,

or assess performance after system

updates

described as a ‘‘locked algorithm’’; we were

unable to find documentation in the

literature regarding ongoing safety

assessments or whether the system is

updated over time with new data

IDx-DR, product name for the AI tool; mtmDR, more-than-mild diabetic retinopathy.
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living in India.60 As a non-demographic example, a hip fracture al-

gorithm was noted to perform less accurately when the bone or

joint in question had some abnormality.61 Such granular data

collection can more precisely inform the intervention ensemble.

A specification of the conditions within which the
system can be used to achieve such benchmarks and
outside of which its performance is expected to degrade
An important component of social value is that the ML model’s

use is valuable at a specific point in the care pathway. For

example, Oakden-Rayner et al. identified that a model intended
to detect the presence of respiratory conditions performed

considerably better on patients with a chest tube—a treatment

for respiratory conditions.62 The implication is that a deployed

model would be less accurate earlier on in the clinical pathway

(where the identification of respiratory issues may be more likely

to result in a net benefit) and more accurate once treatment has

already commenced for the conditions for which the model is

purportedly being used to identify.

For IDx-DR, the trial report contains very clear information

about the conditions under which the system was evaluated.36

Adult patients with asymptomatic, diagnosed diabetes were
Patterns 4, November 10, 2023 5
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evaluated in a primary care clinic by non-experts who received a

standardized level of training to perform the screen. The condi-

tions surrounding the image capture are also standardized,

including the camera, patient positioning, etc. This sort of stan-

dardization and transparent reporting may foster better under-

standing of the generalizability of models and model ap-

proaches.63,64

A protocol for monitoring systems that are deployed in
practice to ensure that their use satisfies these
conditions and that updates to the system improve and
do not degrade its performance
Much like prospective postmarketing surveillance is needed in

the context of pharmaceuticals to assess ongoing safety, effec-

tiveness, and adverse event monitoring, AI systems require anal-

ogous postdeployment monitoring for safety.65,66 Algorithmovi-

gilance is particularly important for AI due to its sensitivity to

local contexts, susceptibility to data shifts, changes in patient-

level patterns, and the effects due to changes in environmental

factors (e.g., policy changes, seasonality, etc).67 Practice shift

can occur where AI systems may be used in patient populations

for whom they were not initially intended, causing adverse

events.65 Notably, algorithms will differ in the extent to which

they are susceptible to drifts. Since IDx-DR is a ‘‘locked’’ algo-

rithm, for example, we are unaware of documented discussions

of such protocols in this context.

Model performance can deteriorate for a variety of reasons.

‘‘Distribution shift’’ occurs when the distribution of features ob-

tained during the training and testing of a model shift or change

in such a way that the model no longer performs as expected.

The cause of distribution shifts are myriad, including changes

in the patient population; changes in data acquisition devices;

software updates to data storage systems like electronic health

records (EHRs); seasonality of diseases; clinician and patient in-

centives; practice recommendations; and adverse events like

the COVID-19 pandemic.68 ML systems can also suffer from

runaway feedback loops. When data collected based on model

predictions are used to update MLmodels, model decisions can

be significantly biased, as identified in the case of predictive

policing, where the model repeatedly recommends policing in

Black neighborhoods irrespective of actual crime rate.69 Less

is understood about the implications of such feedback loops in

the healthcare context.70 Due to the heterogeneity and shifts in

patient populations, maintaining institutional governance will

remain important.8 The intervention ensemble for a given system

is not static and should be updated as relevant.

DISCUSSION

Treating ML tools as one component of a larger ensemble of

knowledge, practices, and procedures that make up a useful

medical intervention broadens the scope of evaluation for clinical

translation. The approach helps researchers and clinicians guide

the design and conduct of prospective evaluation to provide

credible evidence of clinical utility.27 The clear pre-specification

and analyses of the various parameters surrounding a model’s

use can improve the trustworthiness of the research process

while minimizing research waste and increasing the likelihood

of a positive trial result.27 Additionally, the intervention ensemble
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(rather than the model alone) can constitute a more patient-

centered unit for monitoring, education, and governance.8

A great deal of work has revolved around demonstrating accu-

racy as a necessary and sufficient condition for clinical use. Once

accuracy is established, researchers turn to building the trust

and acceptance of the user (via, for example, explainable inter-

faces). But accuracy alone does not establish clinical effective-

ness, and the ‘‘likeability’’ of a system is not a morally significant

metric of trustworthiness. The intervention ensemble concept

bridges the gap between the operating characteristics of a

model and the relevant information clinicians need to advance

the interests of patients. Clinicians do not require tools to be per-

fect in order to use them; rather, they need to know when they

work well, when they do not, and how their net clinical advantage

compares to other clinical alternatives.

Notably, the intervention ensemble defended here does not

require AI systems to be interpretable by design or explainable

by another system. As argued previously,18 many interventions

in medicine lack these properties in the sense that their clinical

benefits have been demonstrated in well-designed trials but

we do not know the precise mechanism by which they bring

about that effect. We aim to provide standards for AI systems

that are symmetrical with those applied to other medical inter-

ventions—stakeholders require the knowledge necessary to

implement them in practice, and they require credible evidence

that in doing so, they will advance patient interests relative to

available alternatives. This is not to say we oppose interpretable

systems—like others, we regard transparency and interpret-

ability as desirable features of AI systems. However, we remain

concerned that discourse surrounding AI sometimes overstates

the value of interpretability and explainability, as though these

conditions are necessary or sufficient for responsible deploy-

ment of AI systems. Our position is that, although these traits

are desirable, they are neither necessary nor sufficient in and

of themselves for deployment, at least insofar as these traits

require knowledge of how algorithms work that goes beyond

what has been described in the present framework.

Finally, we have developed this framework with the hope that it

will assist in the responsible development and implementation of

clinical AI. At this time, however, we have not yet evaluated its

impact (e.g., can use of the intervention ensemble prevent

over- and under-reliance on ML outputs, promote ML accep-

tance, or offer acceptable transparency to patients?). This is a

task for future work. Future work might also explore its general-

izability across contexts or its inclusivity to emerging variations

of AI (e.g., generative models). We are interested in feedback

from our colleagues on the utility of this framing.

Conclusion
Scholars have noted the chasm between current practices for

developing ML systems in medicine and the evidentiary needs

of key stakeholders. Bridging this gap is necessary to ensure

that research in this area generates the benefits necessary to

improve patient outcomes, improve the delivery of health ser-

vices, reduce unwarranted variation in practice, and ensure

that practices are grounded in credible evidence of safety and ef-

ficacy.71 The intervention ensemble concept can improve the

validation of AI systems by better meeting the information needs

of key stakeholders, from clinician users to patients and health
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systems administrators. Understanding ML models as one

component of a larger intervention ensemble encourages stake-

holders to specify the use case, its relationship to a clinical

benefit, the performance threshold setting, criteria for equitable

performance across subpopulations, parameters and limita-

tions, and a protocol for monitoring. These components together

can provide the necessary foundation for beneficial use and ho-

listic governance of ML systems.8
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