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1. Introduction 

Through their transcript products genes regulate 
the rates at which an immense variety of transcripts and 
subsequent proteins occur. Understanding the 
mechanisms that determine which genes are expressed, 
and when they are expressed, is one of the keys to 
genetic manipulation for many purposes, including the 
development of new treatments for disease.  

Viewing each gene in a genome as a distinct 
variable that is either on (expresses) or off (does not 
express), or more realistically as a continuous variable 
(the rate of expression), the values of some of these 
variables influence the values of others through the 
regulatory proteins they express, including, of course, 
the possibility that the rate of expression of a gene at 
one time may, in various circumstances, influence the 
rate of expression of that same gene at a later time. If 
we imagine an arrow drawn from each gene expression 
variable at a given time to a gene variable whose 
expression it influences a short while after, the result is 
a network, technically a directed acyclic graph (DAG). 
For example, the DAG in Figure 1 is a representation of 
a system in which the expression level of gene G1 at 
time 1 (denoted as G1(1)) causes the expression level of 
G2(2), which in turn causes the expression level of 
G3(3). The arrows in Figure 1 which do not have a 
variable at their tails are “error terms” which represent 
all of the causes of a variable other than the ones 
explicitly represented in the DAG. The DAG describes 
more than associations—it describes causal connections 
among gene expression rates. A shock to a cell—by 
mutation, heating, chemical treatment, etc. may alter 
the DAG describing the relations among gene 
expressions, for example by activating a gene that was 
otherwise not expressed, producing a cascade of new 
expression effects. 

Although “knockout” experiments (which lower a 
gene’s expression level) can reveal some of the 
underlying causal network of gene expression levels, 
unless guided by information from other sources, such 
experiments are limited in how much of the network 
structure they can reveal, due to the sheer number of 
possible combinations of experimental manipulations of 
genes necessary to reveal the complete causal network.  

Recent developments have made it possible to 
compare quantitatively the expression of tens of 

thousands of genes in cells from different sources in a 
single experiment, and to trace gene expression over 
time in thousands of genes simultaneously. cDNA 
microarrays are already producing extensive data, much 
of it available on the web. Thus there are calls for 
analytic software that can be applied to microarray and 
other data to help infer regulatory networks (Weinzierl, 
1999). In this paper we will review current techniques 
that are available for searching for the causal relations 
between variables, describe algorithmic and data 
gathering obstacles to applying these techniques to gene 
expression levels, and describe the prospects for 
overcoming these obstacles. 

 
2. Bayesian Networks 

A number of different models have been suggested 
for gene expression networks. These include linear 
models (D’haeseleer et al 1999), nonlinear models 
(Weaver et al. 1999), and Boolean networks (Kauffman 
1993, Somogyi and Sniegoski, 1996). In all of these 
models all variables are assumed to be observed and the 
relationships among them are deterministic. Liang, et 
al, (1998) describe a search, the REVEAL program, for 
Boolean dependencies in systems free of noise and of 
unmeasured common causes using mutual information 
measures. However, the system as described, is not 
robust over aggregation, omitted common causes, 
measurement error, non-synchronized cells, or 
feedback.  

Murphy and Mian (1998) and Friedman et al. 
(1999) have suggested using Bayesian network models 
of gene expression networks. Among the advantages of 
Bayesian networks models are that 1) they explicitly 
relate the directed acyclic graph model of the causal 
relations among the gene expression levels to a 
statistical hypothesis; 2) they include all of the 
aforementioned models, and Hidden Markov Models, 
as special cases; 3) there are already well developed 
algorithms for searching for Bayesian networks from 
observational data (see reviews in Spirtes et al. 2000, 
and Cooper 1999); 4) they allow for the introduction of 
a stochastic element and hidden variables; 4) they allow 
explicit modeling of the process by which the data are 
gathered.  

A Bayesian network consists of two distinct parts: 
a directed acyclic graph (DAG or belief-network 



structure) and a set of parameters for the DAG. The 
DAG in a Bayesian network can be used to represent 
causal relationships among a set of random variables 
(such as gene expression levels). A DAG represents the 
causal relations in a given population with a set of 
vertices V when there is an edge from A to B if and 
only if A is a direct cause of B relative to V. (We adopt 
the convention that sets of variables are boldfaced.)  

 
2.1. The Causal Markov Assumption 

We say that a set of variables V is causally 
sufficient when no two members of V are caused by a 
third variable not in V. According to the Causal Markov 
Assumption, each vertex is independent of its non-
descendants in the graph conditional on its parents in 
the graph. For example, in Figure 1, the Causal Markov 
Assumption entails that G3(3) is independent of G1(1) 
(which is neither a parent nor a descendant of G3(3)), 
conditional on G2(2) (which is a parent of G3(3)). The 
Causal Markov Assumption entails, for example, that if 
there is no edge between two variable X and Y in a 
DAG G, then X and Y are independent conditional on 
some subset of the other variables 
 
 
 
 
 
 

 
Figure 1: Example 1 

 
2.2. The Causal Faithfulness Assumption 

In order to draw any conclusions about the 
structure of the DAG from an observed sample, one 
must make some kind of simplicity assumption. One 
such assumption is the Causal Faithfulness Assumption, 
which states that any conditional independence 
relations in the population are entailed by the Causal 
Markov Assumption. For a number of different 
parametric families, the set of parameters that lead to 
violations of the Causal Faithfulness Assumption are 
Lebesgue measure 0.  

Under the Causal Faithfulness Assumption, 
conditional independence relations give direct (but 
partial) information about the structure of the graph. 
For example, in Example 1 of Figure 1 we can conclude 
that there is no direct edge between G1(1) and G3(3) if a 
statistical test indicates that G1(1) is independent of 
G3(3) conditional on G2(2).  

A number of methods of assigning scores to 
Bayesian networks based on observed data do not 
explicitly make the Causal Faithfulness Assumption, 
but do so implicitly. See Heckerman et al., (1999).  

 

3. Search 
 
3.1. Assuming Causal Sufficiency 

We first consider search algorithms when it is 
assumed that the measured set of variables V is causally 
sufficient, or equivalently, there are no hidden common 
causes of members of V.  

The problem of finding the best DAGs from a 
given sample is difficult because the number of DAGs 
is super-exponential in the number of observed 
variables. While background information, such as the 
time order in which events occur greatly reduces the 
complexity of the problem, it still remains a large 
search space. 

There are two main approaches to searching for 
Bayesian network models. The first approach  (as 
exemplified in the PC algorithm, Spirtes, et al., 2000) 
performs a series of tests of conditional independence 
on the sample, and uses the results to construct the set 
of DAGs that most closely implies the results of the 
tests If the time order of the variables is known (as 
would be the case in a time series of measurement of 
gene expression levels) is known, the output is a single 
DAG. For example, in Figure 1, if a statistical test 
indicates that the G3(3) is independent of G1(1) 
conditional on G2(2), the PC algorithm concludes that 
there is no direct edge from G1(1) to G3(3). For either 
discrete or normally distributed variables, under the 
Causal Markov and Faithfulness Assumptions the 
algorithm pointwise (but not uniformly) converges to 
the correct answer in the large sample limit, and, as 
long as the maximum number of parents of any given 
variable is held fixed,  the algorithm’s complexity is  
polynomial in the number of measured variables.  

G1(1)   
 
      G2(2)   
 
               G3(3) 

The second approach to searching for Bayesian 
networks assigns a score to each DAG based on the 
sample data, and searches for the DAG with the highest 
score. The scores that have been assigned to DAGs for 
variables that are discrete or distributed normally 
include posterior probabilities, the Minimum 
Description Length, and the Bayesian Information 
Criterion. A variety of methods of search for  DAGs 
with the highest score have been proposed, including 
hill-climbing, genetic algorithms, and simulated 
annealing. (Heckerman et al.,1999; Spirtes, et al., 
2000). If the time order of the variables is known, then 
there is in general a single DAG with the highest score. 
The scores have been shown to be asymptotically 
correct in the sense that in the large sample limit no 
DAG receives a higher score than the true DAG. 
Generally, however, scoring searches are heuristic. 

 
3.2. Not Assuming Causal Sufficiency 

When causal sufficiency is not assumed, search for 
DAGs becomes much more difficult. The FCI 
algorithm is an extension of the PC algorithm to DAGs 



with latent variables and (pointwise, but not uniformly) 
converges to the correct output under the Causal 
Markov and Faithfulness Assumptions for normal or 
discrete variables. However, even if the time order of 
the measured variables is known, the output of the 
algorithm is not a unique DAG. The informativeness of 
the output depends whether the set of DAGs output 
have any interesting features in common. This in turn 
depends heavily upon the true number or hidden 
common causes, and their precise causal relationship to 
the measured variables. (Spirtes, et al., 2000) In the 
worst case, if there is a hidden common cause of every 
pair of measured variables, there is essentially no useful 
information about the true DAG.  

It has proved especially difficult to extend score-
based searches to hidden variable models. (One 
heuristic approach is described in Friedman, 1998.) 
When there is no bound on the number of hidden 
variables, the search space for scoring algorithms is 
infinite. Perhaps more important, there are difficult 
unsolved computational and conceptual problems in 
calculating scores for hidden variable models (e.g. it is 
not known whether such scores are asymptotically 
correct). Moreover, extending scores beyond the 
discrete and normal cases faces serious difficulties 
because many other families of distributions are not 
closed under marginalization. 

 
4. Applying Search to Microarrays 

 
4.1. Sample Size Issues 

Simulation experiments on inferring DAG structure 
from sample data indicate that even for relatively sparse 
graphs sample sizes of several hundred are required for 
high accuracy. A typical single microarray chip 
produces a sample of one for each gene. Thus in order 
to gather sample sizes of several hundred, data will 
need to be gathered from hundreds of microarray chips. 
For example, the sample size in the well known cell 
cycle experiments of Spellman, et al 1998 is 76. If 
current trends in decreases in the price of microarray 
chips continue, then it is may be possible to gather the 
sample sizes required for high accuracy in the near 
future.  

The price of a microarray chip is related to how 
many genes it measures. Only a fraction of genes 
appear to vary in their expression in response to 
endogenous or exogenous changes (Kauffman, 1993). 
Selecting a subset of genes that are causally interacting 
with each other or are reacting to an external stimulus 
would decrease the cost of gathering a large number of 
samples. In addition, since the uncertainties of 
estimation depend on, among other things, the ratio of 
the number of variables to the number of independent 
measurements of those variables, the ability to restrict 
attention to a fraction of the genome is crucial. 
Spellman, et al. (1998) describes one method of 

selecting a subset of genes whose expression varied as a 
function of  the cell cycle phase. 

Another possible method for selecting a subset of 
genes is to use clustering algorithms on a relatively 
small sample, and then select a subset of genes that 
occur in a single cluster for further analysis. There are a 
number of clustering techniques that have been 
proposed for gene expression data, including Eisen et 
al. (1999), Hastie et al. (2000), and Lazzeroni and 
Owen (1999). Tibshirani et al. (1999) provides an 
overview of clustering techniques for gene expression 
data. However, it is an open question whether any of 
the clusters created by these different algorithms 
contain genes that are strongly causally interacting with 
each other.  

 
4.2. Measurement Error 

If G1(1) influences the expression of G3(3) only 
indirectly through the influence of G2(2), the fact that 
G2(2) is an intermediate can be recovered if the joint 
probabilities are known, because the expression level of 
G3(3) will be independent of the expression level of 
G1(1) conditional on G2(2). But if the gene expressions 
are measured with error, the corresponding conditional 
independence among the measured variables will not 
hold. Suppose, for example, in Figure 2, GM1 measures 
the true expression level G1 but the value of GM1 is also 
affected by noise (represented by the error term into 
GM1), and similarly for GM2  and GM3. It will not in 
general be the case that GM1 is independent of GM3 
conditional on GM2. (This may not be obvious, but like 
all of our claims about conditional independence 
relations in particular examples, they can be proved by 
applying Pearl’s d-separation relation to the graph in 
question. See Pearl (1988)). However, the 
independence of GM1 and GM3 conditional on GM2 will 
hold approximately if the measured values are strongly 
correlated with the true values (i.e. the noise is small), 
in which case it may be possible to recover useful 
information about the underlying causal relations 
between G1(1) through G3(3). Information about the 
size of random measurement error could be gathered by 
putting multiple copies of the same gene on a single 
microarray chip, and estimating the variance.  
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Figure 2: Measurement Error 
 

4.3. Averaging 
While the aim is to describe the regulatory network 

at the cellular level, typical microarray experiments do 



not measure the concentration of transcripts in a single 
cell (although with film and laser technology, that is 
increasingly feasible—see Weinzierl, 1999) but instead 
of a large collection of cells. That means that the 
recording from each spot on a microarray is not a 
measurement of the transcripts from any one cell, but is 
instead a measurement of the sum or average of the 
transcripts (or their concentrations) from a collection of 
cells.  

 
 
 
 
 
 
 

Figure 3: Averaging 
 
Figure 3, shows a hypothetical causal structure for 

gene expression levels in two cells, A and B. GA1(1) 
represents the gene expression level of G1 in cell A at 
time 1, GB1(1) represents the gene expression level of 
G1 in cell B at time 1, and GS1(1) represents the average 
of GA1(1) and GB1(1). Although GA1(1) and GA3(3) are 
independent conditional on GA2(2), and GB1(1) and 
GB3(3) are independent conditional on GB2(2), in 
general GS1(1) and GS3(3) are not independent 
conditional on GS2(2). However, if the variance of the 
gene expression levels across  different cells is small, 
GS1(1) and GS3(3) will be approximately independent 
conditional on GS2(2). 

We have also shown that if there are 
experimentally realizable conditions in which the 
underlying influences of the genes on one another are 
approximately linear, or piecewise linear, then the PC 
and FCI algorithms, for sufficiently large samples and 
under reasonable further assumptions, recover features 
of the network structure even from data that consists of 
averages of gene expression levels from many cells, 
rather than gene expression levels from individual cells. 
Linearity is sufficient, we do not know that it is 
necessary. For example, there are parameterizations of 
networks of binary variables, so-called noisy “or” gates, 
that have many of the properties of linear systems 
(Pearl, 1988, Cheng, 1997, Glymour, in press) and we 
have not investigated whether they have requisite 
invariance properties, although we plan to.  

 
4.4. Families of Distributions 

Another solution to the problem of averaging is to 
measure gene expressions in a single cell. Most 
Bayesian network discovery algorithms have assumed 
that the data is either normal, or discrete. Gene 
expression level data, even for single cells, may satisfy 
neither of these assumptions. One way of applying 
existing Bayesian network discovery algorithms to non-
normal continuous data is to discretize it. However, if 

continuous variables are collapsed into discrete 
variables using cutoffs, for example dividing expression 
levels above and below a certain value into “on” and 
“off,” or twice dividing into “high,” “medium” and 
“low, ” the conditional independence relations among 
the original continuous variables are not in general 
retained. Hence, further research in this area is needed. 

 
4.5. Other Hidden Common Causes 

One or more varying non-genetic factors may 
influence the expression of multiple genes within the 
cell. These factors will not be recorded in microarray 
data, so that the correct graphical architecture would 
not only include the genes expressed, but also some 
representation of associations among gene expression 
produced by unrecorded common causes. As long as 
there are not too many hidden common causes, search 
algorithms such as FCI can in principle find useful 
information about the true structure.  

 
4.6. Feedback 

If measurements are taken from synchronized 
systems at intervals close enough in time so that there is 
no, or little, feedback the issue does not arise, but if 
data taken at different times are aggregated, or data are 
taken from a mixture of non-synchronized cells, the 
measured expression levels may have been produced by 
feedback. A finite graphical representation of the 
conditional independence and causal relations among 
such variables will be a directed cyclic graph. An 
algorithm for extracting such a graph from suitable data 
is known for linearly related variables (Richardson, 
1994), but no algorithms have been developed for cases 
in which there are feedback and unmeasured common 
causes. 

 
4.7. Lack of Synchronization 

Even if cells start off in a synchronized state (see 
Spellman et al. 1998) further complications in 
analyzing data will occur if the time it takes for one 
gene expression levels to affect subsequent gene 
expression levels differs from sample to sample. This is 
illustrated in Figure 4, where depending on the value of 
r(1), G1(1) either affects G2(2) directly, or G2(3) 
directly.  This complicates search because it implies 
that parents in a graph may occur not just at one time 
step earlier (as assumed in the REVEAL algorithm for 
example) but parents may occur at multiple time steps 
earlier. It also implies that a pair of variables may be 
independent conditional only on subsets containing 
variables from multiple time segments, complicating 
the search for conditioning sets which make pairs of 
variables independent. For example, in Figure 4, G1(1) 
and G3(4) are independent conditional only on subsets 
of measured variables containing both G2(2) and G2(3). 
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Figure 4: Lack of Synchronization 
 
4.8. Conclusion 

Existing proposals for obtaining genetic regulatory 
networks from microarray data have ignored many of 
the difficulties of reliable data analysis. The prospects 
for success depend both upon generalizing the current 
algorithms (e.g. by extending them to larger classes of 
distribution families) and upon being able to gather data 
in a way that simplifies the task of the data analyst. It 
would greatly improve the prospects for successful 
application of current techniques if sample sizes of 
several hundred to several thousand could be gathered, 
with low measurement error, with each sample  either 
gathered from a single cell or from a collection of cells 
with very low variance. There do not seem to be any 
fundamental obstacles to being able, within the next 
few years, to gather data of the kind that would greatly 
improve the performance of current Bayesian network 
discovery algorithms 

 
The research presented here was supported in part 

by grant DMS-9873442 from the National Science 
Foundation 

 
5. Bibliography 

Cheng, P. (1997) From correlation to causation: 
causal power theory.  Psychological Review, 107. 

D’haeseleer, P., Wen, X., Furhman, S. and 
Somogyi. (1999) R. Linear modeling of mRNA 
expression levels during CNS development and injury. 
In Proc. of the Pacific Symp. on Biocomputing,. 4:41-
52 

Eisen, M., Spellman, P., Brown, P, and Botstein. 
D. (1999) Cluster analysis and display of genome-wide 
expresion patterns. Proce. Natl. Acad. Sci. (in press).  

Friedman, N., Lineal, M., Nachman, I., and Pe’er, 
D. (2000) Using Bayesian Networks to Analyze 
Expression Data. Accepted to Journal of 
Computational Biology. 

Friedman, N. (1997). Learning belief networks in 
the presence of missing values and hidden variables. 
Proceedings of the 14th  International Conference on 
Machine Learning. 

Glymour, C. and Cooper, G. (1999) Computation, 
Causation and Discovery. Cambridge, MA, MIT Press. 

Glymour, C. (in press) Bayes nets and graphical 
causal models in psychology. MIT press.  

Hastie, T., Tibshirani, R., Eisen, M., Brown, P., 
Ross, D., Scherf, U., Weinstein, J., Alizaeh, A. Staudt, 
L., and Botstein, D. (2000) Gene Shaving: a New Class 
of Clustering Methods for Expression Arrays. Stanford 
University Department of Statistics Technical Report.  

G1(1)   
 
    G2(2)   
 
              G2(3)    G3(3) 
 
                           G3(4) 

r(1) 

Heckerman, D., Meek, C., and Cooper, G. (1999) 
A Bayesian approach to causal discovery. in 
Computation, Causation and Discovery. C. Glymour 
and G. Cooper. Cambridge, MA, MIT Press. 

Kauffman, S. (1993) The Origins of Order. Self-
organization and Selection in Evolution. Oxford 
University Press.  

Lazzeroni, L. and Owen, A. (1999) Plaid Models 
for Gene Expression Data. Stanford University 
Department of Statistics Technical Report. 

Liang, S. Fuhrman, S., and Somogyi, R. (1998) 
Reveal, a general reverse engineering algorithm for 
inference of genetic network architectures. In Pacific 
Symposium on Biocomputing, 3, 18-29.  

Murphy, K. and Mian, S. (1999). Modeling gene 
expression data using dynamic bayesian networks. 
Technical Report, University of California at Berkeley, 
Department of Computer Science.  

Pearl, J. (1988). Probabilistic Reasoning in 
Intelligent Systems. San Mateo, Morgan Kaufmann. 

Richardson, T. (1996b)  A discovery algorithm for 
directed cyclic graphs. Proceedings of the 12th 
Conference of Uncertainty in AI, Portland, OR, Morgan 
Kaufmann: 454-461. 

Somogyi, R. and Sniegoski, C. (1996) Modeling 
the complexity of genetic networks: understanding 
multigenetic and pleiotropic regulation. Complexity, 1, 
45-63. 

Spellman, P, Sherlock, G., Zhang, M., Iyer, V., 
Anders, K., Eisen, M., Brown, P., Botstein, D., and 
Futcher, B. (1998) Comprehensive identification of cell 
cycle-regulated genes of the yeast saccharomyces 
cerevisiae by microarray hybridization. Molecular 
Biology of the Cell, 9,  3273-3298. 

Spirtes, P. Glymour, C. and Scheines, R. (2000) 
Causation, Prediction, and Search, 2nd edition,  MIT 
Press. 

Tibshirani, R., Hastie, T., Eisen, M., Ross, D., 
Botstein, D., and Brown, P. Clustering methods for the 
analysis of DNA microarray data. (1999) Stanford 
University Department of Statistics Technical Report.  

Weaver, C., Workman, C., and Stormo, G. (1999) 
Modeling regulatory networks with weight matrices. In 
Proc. of the Pacific Symp. on Biocomputing, 4:112-123. 

Weinzierl, R. (1999) Mechanisms of Gene 
Expression: Structure, Function and Evolution of the 
Basal Transcriptional Machinery. World Scientific 
Publishing Company. 

 
 

http://www.cs.huji.ac.il/~nir/Abstracts/FLNP1Full.html
http://www.cs.huji.ac.il/~nir/Abstracts/FLNP1Full.html

	Introduction
	Bayesian Networks
	The Causal Markov Assumption
	The Causal Faithfulness Assumption

	Search
	Assuming Causal Sufficiency
	Not Assuming Causal Sufficiency

	Applying Search to Microarrays
	Sample Size Issues
	Measurement Error
	Averaging
	Families of Distributions
	Other Hidden Common Causes
	Feedback
	Lack of Synchronization
	Conclusion

	Bibliography

