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DISCUSSION

Reply to Humphreys and
Freedman’s Review of Causation,
Prediction, and Search
Peter Spirtes, Clark Glymour,
and Richard Scheines

In an essay in this journal entitled ‘The Grand Leap’ (Humphreys and
Freedman [1996]) Paul Humphreys and David Freedman have offered a
highly critical review of our book Causation, Prediction, and Search (Spirtes,
Glymour, and Scheines [1993];! henceforth CPS). By omission and commis-
sion, their essay repeatedly and systematically misdescribes what we wrote, so
much so that it is impossible for a reader of their article to glean even the most
basic understanding of what we claimed. Their review is riddled with false
claims about what the procedures we described can and cannot do, and
fundamental technical errors. Many of the objections Humphreys and Freed-
man lodge against us would equally be objections to methods of causal
inference (e.g. randomized clinical trials) that are universally accepted; still
other of their ‘criticisms’ are simply repetitions, without attribution, of
cautions we made in the book they purport to review. In still other cases
Humphreys and Freedman contrast our work with efforts they think better
when, in fact, the work they praise derived directly from Causation, Prediction,
and Search, and that legacy is explicitly acknowledged by the authors.

What we did in Causation, Prediction, and Search was straightforward. We
used an existing formalism—parametrized directed acyclic graphs, sometimes
known as Bayes networks—to represent both the causal claims and the
probability constraints of otherwise diverse classes of statistical models
that are used in causal explanations for continuous and categorical data.
Under a variety of explicit, formal assumptions relating causal hypotheses
(in the form of directed graphs) to constraints on associated probability
distributions, we characterized statistical indistinguishability; that is, we
showed how to decide whether two or more alternative causal explanations
are indistinguishable from probabilities or from constraints on probabilities.

! CPS is currently out of print, but is available on the World Wide Web at the address http:/
hss.cmu.edu/html/department/philosophy/TETRAD.BOOK/book.html.

© Oxford University Press 1997
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(Some of these indistinguishability results were already in the statistical and
computer science literature; see e.g. Verma and Pearl [1990].) Then, using two
explicit assumptions relating systems of causal hypotheses with probabilities,
we showed that there are algorithms that, provably, in the large sample limit
find causal features common to the equivalence class of the causal structure
that generated the data. Then we tested the algorithms on (i) randomly
generated data from randomly generated structures (randomly parametrized
random graphs); (ii) randomly generated data from structures elicited from
experts; (iii) data from empirical cases where causal features were known
independently, and (iv) empirical data where published causal explanations
were in the literature but the true explanation was not known. Then we gave
(again, provably correct under explicit assumptions) procedures for calculat-
ing, from partial causal information and marginal probability distributions, the
effects of interventions. Finally, we began the investigation of properties that
follow from both strengthened and weakened assumptions connecting causa-
tion and probability, including the case of feedback systems. The reader of
Humphreys and Freedman'’s review would discover almost none of this. We
turn to their criticisms and misrepresentations.

1. In CPS, we wrote: ‘We advocate no definition of causation, but in this
chapter attempt to make our usage systematic, and to make explicit our
assumptions connecting causal structure with probability, counterfactuals,
and manipulations’ (CPS, p. 41). We had two reasons for offering no defini-
tion. First, we know of no satisfactory reductive definition of causation.
Second, none of the inferences that we make depended upon having a reductive
definition of causation—instead they depend only upon certain relationships
between causal structures and probability distributions which we introduced
axiomatically.

Humphreys and Freedman say:

SGS do not give a reductive definition of ‘A causes B’ in non-causal terms.
And their axiomatics require that you already understand what causes are.
Indeed the Causal Markov condition and the faithfulness assumption boil
down to this: direct causes can be represented by arrows when the data are
faithful to the true causal graph that generates the data. In short, causation
is defined in terms of causation. That is why the mathematics in SGS will
be of little interest to philosophers seeking to clarify the meaning of
causation (p. 116).

and they added in a footnote:

SGS justify their lack of an explicit definition by noting that probability
theory has made progress despite notorious difficulties of interpretation—
perhaps the first innocence-by-association argument in causal modelling.
On the other hand lack of clarity in the foundations of statistics may be one
source of difficulty in applying the techniques (ibid.).
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Humphreys and Freedman do not deny—or note—that there are scientific
fields in which progress is made despite disagreement over definitions of key
terms (for example: ‘point’ in geometry, ‘force’ in Newtonian physics, ‘set’ in
set theory, ‘probability’ in probability theory, etc.). Is there some particular
special fact about causal inference which, unlike other fields, would prevent all
progress until a satisfactory, generally agreed-upon reductive definition of
cause is given? They offer no such argument. Are they seriously proposing that
all work on statistics stop until we all agree on its foundations? Should we
abandon most of statistical inference, epidemiology, and randomized clinical
trials until we all agree on a reductive definition of ‘causality’?

In a footnote, Humphreys and Freedman contrast what they consider to be
our flawed approach with other approaches that do give a ‘formal treatment of
causation, in the sense of effects of hypothetical interventions’ (p. 115,
footnote 7). One of the sources that they contrast with our approach is Pearl
[1995]. Humphreys and Freedman do not tell the reader that there is one source
that Pearl cites as the origin of what Humphreys and Freedman call Pearl’s
‘formal treatment’ of hypothetical interventions—namely, Causation, Predic-
tion, and Search.?

2. We discuss several assumptions relating causation and probability and
investigate the consequences of two of them in detail, those we call the Causal
Markov and Faithfulness Conditions. We use directed acyclic graphs (DAGs)
to represent causal relationships between variables. For example, suppose
there are two variables A and B such that A does not cause B, B does not
cause A, and there is no third variable which causes both of them. In that case,
the DAG that represents the causal structure of A and B is the empty graph (i.e.
no directed edges) shown in (i) of Figure 1. Similarly, A causes B is repre-
sented by (ii), and B causes A is represented by (iii).

The two assumptions serve to associate with each causal DAG a set of
conditional independence and dependence relations.® For example, in (i) of
Figure 1 the Causal Markov and Causal Faithfulness Assumptions entail that A

A B A—B A+—B
A not cause B A cause B A not cause B
B not cause A B not cause A B cause A

) (i) (iii)
Fig. 1. Three causal graphs

2 According to Pearl [1995], ‘Much of this investigation was inspired by Spirtes et al. (1993), in
which a graphical account of manipulations was first proposed.’

3 Here, the phrase ‘conditional independence relations’ is intended to include independence
relations as a special case, and similarly ‘conditional dependence relations’ includes dependence
relations as a special case.
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is independent of B; in (ii) and (iii) of Fig they entail that A and B are
dependent. Of course, in more complex examples, the set of conditional
independence and dependence relations they entail is considerably more
complex.

In CPS we discuss the arguments for the Causal Markov and Faithfulness
Conditions at length, explain why they are plausible assumptions in many (but
not all) domains, and investigate a variety of ways in which each of them can
fail, or appear to fail—including feedback systems, deterministic relations,
and populations with units having distinct causal structures. Here we will
simply note that they are very widely (if implicitly) assumed in statistical and
experimental reasoning, for example in the design and interpretation of
randomized clinical trials.

According to our critics,

the Causal Markov condition and the faithfulness assumption boil down to
this: direct causes can be represented by arrows when the data are faithful
to the true causal graph that generates the data. In short, causation is
defined in terms of causation (p. 116).

We take this to mean that they accuse us of taking satisfaction of the Causal
Markov and Faithfulness Conditions to be part of the meaning of ‘cause’. Note
that they do not offer any text from CPS to support this charge—the only text
that they quote flatly contradicts it (‘“We advocate no definition of causation,’
CPS, p. 41). Further text that they do not cite also flatly contradicts this claim
(‘The Markov condition is not given by God; it can fail for various reasons we
will discuss in the course of this book. The reliability of inferences based upon
the Condition is only guaranteed if substantive assumptions obtain.” CPS, p. 9).
This tactic—to attribute an absurd view to us without citing any text whatso-
ever to justify the attribution—is one that they have used repeatedly.” In this
case, they also left out passages that flatly contradict the view that they
attribute to us.

Remarkably, in all of their complaining about the Causal Markov and
Faithfulness Conditions, Humphreys and Freedman offer not one single argu-
ment against the truth of these assumptions. They do complain that assump-
tions have been made (‘Thus causation is not proved into the picture, it is
assumed in,” p. 115). In most statistical or experimental design papers,
assumptions relating causal structures to probability distributions are not

4 For example, they criticize us for adopting something they call the Automation Principle (p. 121).
We have never advocated such a principle, it plays no role in any argument that we have ever
made, and they offer not one single citation justifying their attribution of this principle to us. It
also ignores the fact that all of the algorithms allow users to input any background knowledge
about time order, or whether or not one variable causes another variable. They also say (p. 114)
that we claim that our search methods are superior to path models and hierarchical linear
models. We made no such claim, and indeed the claim is nonsensical, since it is meaningless to
compare a search algorithm with a probabilistic model.
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stated explicitly, nor are their limitations explored, as we did. But it is obvious
that anyone who draws causal inferences from statistical data has to make some
assumptions relating causal structures to probability distributions.

3. A number of different search algorithms are analysed in CPS, algorithms
which make different assumptions and have different outputs. It is often
difficult to tell which algorithm Humphreys and Freedman are discussing,
since they never say. (The confusion is compounded by the fact that they
repeatedly criticize “TETRAD’ (e.g. pp. 116—17), which is a program which
we wrote in 1987 and has nothing to do with the algorithms they are discussing,
which are implemented in a program called “TETRAD II'.) Some of the
statements that they make about ‘the algorithms’ are true of only some of
the algorithms; others that they make (e.g. that we use t-tests, p. 117) are not
true of any of the algorithms, as CPS makes clear. Two of the principal
algorithms discussed in our book are the PC procedure, which assumes there
are no unmeasured common causes of recorded variables, and the FCI algo-
rithm which dispenses with this limitation. Anyone reading the review would
be led to believe that the output of both the PC and FCI algorithms are single
graphs. They say: ‘The object of the SGS algorithms is to reconstruct the graph
from these statistical relations’ (p. 115). They also say: ‘TETRAD (sic) also
orients the edges that remain’ (p. 117). This is all false. If we were to output a
single graph, then given a single pair of dependent variables X and Y, we
would have to arbitrarily choose the single model ‘X causes Y’ or arbitrarily
choose the single model ‘Y causes X’, when the data say nothing about which
of these is the correct model. For that reason, the outputs of the PC and FCI
algorithms are not graphs but objects (patterns and POIPGs respectively) that
represent sets of graphs, a fact emphasized over and over in CPS and illustrated
with numerous diagrams. Thus given a single pair of dependent variables X
and Y, the PC algorithm outputs a graphical object that represents the disjunc-
tion X causes Y or Y causes X by placing an undirected edge between X and Y.
In some cases the set of graphs represented by the PC output is a singleton, but
the FCI output (without background knowledge) is never a singleton. When-
ever there is more than one causal model in the set of causal models repre-
sented by a pattern of a POIPG, not all of the edges are oriented. The output of
the FCI algorithm (without background knowledge) always contains some
edges that are not oriented.

4. Humphreys and Freedman complain that CPS only describes procedures
for inference with independently, identically distributed (i.i.d.) samples. This
is false. Statistical tests for conditional independence in such cases are not
developed, but what can be inferred from conditional independence in such
cases is extensively discussed in the book. Non i.i.d. samples can arise, for
example, when the sample is drawn from a mixture of two or more distinct
populations with distinct probability distributions. Chapter 6 of the book
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describes the causal inferences possible from conditional independence facts
in mixed samples. Non i.i.d. samples also arise in experimental designs (as in
clinical trials) in which the treatment of later subjects depends on the outcomes
from earlier subjects. Such cases are discussed in Chapter 9. Since writing
CPS, we have shown how in general, under a slight re-interpretation of the
output of the FCI algorithm, causal connections between the measured vari-
ables and the property of inclusion in the sample do not affect the correctness
of the algorithm’s output (although they may certainly make the output very
uninformative in the sense that the output is a disjunction of many causal
models that share no interesting features in common. See Spirtes et al. [1995]).

5. Implying that the algorithms we describe will not work if variables are
measured with error, Humphreys and Freedman claim that ‘the Markov Con-
dition must hold for the original variables to which the algorithms will be
applied; it is not enough if it holds for recoded variables’ (p. 115). This is true.
However, it does not imply that the correctness of the FCI algorithm depends
upon how the variables are coded. While the informativeness of the output of
the FCI algorithm depends upon how variables are coded, the correctness of
the algorithm does not.’

6. Humphreys and Freedman complain that the TETRAD II programs only
apply to two families of distributions, the normal and the multinomial. The
normal family is almost coextensive with linear models, and so it is very odd
that Humphreys, who has claimed that all causal relations are linear
(Humphreys [1989]), should make such an objection. In fact—a fact one
would not discover in their ‘review’ —the TETRAD algorithms are modular.
An inference procedure calls an oracle for information about conditional
independence, and uses that information to search for causal explanations.
The oracle can be any reliable source of information about conditional
independence relations among measured variables. In the fully automated
parts of the program, the oracle is implemented by statistical tests based
either on the normal or multinomial distributions, but the TETRAD II program
contains procedures for users to introduce conditional independence facts
from whatever source, which are then used by the inference procedures.
Expanding the automated oracle to include certain families of distributions,
for example the conditional Gaussian, is a programming exercise. In other
cases there is statistical work to be done in finding useful tests of conditional
independence.

7. In their review, and other articles, Humphreys and Freedman have

5 If, for example, blood pressure is only recorded as ‘high’, ‘normal’, or ‘low’, we can represent
blood pressure (as measured by two numbers representing diastolic and systolic blood pressure)
as a latent cause of measured blood presure. This introduces some deterministic relations
between variables, which slightly complicates the proof of correctness, but the machinery
developed in Chapter 3 of CPS can be used to handle this case.
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repeatedly insinuated that we have deliberately misled readers about what the
algorithms can and cannot do. They claim that we are ‘exaggerating’ (p. 113),
that the book is ‘show business’ (p. 123), that we ‘seem to offer empirical
proof’ (p. 118) but the ‘proof is illusory’ (p. 118), that no matter what the
output of the algorithm we ‘count a win either way’ (p. 119), and that some of
the assumptions are ‘not emphasized’ (p. 116) even though they appear in the
computer output and documentation and the book itself. The reader should
note that they do not charge that any of our claims about the evidence for the
reliability of the algorithms were false. Moreover, as we will document below,
in CPS we went out of our way to indicate conditions under which the
algorithms were not reliable or produced bad output. Humpreys and Freedman
systematically fail to mention any of these statements.

Humphreys and Freedman claim that much of our evidence about the
reliability of the algorithms is ‘illusory’ because the theorems about correct-
ness in the limit are not informative about the performance of the algorithms on
realistic sample size, some of the evidence comes from simulated data, and
because we discuss some hypothetical cases. What they do not tell the reader is
that in every case simulated data are clearly labelled as simulated, and that the
hypothetical models are clearly labelled as hypothetical.

Humphreys and Freedman (p. 117) say about the theorems of correctness we
prove:

However, it is exact independence that is relevant, and exact indepen-
dence cannot be determined from any finite amount of evidence. Conse-
quently, the mathematical demonstrations in SGS (e.g. Theorem 5.1 on p.
405) do not cope with basic statistical ideas. Even if all the assumptions
hold, the t-test makes mistakes. Therefore, the SGS algorithms can be
shown to work only when exact conditional independencies and depen-
dencies are given.®

Perhaps they would prefer, as with almost all statistical search procedures (e.g.
factor analysis, stepwise regression, modification indices), that no proof of
correctness be available. We proved that, given our assumption, with an oracle
that can correctly answer questions about conditional independencies and
dependencies in a population, the outputs of our algorithms are correct. One
way to realize such an oracle in the large sample limit is to perform statistical
tests of conditional independence. Humphreys and Freedman point out that this
kind of theorem does not guarantee success on finite samples. We agree; that is
why we said on the page following Theorem 5.1 (CPS, p. 115): ‘We need to
consider whether an algorithm remains reasonably reliable when the data are
imperfect.” Of course, given the problem of sampling error, no algorithm
whose output is a function of the sample could guarantee success.

§ HF are wrong when they claim the algorithms use t-tests. None of the algorithms that we
implemented uses t-tests; the tests we do use are clearly described in Chapter 5.
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Once again, the same kind of charge that Humphreys and Freedman bring
against TETRAD II could also be made about standard experimental design.
Tests of difference of means, for example, commonly used in analysis of
experimental outcomes, are tests of consequences of independence, and can
only be guaranteed to give correct answers in the large sample limit.

Because we realized the need to test the algorithms on finite sample sizes, we
performed a series of simulation studies. We randomly generated directed
acyclic graphs, and random parametrizations of the graphs, and randomly
generated samples of various sizes from the probability distributions charac-
terized by the parametrized graphs. We then gave the samples to the
algorithms, and asked the program to reconstruct the graphs. In these simula-
tions we found that in large samples (more than 2000), where each variable had
relatively few parents (two or three), the algorithms were highly reliable at
correctly finding adjacencies; they were less reliable at finding orientations.
When variables had more parents (4 or 5) both the adjacencies and the
orientations output by the algorithm were much less reliable.

Simulation studies are an important standard tool for putting an upper limit
to the reliability of an algorithm and seeing how sampling error affects the
output, widely used throughout statistics. It would have been irresponsible for
us not to do them. Of course, it is important to clearly label the simulation
studies as simulation studies, and to point out the limitations of simulations
studies. We took both of these steps. In addition to looking at simulated data
from randomly generated graphs, we looked at simulated data from a structure
called the ‘Alarm network’, constructed by medical experts. This network has
been used to evaluate the performance of many different search algorithms,
and so provides a convenient benchmark for comparison (see e.g. Cooper and
Herskovits [1992], Chickering et al. [1994]). Once again, we clearly stated that
the data were simulated. Once again, it is difficult to see what Humphreys and
Freedman have to complain about. Are they suggesting that no one should do
simulation studies any more, no matter how clearly they are labelled?

In CPS, we also discussed a number of hypothetical examples, all of which
were clearly labelled hypothetical. Do Humphreys and Freedman think that
any discussion of hypothetical examples, no matter how clearly labelled, is
illegitimate? In the past, in criticizing our work, Freedman himself has
discussed hypothetical examples with data he made up (Freedman [1994]);
but for some unexplained reason this is a legitimate tactic when Freedman
employs it. The most famous work on experimental design, Fisher’s The
Design of Experiments [1960], begins with an imaginary example.

In discussing the empirical examples in CPS, Humphreys and Freedman
say:

What are the scoring rules? Apparently, SGS count a win if their algo-
rithms more or less reproduce the original findings (rule no. 1), but they
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also count a win if their algorithms yield different findings (rule no. 2).
This sort of empirical test is not particularly harsh (p. 119).

(After accusing us of counting a win no matter what, in a footnote to this
passage which belies the passage itself, Humphreys and Freedman admit that
as a matter of fact we do acknowledge shortcomings of the procedures.) The
only basis for this remark is that we compare the program output for data from
several social scientific studies—in which no one knows the true causal
process—and in some cases the program agrees with the published models
and in other cases it proposes alternative explanations. But in the empirical
examples we evaluated the output of the algorithms in a number of different
ways that are not guaranteed to produce success no matter what the output,
including the following:

i.

ii.

ii

—

In two cases (Spartina biomass and AFQT) we compared the output of
the program to the part of the causal structure known independently.
We recommended that if whether or not two variables were adjacent in
the output of the program depended heavily upon significance level, then
conclusions about whether those edges were there or not should be
considered suspect. In the case of Spartina biomass, we explicitly pointed
out that ‘there is one robust conclusion’, namely that Ph was the con-
trolling cause of the Spartina grass biomass (which was partially con-
firmed by experiment.)

. A relevant feature of the remarks made in the book about the Blau and

Duncan, and about the Duncan, Featherman, and Duncan studies of
occupational mobility, is that in these cases the TETRAD II program,
run under the assumption that there are no latent variables, produces a
complete, or nearly complete graph. As we point out, such output means
that the program cannot really determine whether or not the associations
are due to unrecorded common causes or mixtures, because a structure
with a system of unrecorded common causes or mixtures of nonlinear
structures will produce such a graph.

iv. In the case of the Weisberg rat liver data, we estimated (using simulation

techniques) the probability of type II error of the algorithm against a
specific alternative causal structure. That is, when the search procedure
output a model M on the actual data, we investigated how often the
search procedure would output M even on data generated by a specific
alternative structure M’

In our discussion of the simulation study results the scoring rules we use are
described explicitly, and one of the conclusions drawn is that the orientations
output by the program are very unreliable for degree greater than 3 even at
reasonably large (e.g. 2000) sample sizes. We also extensively discuss when
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the assumptions made by the algorithms may fail, and what kinds of mistakes
errors in judgements of conditional independence can make.

Now to the Rindfuss et al. [1980] study of education and fertility, about
which Humphreys and Freedman insinuate we were deceiving our readers.
They claim that the graph on the left in Figure 2 is what we reproduced in CPS,
and the graph on the right is the complete output. (We explicitly noted in CPS
that we were reproducing only part of the output.) However, the graph on the
right is not the output produced by the commercial version of the program. (We
are not sure why the discrepancy exists; perhaps they had a beta test version of
the program.) The output of the commercial version of the program differs
from the output that Humphreys and Freedman claim in two important respects
we explain below—it has additional adjacencies, and a number of double-
headed arrows.

The first point to note is that all of the claims that we made about the
Rindfuss case are true, and not disputed by Humphreys and Freedman. The
only claim that we made about the Rindfuss example was that using the same
assumptions as Rindfuss er al. (no latent variables, linearity, and a time
ordering of certain subsets of variables) the model output by the algorithm
was similar to the structure that they had argued for from background knowl-
edge. We explicitly remarked that in general for the empirical cases from the
social sciences we did not know the true model (CPS, p. 133).

Rindfuss et al. were interested in estimating what they thought was a
reciprocal causal relation between mother’s age at birth of first child (AGE),
and her education (ED). They did a two-stage, least-squares regression, which
in this case required that they find some regressor that was not a cause of AGE,
and some other regressor uncorrelated with the first regressor that was not a
cause of ED. They argued on substantive grounds that father’s occupation

DADSOCC FEC RACE REL YCIG

e \ |

NOSIB ADSOCC ADOLF
ED

FARM 1 \

REGN FARM
ADOLF AGE NGSIB

REL REGN
YCIG

FEC D

i

AGE

Fig. 2. Education and fertility
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(DADSOCC) did not cause AGE, and whether the subject had a miscarriage
(FECUND) did not cause ED. (In addition, FECUND and DADSOCC are
uncorrelated.) After estimating what they thought was a reciprocal effect of ED
and AGE on each other, they found that ED affected AGE, but not the other
way around. Given the assumption of linearity, and a partial time ordering of
the variables (that is, that AGE and ED are not causes of the other variables),
TETRAD II reproduced the substantive claims that DADSOCC has no direct
influence on AGE, FECUND has no direct effect of ED, and ED causes AGE
but not the other way around.

The relations among the regressors are completely irrelevant to the claim
that we made. Because Rindfuss et al. performed a two-stage, least-squares
regression analysis of their data, they placed no restrictions on the relations
among the regressors; hence any hypothesized relations among the regressors
are compatible with their model. For the purposes of comparing the TETRAD
IT output to the Rindfuss et al. model, the relations among the regressors are
irrelevant; the only relevant part of the TETRAD II output was the part we
displayed in CPS.

In CPS, we suggested a number of ways of evaluating whether or not the
output should be trusted. We suggested running the program at a number of
different significance levels and seeing if the output was stable; if the program
was run under the assumption of no latent confounders, but the output
contained double-headed arrows, it should be re-run allowing for latent con-
founders; and obviously, one should also ask whether the linearity assumptions
made by the program are plausible. The substantive conclusions of the part of
the model that we displayed in CPS pass all of these tests: DADSOCC has no
direct influence on AGE, FECUND has no direct effect of ED, and ED causes
AGE but not the other way around when the algorithm was run at significance
levels 0.01, 0.05, 0.1, and 0.15, both assuming there were no latent confoun-
ders, and allowing for the possibility of latent confounders. Moreover, because
none of the arrows was from continuous to discrete variables, the relationships
could at least possibly be linear (although there is a reasonable worry about the
normality assumed by some of the statistical tests).

One could, entirely irrelevantly to the point of the example, and against
common sense and the advice we give both in the book and in the program
manual (Scheines et al. [1994]), run the whole of the Rindfuss data through
TETRAD II and interpret the relations among them as a causal claim we are
obliged to make. That is what Humphreys and Freedman do. A large part of the
model output among the regressors fails all three of the tests listed above. The
model contains double-headed arrows, both the adjacencies and the orienta-
tions differ at different significance levels, and since some of the arrows are
directed into discrete variables from continuous variables, the linearity
assumptions have to be incorrect. The program itself indicates that the
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assumptions under which it produces reliable results are false; this is as good a
result as one could reasonably ask for from a program.

8. CPS contains a review of debates from the 1950s, 1960s, and 1970s over
smoking and lung cancer, intended to illustrate the role of misunderstandings
of the relations of causation and probability among statisticians, on the
one side, and epidemiologists, on the other. We criticized the arguments
historically given by both sides—epidemiologists convinced that smoking
causes cancer, and statisticians convinced that no one could know.

Humphreys and Freedman denounce us for having the temerity to criticize
both statisticians and epidemiologists in the debate over smoking. (pp. 118-
19) They offer not a single substantive point on which they disagree with our
account. They denounce us for saying that we appear not to believe the
epidemiological evidence that smoking causes lung cancer (p. 118). However,
we never said the evidence did not support the conclusion; we said the
arguments offered did not support the conclusion.

9. One empirical question is how sensitive the reliability of the algorithms is
to small violations of the assumptions, including the distributional assump-
tions. According to Humphreys and Freedman,

the SGS algorithms must depend quite sensitively on the data and even on
the underlying distribution: tiny changes in the circumstances of the
problem have big impacts on causal inferences (p. 117).

This is a false generalization. The sensitivity of the algorithms to the distribu-
tional assumptions depends upon the sample size. At small to medium sample
size, minor violations of the distributional assumptions sometimes have no
effect at all on the output. It is true that in the large sample limit, the algorithms
are very sensitive to violations of distributional assumptions, but of course
Humphreys and Freedman have already indicated their lack of interest in the
large sample limit. There is an issue here, but it is a research issue that involves
work: how do the accuracies of predictions obtained from a model depend on
small violations of the assumptions?

A book should fairly be judged by what it prompts as well as what it
contains. Humphreys and Freedman say nothing about that, so we shall. Left
unsolved was a question about making explicit all ordering information about
the direction of causation implicit in a probability distribution, assuming the
Markov and Faithfulness conditions and no unrecorded common causes. That
question has since been solved, by Meek [1995] (and independently by
Andersson et al. [1995] and Chickering [1995]). Meek [1995] also solved
the analogous question for any prior restriction on the orientations. The book
left open a conjecture about conditional independence in linear, simultaneous
equation models of feedback systems, since proved correct independently by
Spirtes [1995] and by Koster [1996], and generalized to a class of non-linear
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feedback systems by Pearl and Dechter [1996]. These results raise questions
about characterizing the statistical indistinguishability of such ‘non-recursive’
models, and about whether the indistinguishability classes are feasibly
computable from conditional independencies, both questions since answered
positively by Richardson [1996a and 1996b]. Finally, one of the standard
objections to causal inference from uncontrolled samples is that because of
missing values, sample convenience, and other factors, there may be sample
selection bias that produces dependencies among variables due neither to a
direct cause nor to an unrecorded common cause. Spirtes, Meek, and Richard-
son showed that under a modified interpretation, one of the algorithms described
in the book, FCI, is correct even with sample selection bias and latent variables
(Spirtes et al. [1995]). The graphical representation and calculation of hypo-
thetical interventions introduced in CPS have been greatly extended in a series
of articles including Pearl [1995], and Pearl and Galles [1995].
Department of Philosophy
Carnegie-Mellon University
Pittsburg, PA 15213
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