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Abstract 

 
After reviewing theoretical reasons for doubting that machine learning 
methods can accurately infer gene regulatory networks from microarray 
data, we test 10 algorithms on simulated data from the sea urchin network, 
and on microarray data for yeast compared with recent experimental 
determinations of the regulatory network in the same yeast species. Our 
results agree with the theoretical arguments: most algorithms are at chance 
for determining the existence of a regulatory connection between gene pairs, 
and the algorithms that perform better than chance are nonetheless so error-
prone as to be of little practical use in these applications. 

 
1. Motivation The development of microarray techniques for simultaneous 
measurements of concentrations of mRNA transcripts from thousands of genes has 
generated a number of proposed and actual applications of machine learning methods to 
infer networks—represented as Boolean or Bayes nets—of regulatory relations among 
genes. Proposed networks encode both hypothetical causal relations and conditional 
independence relations among gene expressions. The measured, continuous-valued, 
expression levels are typically either projected to binary or other discrete values, or 
transformed to approximate marginal Gaussian distributions. In the latter case, the 
conditional independence relations are estimated from the second moments—the 
variance/covariance matrices—of the estimated joint distributions. Because the 
concentration measurements are essentially additive functions of mRNA concentrations 
in thousands of approximately independent values for individual cells, the joint 
distribution of the measured quantities should, by the Central Limit Theorem, be 
approximately Gaussian. 

These proposals face several difficulties: (1) the number of measurements of each 
gene is invariably much, much smaller than the number of genes under study, and the 
number of genes effectively defines the number of variables; (2) microarray 
measurements have a small signal to noise ratio, and at least one standard type (cDNA 
arrays) appears to have systematic errors resulting in major anomalies in the variances; 
(3) measurements are not of mRNA concentrations in individual cells, but from 
aggregates of thousands of cells, and, except when the probability distribution for 
individual cell expression levels is linear and Gaussian, conditional independence 
relations that hold for probability distributions in individual units are not the same as 
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those that hold in the probability distribution for cell aggregates (Danks and Glymour, 
2001; Chu, et al., in press)—experimentally established transcription dependencies in 
eukaryotic cells appear to be highly non-linear (Davidson, et al., 2001); (4) the Boolean 
and Bayes net representations depend on acyclic graph representations, and cannot 
represent equilibrium distributions of feedback systems, but eukaryotic networks have 
feedback; (5) statistical associations among measured expression levels for different 
genes may depend on variations in unrecorded regulator genes, or on extra-genetic 
factors not in the database; (6) there is considerable evidence that regulatory relationships 
may be non-linear; and, (7) summing variable values over many cell units reduces their 
variance, resulting in low correlations of transcript concentration due to regulatory 
interaction, which implies the need for very large samples to reliably distinguish zero 
from non-zero correlations. 

Despite these difficulties, which are insufficiently noted in the relevant machine 
learning literature, there are reports of successes with machine learning methods applied 
to both real-world and simulated data. But few of these reports compare regulatory 
networks obtained by machine learning methods with real data to networks independently 
established by experimental methods, and, to our knowledge, no published simulation 
studies generate their data from experimentally established networks and treat measured 
values as aggregates of many individual cell values, and none of the studies use the only 
available algorithm for equilibrium feedback systems. In the work reported here, we do 
all of the above.  
 
2. Algorithms We consider two published algorithms for Boolean networks that assume 
all variables are binary: Reveal  (Liang, et al. 1998) and Bool2 (Akutsu, et al., 2000). We 
also consider an algorithm that builds Bayes nets from multivalued variables, the sparse 
network Bayesian algorithm MRBN (Friedman, et al., 1999). We consider seven 
algorithms for continuous, Gaussian variables: PC (Spirtes, et al.) and CCD (Richardson, 
1996) and algorithms described in Arkin et al. (1997), D'Haeseleer et al (1999), Weaver 
et al. (1999) and van Someren et al. (2000), as well as a genetic algorithm.  

The Reveal and Bool2 algorithms were among the earliest proposed specifically 
for unraveling gene networks.  The MRBN algorithm is one of the most discussed 
procedures in the computer science literature on gene regulation networks. The algorithm 
has been applied to yeast data with both finite-valued projections and also with the 
presumption of a Gaussian distribution, yielding very different results. The algorithm is, 
however, not clearly documented (and authors did not reply to our requests for further 
documentation); we have therefore used an implementation by Aaron Darling (see 
http://mrbn.dyndns.org/ ). The PC algorithm (Spirtes, et al., 1993, 2001) is the first Bayes 
net search algorithm feasible for large, sparse networks. It is implemented for both 
discrete valued variables and for Gaussian variables; we have used only the latter version 
here. The CCD algorithm (Richardson, 1996) is to our knowledge the only correct 
algorithm ever published for feedback systems. We have used it with the assumption of 
Gaussian variables. Implementations of these algorithms are available at 
http://phil.cmu.edu/projects/tetrad.  Implementations of the various algorithms described 
in Arkin et al. (1997), D'Haeseleer et al (1999), Weaver et al. (1999) and van Someren et 
al. (2000) can be found at the GENLAB web site http://www.genlab.tudelft.nl/ . We 
know of no proofs of correctness for any of the last four algorithms.   



 3

Clearly these are not all of the algorithms that have been or could be proposed for 
studying gene regulation. We have not applied the FCI algorithm (Spirtes, et al.), which 
is correct for systems that may have latent variables, because it is very slow; our 
simulated data do not include latent variables. Nor have we included simulated annealing 
algorithms (Hartemink, 2001). 
 
3. Data Data in this study were of the following kinds: 
 

1. Data generated in ten steps from a time series network modeling regulation in a 
fragment of the sea urchin genome. 

2. Data similar to (1) but projected to binary values 
3. Data similar to (1) but projected to three values. 
4. Data from microarray measurements of variations of expression levels over the cell 

cycle in yeast (Spellman et al., 1998). Results were compared with a recent 
experimental determination of a substantial fraction of the regulatory network in the 
same species (Lee, et al., 2002). 

 
In all simulated cases algorithms were studied with both data from individual units 
(simulated cells) and data in which values of each variable were summed over 30 or 100 
units. We give details only of the aggregated data. 
3.1 Maternal Sea Urchin Network from NetBuilder Davidson and his collaborators 
(Davidson, et al., 2002) have worked for many years to elucidate the genetic network of 
the sea urchin embryo, resulting in experimental data for a network of some forty genes.  
Bolouri and his colleagues (Brown, 2002) have developed a simulator, NetBuilder, that 
implements realistic transfer functions relating gene inputs to their outputs (see Appendix 
A). One of the most extensive simulations is based on the sea urchin model developed by 
Davidson et al.  

In order to carry out extensive batch runs in which the parameters of the 
simulation are systematically varied, we implemented a Java program with the logical 
and mathematical functionality described in the NetBuilder documentation, but with none 
of the visualization or user-interface features of NetBuilder.  We tested this program by 
comparing the output with NetBuilder’s results for the “maternal and early interactions” 
portion of the sea urchin network.  The choice of the “maternal and early interactions” 
subnetwork was indicated by the manageable size of the network and the fact that the 
only exogenous inputs were a small number of maternal factors. See Figure 1 for a 
diagram of the network; note that there are six genes (Wnt8, Krl, SoxB1, Krox, Otx, and 
Eve) and several feedback loops. The trace of values for our implementation is very close 
to the NetBuilder data5  and, without noise, the two programs reach the same steady state 
after very few time steps (two or three).  In order to introduce stochasticity into the 
simulations, we computed the output value for each gene based on its inputs in the 
manner specified by NetBuilder and then multiplied the output by the value of a random 

                                                 
5 The values for components of the network (NetBuilder permits arithmetic and logical functions, among 
others, in addition to genes) were the same for our batch-mode software as in NetBuilder but in some cases 
they were shifted in time by one step.  In a private communication, Maria Schilstra, the developer of 
NetBuilder, feels that this is because of a difference in the order of evaluation of the components and is 
immaterial. 
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Gaussian variable with mean 1 and variance 0.01. We did not include an additive error. 
Data were obtained for individual units and aggregated, with repeated runs.  This network 
has several feedback loops, including at least 2 genes that auto-regulate.  For a discussion 
of the nonlinear transfer functions associated with the genes in the NetBuilder simulator 
see http://strc.herts.ac.uk/bio/maria/NetBuilder/Tutorial/netbuilder_tutorial13.htm  
 

 
Figure 1:  The “maternal and early interactions” portion of the regulatory network of the sea urchin 
embryo.  See Davidson et al, 2001 for details.   

To create a non-aggregated dataset we ran the Java implementation of the NetBuilder 
simulation of the maternal and early interactions network some number of times—
typically 20 or 100.  For each such sample we recorded the simulated expression level for 
each of the six genes (Wnt8, Krl, etc.) at each of up to 10 time steps; we call the values 
recorded for each such simulation a non-aggregated sample.  The algorithms assume a 
data matrix consisting of one column per variable and one row per sample.  In this case 
each simulation corresponds to a row and each gene-time step corresponds to a column 
(variable).   

To construct an aggregated dataset we compute the mean for each column of a 
non-aggregated dataset and that number becomes the entry in the corresponding column 
of the aggregated dataset; the number of rows is determined by the number of non-
aggregated datasets generated and averaged.  We call the vector of values stored in such a 
row an aggregated sample.  To redundantly clarify: each row of an aggregated dataset is 
an aggregated sample and is the mean of the rows of a non-aggregated dataset.  In the 
description of results below, let S = the number of simulations used to construct a non-
aggregated dataset and let R = the number of non-aggregated datasets used to construct 
each aggregated sample in an aggregated dataset.  Hence an aggregated dataset will be 
characterized by two integers, S and R. 

 In all of our experiments the sample sizes are comparatively small—reflecting 
the reality of microarray studies—and in most cases, the distributions are non-Gaussian, 
and the dependencies are non-linear.  We approximated mean-zero normality by taking 
logs of all values in the data matrices (for both non-aggregated and aggregated datasets) 
and then subtracting the median of each column from all the values in that column. 

By projecting based on the median value of each variable, we binarized the same 
data for tests of the Reveal and Bool2 algorithms. The MRBN algorithm implementation 
automatically projects real values to one of three values. The PC and CCD algorithms 
require multiple samples each consisting of values for a set of gene/time-step pairs.  The 
binary algorithms require as input a dataset consisting of binary values for each of a set of 
genes at each of a number of time steps.  Hence the same time series can be used for 
comparisons. For comparisons, in all cases we compute the average number of errors 
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(false positives, false negatives and their total) across the set of estimated models.  In the 
results section we report the outcome of a number of experiments using NetBuilder style 
simulations.  In all cases, directions of edges are ignored and errors are reported only for 
adjacencies.  All of the simulated data are available at                            
http://www.phil.cmu.edu/projects/genegroup.  

 
3.2 Yeast Data Spellman, et al. (1998) report data on five experiments in which mRNA 
expression levels were measured in the course of the cell cycle with cells synchronized in 
multiple different ways. Friedman, et al., applied the MRBN algorithm to this data to 
obtain conjectured regulatory relations among the genes. Comparison experimental data 
are from Lee, et al. (2002), who applied immunoprecipitation techniques to 
experimentally estimate genes directly regulated by each of more than 100 known yeast 
regulators.   

Some caveats are appropriate. Although the network structure of a fragment of the 
sea urchin gene has been established experimentally, the definite mathematical form of 
the dependencies of expression level concentrations on regulator concentrations in the sea 
urchin has to our knowledge only been published for a single gene, Endo16. In our 
simulations, we have used the nonlinear dependencies described on the NetBuilder 
Tutorial web page referenced above.  The comparison of machine learning results applied 
to the Brown lab study of the yeast cell cycle with the regulatory network found in Lee, et 
al. cannot expect a perfect match, because the cells in the two studies were not 
maintained or measured in the same conditions. One would nonetheless expect a 
significant fraction of regulatory relations to be invariant to sustain “housekeeping” 
physiological processes. 
 
4. Results 
4.1 Comparison of Continuous and Binary Algorithms for Simulated Data We 
performed several experiments using the NetBuilder style simulator as the source of data.  
These included both non-aggregated and aggregated datasets with S = 20 and with R = 30 
and 100.  We binarized these datasets and applied the Reveal and Bool2 algorithms, and, 
separately, we applied the MRBN algorithm.  With the MRBN algorithm the S samples 
were concatenated to create the input; this resulted in a longer time series of expression 
vectors. The PC and CCD algorithms require a user specified significance level; we have 
tested the algorithms on a range of values of the parameters from .05 to .3. We do not 
tabulate results of the genetic algorithm, which tended to produce no edges in any tests. 

There are 12 edges in the true graph for the maternal and early interactions 
portion of the sea urchin embryo network.  There are 21 pairs of the six genes since a 
gene can auto-regulate.  In experiments with simulated data we show only the results 
with aggregation. Results with non-aggregated data are similar. Each value in the 
following tables represents the average number of false positives, false negatives and 
total errors across 10 replications of the experiment for each algorithm. 
 
Experiment 1:  Aggregated data where each of 30 aggregated samples is the average of 
20 non-aggregated samples (S = 20, R = 30).  The values in the table represent the mean 
across 10 replications of the experiment. 
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False 
Pos 

Correct 
Pos False Neg 

Correct 
Neg 

Total 
errors 

Error rate 

PC05 5.4 8.9 3.1 3.6 8.5 0.40
PC10 6.6 10.5 1.5 2.4 8.1 0.39
PC15 7.6 11.3 0.7 1.4 8.3 0.40
PC20 7.5 11.6 0.4 1.5 7.9 0.38
PC30 8.1 12.0 0.0 0.9 8.1 0.39
       
CCD05 4.9 8.5 3.5 4.1 8.4 0.40
CCD10 6.9 10.3 1.7 2.1 8.6 0.41
CCD15 7.8 11.4 0.6 1.2 8.4 0.40
CCD20 8.0 11.6 0.4 1.0 8.4 0.40
CCD30 8.1 11.9 0.1 0.9 8.2 0.39

 
Reveal         6.1      8.1        3.9        2.9      10.0     0.48
Bool2         6.3      7.8        4.2        2.7      10.5     0.50
MRBN         1.9      4.0        8.0        7.1        9.9     0.47  
Arkin         1.4      2.7       9.3        7.6        10.7     0.51  
Weaver 9.0 11.9 0.1 0.0 9.1 0.43
Someren 5.3 7.0 5.0 3.7 10.3 0.49
D’Haeseleer 5.3 7.0 5.0 3.7 10.3 0.49

 
 
 Experiment 2:  Identical to experiment 3 except that there are 100 aggregated samples 
each of which is the average of 20 non-aggregated samples (S = 20, R = 100).  Again 
there are 10 replications. 
 

 
False 
Pos 

Correct 
Pos False Neg 

Correct 
Neg 

Total 
errors 

Error rate 

PC05 5.7 9.3 2.7 3.3 8.4 0.40
PC10 7.1 11.0 1.0 1.9 8.1 0.39
PC15 7.8 11.6 0.4 1.2 8.2 0.39
PC20 8.0 11.8 0.2 1.0 8.2 0.39
PC30 8.7 12.0 0.0 0.3 8.7 0.41
       
CCD05 5.4 8.8 3.2 3.6 8.6 0.41
CCD10 7.5 11.0 1.0 1.5 8.5 0.40
CCD15 8.3 11.7 0.3 0.7 8.6 0.41
CCD20 8.4 11.9 0.1 0.6 8.5 0.40
CCD30 8.7 11.9 0.1 0.3 8.8 0.42

 
Reveal        6.1         8.2        3.8         2.9        9.9   0.47
Bool2        6.2         7.8        4.2         2.8       10.4   0.50
MRBN        2.2         3.7        8.3         6.8       10.5   0.50  
Arkin        1.5 2.7         9.3 7.5        10.8   0.51  
Weaver 9.0 12.0 0.0 0.0 9.0 0.43
Someren 5.5 7.3 4.7 3.5 10.2 0.49
D’Haeseleer 5.5 7.3 4.7 3.5 10.2 0.49

 



 7

 
 
 
 
 
Experiment 3: This is similar to experiment 2, except that linear transfer functions are 
used (S = 20, R = 100). 
 

 False Pos 
Correct 
Pos False Neg 

Correct 
Neg Total errors 

Error 
rate 

PC05 1.2 7.4 4.6 7.8 5.8 0.28
PC10 2.4 8.4 3.6 6.6 6.0 0.29
PC15 4.5 8.9 3.1 4.5 7.6 0.36
PC20 5.8 9.5 2.5 3.2 8.3 0.40
PC30 7.0 10.3 1.7   2.0 8.7 0.41
       
CCD05 1.7 7.5 4.5 7.3 6.2 0.30
CCD10 3.2 8.5 3.5 5.8 6.7 0.32
CCD15 5.1 9.3 2.7 3.9 7.8 0.37
CCD20 5.7 10.3 1.7 3.3 7.4 0.35
CCD30 7.1 11.2 0.8 1.9 7.9 0.38

 
Reveal        5.3        6.9        5.1        3.7      10.4      0.50
Bool2        5.3        7.6        4.4        3.7        9.7      0.46
MRBN        2.1        3.0        9.0        6.9      11.1      0.53 
Arkin        1.2 3.2         8.8 7.8         10.0      0.48 
Weaver 5.6 4.7 7.3 3.4 12.9 0.61
Someren 7.8 11.2 0.8 1.2 8.6 0.41
D’Haeseleer 7.8 11.2 0.8 1.2 8.6 0.41

 
 
4.2 Testing the Algorithms with Actual Microarray Data. The Spellman et al. (1998) 
and Lee et al. (2002) studies provide, respectively, microarray measurements of a time 
series of synchronized cells and an elucidation of the network of regulators for 
Saccharomyces cerevisiae.  This offers us the opportunity to test the algorithms on actual 
datasets.  The microarray data available at the website supporting the Lee et al. paper,  
http://staffa.wi.mit.edu/cgi-bin/young_public/navframe.cgi?s=17&f=downloaddata, 
represents results of five experiments.  To increase sample size, we concatenated the data 
from the experiments so they appeared to be from one experiment.  We applied the PC, 
CCD, Reveal, Bool2 and MRBN algorithms to this data.  The analysis was restricted to 
the 11 genes that appear in the diagram published by Lee et al. on their website 
http://staffa.wi.mit.edu/cgi-bin/young_public/navframe.cgi?s=17&f=structures  
Note that there are 66 possible regulatory relationships, ignoring direction of regulation, 
including autoregulation.  The error rates in the results tables were estimated by dividing 
the sum of the false negatives and false positives by 66. 
 
The results appear below: 
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False 
Pos 

Correct 
Pos False Neg 

Correct    
Neg 

Total 
errors 

Error rate 

PC05 5 3 26 32 31 0.47
PC10 5 3 26 32 31 0.47
PC15 6 3 26 31 32 0.48
PC20 7 3 26 30 33 0.50
PC30 9 4 25 28 34 0.52
       
CCD05 5 3 26 32 31 0.47
CCD10 6 3 26 31 32 0.48
CCD15 7 3 26 30 33 0.50
CCD20 7 3 26 30 33 0.50
CCD30 9 4 25 28 34 0.52

 
Reveal        16        13        16        21      32      0.48
Bool2        2        1        28 35         30      0.45
MRBN            18              6         23            19       41      0.62
Arkin       3              2          27            34         30      0.45  
Weaver 12 18 11 25 23 0.35
Someren 2 1 28 35 30 0.45
D’Haeseleer 2 1 28 35 30 0.45

 
The implementations of Reveal and Bool2 limited them to three regulators per gene.  For 
those yeast genes actually with three or fewer regulators in the Lee, et al., model, the 
results for these algorithms were almost always at chance, indicating the restriction to 
three regulators was inessential to their performance. One run of Bool2 was attempted 
which allowed up to four regulators; the program ran for about 8 hours (over 200 times as 
long as the three regulator case) and returned the null model (no estimated regulatory 
relationships). 
 
5. Discussion. Reveal and Bool2 perform at chance level in every experiment: they are 
equivalent to flipping a coin. MRBN detects very few edges, so few that it, too, is 
equivalent in most experiments to flipping a coin. The Arkin, D’Haseleer and Sorensen 
algorithms are at chance in all of the simulation studies. The Weaver algorithm does 
slightly better than chance in two of the simulation studies, worse than chance with linear 
transfer functions, and better than chance with the yeast data. With low significance 
levels, the linear algorithms, PC and CCD, do better than chance in the simulation tests, 
but not much better, and they are at chance on the yeast test. In confirmation that part of 
the difficulty for all algorithms is the non-linearity of the regulation dependencies, the PC 
and CCD algorithms considerably improve with linear transfer functions.  The similarity 
of performances on the aggregated and non-aggregated data is due to the fact that the 
algorithms perform very poorly on the disaggregated data: there is very little to make 
worse by aggregation. The variation in sample size between 30 and 100 cases makes no 
difference in accuracy, suggesting either that sample size is not an issue, or that much 
larger samples would be required for accurate results. 100 repetitions is already an 
unrealistically large number of repetitions for microarray studies. 

These results confirm the theoretical arguments against the reliability of machine 
learning algorithms for estimating gene regulation networks from microarray 
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measurements of expression levels. Other approaches, taking advantage of 
immunoprecipitation, tagging of binding sites and regulatory proteins, binding site 
sequence homologies, and evolutionary preservation of regulatory mechanisms, are 
proving more fruitful. 
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7.  Appendix A:  Transfer Functions in the NetBuilder Model of the Sea Urchin 
Embryo. There are six genes in the maternal and early interactions region of the 
regulatory network of the sea urchin embryo.  They are:  Wnt8, Krl, SoxB1, Krox, Otx 
and Eve.  All of these are ‘All And’ genes except Krox and Otx which are ‘All Or’ genes.  
These are genes in which all inputs are combined using an And or Or function.  For all 
genes their inputs are transformed as x/(x+1) for a positive link (represented by an 
arrowhead in Figure 1) or as 1 – x/(x+1) for a negated link (represented by a segment 
perpendicular to the link).  Note that the transformed inputs lie between 0 and 1.  An And 
function multiplies the inputs and an Or function is the continuous generalization of a 
Boolean “or” so that yor = x1 + x2*(1 – x1).  When there are more than two inputs the form 
of the Or function is yor =  x1 + x2*(1 – x1) + x3(1 – (x1 + x2(1 – x1))) + … etc.  All 
components of a NetBuilder model may also have a factor F and a power P associated 
with them.  Then y = F*xP where x is the input and y is the output.  For the genes in 
Figure 1, P is 1.0 in every case and F is 1.0 except for genes Eve, Otx and Krox which 
have F = 100.0. 
 
Other components of the maternal and early interactions network are listed below: 

• χ is an And function with P = 1.0 and F = 1.0.  Its inputs are Mat cB and pre-χ. 
• post-χ is an Or function which has inputs χ and χ−switch (an exogenous input 

with constant value 1.0)  It is not labeled in Figure 1. 
• Mat cB, LiCl, TCF and Mat Otx are exogenous inputs with constant values 1.0, 

0.0 and 1.0 and 1.0 respectively. 
• nBmod is function whose effect is to multiply its input by 10.0.  It is not labeled 

in Figure 1. 
• GSK-3 is an And function whose inputs are Wnt8 and LiCl. 
• pre-χ is an And function whose inputs are GSK-3mod and SoxB1mod. 
• GSK-3mod is a single-valued function that multiplies its input (GSK-3) by 10.0.  

It is not labeled in Figure 1. 
• SoxB1mod is a single-valued function that multiplies its input (SoxB1) by 10.0.  

It is not labeled in Figure 1. 
• Frizzled is not in the model. 

 
For much more detail on NetBuilder including a tutorial, theoretical discussions, and the 
endomesoderm (sea urchin) model see the NetBuilder website at 
http://strc.herts.ac.uk/bio/maria/NetBuilder/. 


