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SPACE-TIME AND SYNONYMY *

PETER SPIRTES AND CLARK GLYMOUR

Department of History and Philosophy Science
University of Pittsburgh

In ““The Epistemology of Geometry’’ Glymour proposed a necessary struc-
tural condition for the synonymy of two space-time theories. David Zaret has
recently challenged this proposal, by arguing that Newtonian gravitational theory
with a flat, non-dynamic connection (FNGT) is intuitively synonymous with
versions of the theory using a curved dynamical connection (CNGT), even
though these two theories fail to satisfy Glymour’s proposed necessary condition
for synonymy.

Zaret allowed that if FNGT and CNGT were not equally well (bootstrap)
tested by the relevant phenomena, the two theories would in fact not be syn-
onymous. He argued, however, that when electrodynamic phenomena are con-
sidered, the two theories are equally well tested.

We show that it is not FNGT and CNGT which are equally well tested when
the electrodynamic phenomena are considered, but only suitable extensions of
FNGT and CNGT. Thus, there is good reason to consider FNGT and CNGT
to be non-synonymous. We further show that the two extensions of FNGT and
CNGT which are equally well tested when electrodynamic phenomena are con-
sidered (and which could be considered intuitively synonymous) not only satisfy
Glymour’s original proposed necessary condition for the synonymy of space-
time theories, they satisfy a plausible stronger condition as well.

Philosophical accounts of the synonymy of theories must eventually be
confronted with cases. For several reasons, covariant space-time theories
provide especially useful tests of criteria for synonymy. While having a
definite and well-understood formal structure, such theories remain rea-
sonably close to scientific practice, and can be found presented in sci-
entific papers, textbooks, and so forth. Thus, unlike first-order formali-
zations of theories, covariant space-time theories can be understood and
discussed with relatively little dispute over their correct presentation or
representation. Furthermore, many accounts of synonymy tie the notion
to that of observational or empirical equivalence, and even with criteria
of synonymy which do not analytically connect synonymy and empirical
equivalence, we may naturally enough want to know the relations be-
tween the two notions in various cases. For many covariant space-time
theories, the features of models of those theories which represent obser-
vational results are reasonably clear, and therefore readily studied.

Criteria for synonymy which are largely structural, and which have
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464 PETER SPIRTES AND CLARK GLYMOUR

little to do with the particular content of theories, are especially useful
since they may be applied virtually unambiguously. Such structural cri-
teria can never be sufficient, but they may very well be necessary for the
synonymy of theories, and in many philosophical contexts all that one
requires are useful, necessary conditions. In a recent paper, David Zaret
(1980) has claimed that a structural criterion for synonymy proposed by
one of us is inadmissably strong, and in particular that it counts as distinct
theories two versions of Newtonian Gravitational Theory which are, ac-
cording to Zaret, really synonymous. We wish to examine the issues Zaret
raises, and to argue that his objections are badly confused. We will show
that when equivocations are sorted out, the purported counter-example
is no such thing, and that the theories appealed to do not violate the
structural condition, and in the most important case actually satisfy a
stronger and more natural condition of the same kind. Our discussion will
be informal; technical results are collected in an appendix.

Consider theories stated as systems of covariant equations, perhaps
with some global constraints. Many theories have been so formulated:
special and general relativity, of course, but also various versions of
Newtonian Gravitational Theory, competing relativistic gravitational the-
ories, Maxwell’s electrodynamics, etc. When are two theories of this kind
merely different ways of saying the same thing? Glymour (1977) has
proposed the following necessary condition for the synonymy of two
space-time theories R and S:

For every manifold M and collection C of geometrical objects on M
satisfying R, there are covariantly definable, from the objects in C,
each of a collection C' of objects on M satisfying S, and symmet-
rically. )

Although we find (1) a perfectly acceptable, necessary condition for syn-
onymy, it is easy to produce examples of pairs of space-time ‘‘theories’’
which, on structural grounds alone, clearly are not synonymous but
whose synonymy is not excluded by condition (1)." A natural but stronger
necessary condition for the synonymy of space-time theories suggests it-
self:

There is a covariant set of equations E, containing only variables
occurring in R or in S, and a covariant set of equations D, likewise
containing only variables occurring in R or in S, and equations in E
and D are definitional—that is, from values of the variables in R, E
determines unique values of the variables in S, and from values of

'Let one ‘‘theory’’ assert merely that a (0,2) tensor field vanishes: g, = 0. Let another
“‘theory’’ assert that a (0,2) tensor field is zero when anti-symmetrized A, — h,; = 0. Al-
though structurally quite different, these two ‘‘theories’’ satisfy principle (1).
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the variables in S, D determines unique values of the variables in
R—and every manifold and set of geometrical objects which satisfies
R and E also satisfies S and D, and symmetrically. Further, £ and
D are conservative; that is, every model of S can be expanded to a
model of § and D, and every model of R can be expanded to a model
of R and E. 2)

Condition (2) is very close to requiring that the covariant theories have
a common definitional extension and clearly implies condition (1).

The argument for either condition is much the same: they agree with
the formal requirements of a synonymy relation—for example, they de-
termine equivalence classes of theories; they are close analogues of in-
tuitive conditions for formalized first-order theories; and, finally, they
accord with all of the obvious and uncontroversial cases.

Covariant versions of Newtonian Gravitational Theory were first intro-
duced to a philosophical audience by John Earman and Michael Friedman
(1973) who provided a valuable discussion of the status of Newton’s first
law in the context of such theories. Flat Newtonian Gravitational Theory,
hereafter, regrettably, FNGT, postulates an absolute time, an absolute
Euclidean spatial measure on any set of simultaneous point-events, and
an affine geometry on all of space-time. The affine geometry, of course,
determines a class of ‘‘straight’’ lines in space-time, and the geodesics
are understood counterfactually, as the trajectories that particles would
follow were they subject to no forces whatsoever. The affine geometry
is flat in a technical sense, i.e., its associated curvature is zero; it is also
“‘rigid’’ or ‘‘absolute’’—that is to say, entirely unaffected by the distri-
bution of matter and energy in space-time. In addition, the theory pos-
tulates that every bit of mass generates a gravitational potential, in ac-
cordance with the covariant generalization of Poisson’s equation. Finally,
the theory postulates that particles moving in a gravitational field do not
move along geodesics of the affine geometry of space-time, but instead
are deflected from such paths by the gravitational forces.

An apparently different covariant version of Newtonian Gravitational
Theory involves a dynamic affine connection. This theory, which we will
call Curved Newtonian Gravitational Theory, abbreviated CNGT, pos-
tulates, as before, an absolute time, and an absolute Euclidean spatial
measure on any set of simultaneous events. In contrast to the Flat Theory,
which postulates that the gravitational force is determined by the distri-
bution of masses in space-time, according to the Curved Theory it is the
affine geometry that is determined by the distribution of masses in space-
time. This dynamic affine geometry allows the Curved Theory to ‘‘geo-
metrize away’’ the force of gravity. That is, according to the Curved
Theory, there is no ‘‘gravitational force’’ exerted by massive bodies
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which deflects test particles from geodesic paths, as the Flat Theory pos-
tulates.

Since the affine geometry is determined by the family of all geodesics,
the difference between the two geometries can be understood in terms of
the difference in their geodesics. Suppose, for example, that one is given
a particular distribution of masses in space-time, and that there is a test
particle which, according to the Flat Theory, has only gravitational forces
acting on it. According to the Flat Theory, the test particle will be de-
flected from the geodesic path by the gravitational force. In contrast,
according to the Curved Theory, there is no gravitational force, and that
same test particle has no forces at all acting upon it. Thus, according to
the Curved Theory, the test particle will travel along a geodesic path.
The two theories make the same prediction about what path the test par-
ticle will follow; they differ only on whether that path is a geodesic, and
whether any forces are acting on the test particle.

According to the Curved Theory, in space-times that are not empty of
all mass, the affine geometry that results is not flat in the technical sense,
but curved. Curved Newtonian Gravitational Theory does not postulate
any distinct quantity representing the gravitational potential. Its law of
motion states, quite simply, that particles subject to no forces (a situation
which would be described by the Flat Theory as particles subject only
to gravitational forces) traverse geodesics of space-time.

Certain features of the relations of these two versions of Newtonian
gravity are not controversial. In the first place, in all situations in which
non-gravitational forces can be neglected, these theories are empirically
indistinguishable: under a given distribution of sources (i.e., of masses)
the two theories predict exactly the same space-time trajectory for any
test particle. The manner of calculation is slightly different in the two
cases. The Curved version permits one to calculate the geodesics of the
connection from the given distribution of sources, and the theory predicts
that a test particle will move on one of these paths. The Flat version
permits one to calculate a certain function which depends on the flat geo-
desics and on the gravitational potential, and the equation of motion de-
termines the predicted possible trajectories from this function. In the Flat
version of the theory, while one can calculate from a given distribution
of sources the relevant function of the geodesics (or, rather, of parameters
describing the geodesics) and the potential, neither the geodesics nor the
potential are themselves determinable from such data. Further, these
quantities are not determinable even if one knows, in addition, all of the
possible trajectories of freely falling bodies.? In the second place, these

*However, in the special case that all of the sources are distributed in a finite region,
if it is assumed that the potential vanishes at infinite distances from the sources, then the
potential can be separately determined. See Glymour (1977), Trautman (1964).
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two theories satisfy neither principle (1) above, nor principle (2). The
reason is that while the dynamical affine geometry of the Curved Theory
is covariantly definable from the objects of the Flat Theory, the reverse
is not the case: the Flat affine geometry of FNGT cannot be covariantly
defined from the objects of Curved Gravitational Theory.

According either to principle (1) or to principle (2), FNGT and CNGT
are not synonymous. Zaret claims otherwise. He is unimpressed by the
general arguments for these principles, and claims that these theories do
really say the same thing, and that ‘‘the choice between them is a matter
of convention’’ (Zaret 1980, p. 474). In claiming as much, Zaret does
not mean to say merely that there could be no empirical basis for such
a choice, and he insists that his judgment is not founded on the claim
that empirically indistinguishable theories are conventional alternatives.
The claim seems to be, instead, that the two theories really say the same
thing, and that this synonymy results not just from the empirical equiv-
alence of those theories, but from that feature together with other features
that are unique to the theories in question. Zaret supports his view with
one negative argument against Glymour, and with one positive argument.
We find neither of these arguments to be sound. Consider first the pos-
itive argument.

Zaret’s positive argument rests on two analogies. Suppose there were
a theory which postulated two forces, a Y force and a Y' force, affecting
bodies in proportion to a y coupling constant and a y’ coupling constant
characteristic of each body. Suppose further that the theory claims that
there is a number d such that for all bodies the ratio of the y constant of
the body to the y’ constant of the body equals d. If this theory saves the
phenomena, then one will never be able to determine either the value of
the Y force acting or the value of the Y’ force: only their sum will be
determinable from the phenomena. Zaret writes:

In this situation, it may no longer be tenable to maintain that ¥ and
Y' are different forces. For since Y and Y’ have the same effect on
the motion of material objects, it seems to follow that we can avoid
collapsing them into a single force only if we can differentiate the
physically possible conditions under which they have (non-null) ef-
fects. Thus we might choose a particular well-defined set of condi-
tions, and then stipulate: if these conditions hold, any y-deflection
is a Y effect—otherwise, any y-deflection is a Y'-effect. However,
the limited conventionalist will claim that our choice of such a set
of conditions is completely arbitrary (Zaret 1980, p. 484).

Again, Zaret points out that we might make a similar decomposition of
any force; in particular we could claim (he says ‘‘stipulate’’) that there
is no electrical force, really, but instead, two distinct forces—electrical,
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which operates in odd-numbered years, and electrical, which operates in
even-numbered years. ‘‘Of course’’, he writes, ‘‘such a stipulation is at
least gratuitous and arbitrary, if not devoid of physical meaning’’ (Zaret
1980, p. 484).

The analogy with the case of Newtonian Gravitational Theory is as
follows. In the case of FNGT, we recall that the theory does not permit
us to determine either the gravitational potential or the family of flat geo-
desics; instead, it permits us to determine only a function of both of them.
In an arbitrary frame of reference, according to the theory, the forces
acting on a body will derive from two independent features: on the one
hand, from non-inertial features of the reference frame itself (e.g., from
the fact that the origin of the frame does not move along an affine geo-
desic), and, on the other hand, from the force of gravitational attraction.’
But just as with the ¥ and Y’ forces, we cannot determine exactly how
much of the body’s acceleration is due to inertial forces and how much
is due to gravitational forces.

What are we supposed to conclude from this analogy? Zaret’s conclu-
sion is the following:

Furthermore, the limited conventionalist will note that inertial and
gravitational forces act on all bodies in the same way. And he will
argue that we can establish, by reference to examples such as that
of Y and Y', that the assignment of the relative contributions of dif-
ferent forces which act on all bodies in the same way can only be
made by convention. Therefore, the assignment of the relative con-
tributions of inertial and gravitational forces can only be made by
convention. The limited conventionalist will conclude that the choice
between C* [i.e., CNGT] and the different versions of F* [i.e.,
FNGT] is, indeed, a matter of convention. In other words, he will
conclude that these theories collapse into a single theory, in which
the global structure of space-time is a matter of convention (Zaret
1980, pp. 488-489).

The argument seems to us both invalid and misdirected. Let us grant

*Both the term ‘‘force’’ and the term ‘‘acceleration’’ are ambiguous. The covariant ac-
celeration of a curve is a frame-independent vector V5 V* where V is the tangent vector
to the curve. In a particular coordinate system, the a component of the covariant accel-
eration is equal to d*Z%/dt* + I'y, (dZ”/dt)(dZ®/dt). Sometimes the quantity d*Z°/dt by
itself is called the acceleration. Henceforth in this article we shall use the term ‘‘covariant
acceleration’” to refer to the frame-independent quantity V% V* and the term ‘‘acceleration’’
to refer to the frame-dependent quantity d°Z%/dt*. Similarly, the word *‘force’’ may some-
times be used to refer only to the frame-independent quantity that is equal to the mass
times covariant acceleration. However, sometimes the frame-dependent quantity I'g; is also
considered a type of force (the so-called ‘‘inertial’’ force). The context will make it clear
whether the type of force being referred to is of the frame-independent or the frame-de-
pendent type.
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the analogy between the case of Y and Y’ forces, on the one hand, and
on the other hand, the division of forces into inertial and gravitational in
the context of FNGT. One may further agree that in that context an ex-
tension of FNGT which fixes the inertial frames (and thus the Flat affine
geometry and the gravitational potential) is ‘‘conventional’’ or *‘stipu-
lative’’ in the straightforward sense that there is no empirical or theoret-
ical basis for one such specification rather than another. But this is an
epistemological remark, not a semantic one, and it does not follow at all
that two extensions of FNGT which specify the inertial frames differently
are therefore literally synonymous. Further, suppose we grant even that
any two extensions of FNGT which differ only in their ‘‘conventions’’
regarding which frames are inertial are in fact synonymous theories. It
does not follow that CNGT is synonymous with FNGT, for CNGT is not
among these theories. The inference is obtained by an equivocation. The
analogy might, as we have supposed for the sake of argument, be taken
to establish that in the context of FNGT, different divisions of the total
force into “‘inertial’’ and ‘‘gravitational’’ parts are different ways of say-
ing the same thing. Zaret then concludes that CNGT, in which all of the
force might be termed ‘‘inertial’’, is also synonymous with FNGT, but
that does not follow, for that the subdivisions made no difference was
established only in the context of extensions of FNGT. Zaret describes
the Curved Theory as the ‘‘conceptual limit’’ of the various Flat theories,
but that seems a most opaque conception, since the ‘‘inertial forces’’ that
result in the context of CNGT (from adopting a frame of reference which
is not free-falling) are not the inertial forces obtained from any sub-di-
vision of the total force in the context of FNGT.

Zaret’s location of the *‘arbitrariness’’ in FNGT in the division between
inertial and gravitational forces is misleading. That division is derivative
from a more fundamental feature of the theory. In Newtonian Theory,
forces are indicated by accelerations, and accelerations are dependent on
frame of reference. One and the same motion will therefore be seen as
subject to different forces in different frames of reference. However, even
without regard to a frame of reference, FNGT describes the trajectory of
a body in a gravitational field by postulating that the covariant acceler-
ation of the body is equal to a function of the covariant derivative of the
gravitational potential. The covariant acceleration and the covariant de-
rivative of the potential are entirely independent of reference frame. The
equation of motion of CNGT says simply that the covariant acceleration
of a body in a gravitational field is zero. Because of the structure of
FNGT, neither the covariant acceleration nor the gravitational potential
is uniquely determined: one can be changed if the other is changed ap-
propriately to compensate, and the same trajectories will still be de-
scribed. This is the fundamental arbitrariness of FNGT. In CNGT, by
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contrast, the covariant acceleration is uniquely determined for freely-fall-
ing bodies. It is this arbitrariness in FNGT which generates, when a frame
of reference is chosen, the arbitrariness in the division between inertial
forces and gravitational forces. In a given frame of reference, if one
changes the covariant acceleration and the gravitational potential, as in-
dicated above, one changes how much of the (non-covariant) acceleration
is attributed to ‘‘inertial’’ forces. There simply is no such indeterminacy
in CNGT, and the only arbitrariness of the forces in that theory is the
arbitrariness in the choice of reference frame. We therefore find it seri-
ously misleading to claim, as Zaret does, that CNGT represents just an-
other arbitrary division of forces, on all fours with the arbitrariness of
any extension of FNGT that specifies a particular covariant acceleration
and gravitational potential.

Zaret’s own wording suggests that his argument has been misdirected
and forced away from its natural conclusion. When discussing the theory
of Y and Y' forces, recall, he says, that ‘‘it may no longer be tenable to
maintain that ¥ and Y’ are different forces . . . we can avoid collapsing
them into a single force only if we can differentiate the physically pos-
sible conditions under which they have their (non-null) effects’’ (Zaret
1980, p. 484). In the case of inertial and gravitational forces in the con-
text of FNGT, there is no empirical or theoretical basis for the differ-
entiation. It seems to follow that we ought to collapse them into a single
force, and that is exactly what CNGT does. Again, when discussing the
subdivision of electrical force into two forces, one operative in odd-num-
bered years and the other in even-numbered years, Zaret claims that the
subdivision ‘‘is at least gratuitous and arbitrary’’ (Zaret 1980, p. 484),
and, of course, we agree. It seems to us that the natural conclusion from
these remarks is scarcely that FNGT and CNGT are synonymous theories,
for the former contains a gratuitous and arbitrary subdivision, and the
latter does not; if the theories were synonymous, then the subdivision the
former requires might somehow be redundant but it could hardly contain
any new arbitrariness. The natural conclusion is that the theories are not
synonymous, and that the Curved Theory is the better of the two.

We turn now to Zaret’s negative argument against Glymour. Glymour
(1980) has developed an account of theory testing which permits two
theories to be empirically equivalent, in the sense of having the same
body of observational consequences, even though these consequences
may test all of the hypotheses of one theory yet fail to test all of the
hypotheses of the other. Applied to CNGT and to FNGT, this account
of testing yields the result that all of the fundamental equations of the
former, but not all of the equations of the latter, are tested by clocks,
rods, and the trajectories of particles in the gravitational field. Thus, in
the case at hand, Glymour’s necessary condition for the synonymy of
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theories, and his account of theory testing, are in accord in judging the
Curved and the Flat gravitational theories to be inequivalent. Certain hy-
potheses of the Flat Theory are untestable because in order to carry out
a test of an equation; the theory must permit an appropriate determina-
tion, from observable quantities, of each of the fundamental quantities
occurring in the equation to be tested. In the case of the Flat Theory,
neither the covariant acceleration nor the affine geometry nor the gravi-
tational potential can be so determined. No similar indeterminacy holds
for the Curved Theory. Zaret does not object to the account of testing.
Instead he argues, incorrectly we believe, that it yields the result that in
an appropriately expanded context the two theories are equally well-
tested. The context is that in which electromagnetic as well as gravita-
tional phenomena are to be accounted for.

To expand either theory to include Maxwell’s electromagnetism, one
must first postulate a vector field, or rigging, which ties together the
points of space at different moments. One must further introduce a quan-
tity representing the electromagnetic field, and quantities representing the
density and motion of charges. With these new objects, either gravita-
tional theory can be expanded by adding covariant versions of Maxwell’s
equations, equations which we will denote by ‘‘Max’’. Both for the Flat
and for the Curved theories, however, the equation of motion must be
modified when electromagnetic phenomena are included. The new Flat
equation of motion says that the covariant acceleration of a test particle
equals a function of the covariant derivative of the gravitational potential
plus a function of the electromagnetic field. The new Curved equation
of motion says that the covariant acceleration of a test particle equals a
function of the electromagnetic field. The expanded theories are not em-
pirically equivalent because the equations which determine the electro-
magnetic field, Maxwell’s equations, contain covariant derivatives of that
field. Now the covariant derivative is determined by the affine geometry
(or more properly, by the geometrical object which determines the affine
geometry) and since the Curved Theory and the Flat Theory postulate
quite different affine geometries, the solutions to Maxwell’s equations
are different in the two cases. '

However, as Zaret has pointed out, it is possible to expand CNGT into
a theory which is observationally equivalent to FNGT + Max. In order
to do this, one must add to CNGT a theory which differs from Max by
the addition of certain correction terms to compensate for the difference
between the covariant derivative in FNGT and the covariant derivative
of CNGT. Call the resulting theory CNGT + Zax.

Zaret’s argument against Glymour now goes as follows: FNGT +
Max and CNGT + Zax are observationally equivalent, and account for
both gravitational and electrodynamic phenomena. In FNGT + Max,
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however, both the affine geometry and the gravitational potential turn out
to be uniquely determinable from observational quantities. Thus in this
expanded context, Zaret concludes, the grounds for claiming that FNGT
is less well-tested than CNGT no longer apply, and thus Glymour’s syn-
onymy condition is not really supported by his account of theory testing
(Zaret 1980, pp. 492-493).

We hold that Zaret’s objection involves serious confusions, and that
when they are dissolved, the case he considers fully accords with prin-
ciples (1) and (2). In the first place, we wish to make two remarks, one
about the structural features of the account of testing, the other about
structural features of principles (1) and (2). For the first, the account of
testing in question determines a three-place relation: Hypothesis H is
tested by observational result O with respect to theory 7.* In using this
relation to compare theories, Glymour proposes that we consider such
questions as ‘‘Is it the case that for each of the equations E in some set
of equations sufficient to axiomatize theory T, there is an observation O
such that O tests E with respect to 77’ If a body of observations is such
that it accords with both of two theories, but the answer to the question
just put is affirmative for one theory but negative for the other, then
Glymour claims that, ceteris paribus, the evidence would provide more
reason to believe the former theory than the latter. The second point is
this: According to either principles (1) or (2), it may happen that of four
theories, A, A', B, B', no two satisfy the condition for synonymy, but
that the conjunctions A & B, on the one hand, and A’ & B’ on the other
hand, do satisfy the necessary condition for synonymy with one another.

Returning to Zaret’s argument, we note first that he is correct in claim-
ing that one can find a version of electrodynamics, Zax, such that when
it is added to CNGT the result is a theory observationally equivalent to
FNGT + Max. We present such an electrodynamic theory in the appen-
dix. Of the theories CNGT, FNGT, Max, and Zax, no two are synony-
mous with one another according to principle (1) or (2). But the two
theories FNGT + Max and CNGT + Zax do satisfy the necessary con-
ditions for synonymy given by principles (1) and (2). Structurally, at least,
these theories are indistinguishable, although we take no stand on whether
or not they should be regarded as actually synonymous. Although
FNGT + Max and CNGT + Zax are structurally indistinguishable, and
could be thought of for the purposes of this discussion as a single theory,
FNGT and CNGT are different sub-theories of that theory, embodying
different sets of equations. Furthermore, with respect to this expanded

*This relation is understood to obtain whenever H is tested by O with respect to any
sub-theory of T.
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theory, the equations of FNGT are not tested by the same observations
as are the equations of CNGT. Although there are possible observations
that will test FNGT with respect to the expanded theory, they are not the
same observations as will test the equations of CNGT with respect to that
theory. For example, with respect to the expanded theory, clock and rod
measurements, together with the trajectories of uncharged bodies, will
test all of the equations of CNGT but not of FNGT.

In view of these facts, Zaret’s argument seems quite without power.
CNGT and FNGT do not satisfy, as a pair, either of principles (1) or
(2), and the claim that they are not synonymous is buttressed by the claim
that they are not equally well tested, with respect to themselves, by im-
aginable values of their observable quantities. The appeal to electrody-
namic phenomena is bootless, for if the claim is that CNGT and FNGT
are both tested by imaginable observational data with respect to
CNGT + Zax (or, equivalently, FNGT + Max), it remains true that there
will be imaginable observational data that test CNGT with respect to the
expanded theory but not FNGT. If, instead, the claim is that CNGT + Zax
and FNGT + Max are both equally and thoroughly tested by imaginable
observational data, then the claim is irrelevant to the issue, since these
two expanded theories satisfy both of the principles in dispute.

We suspect that Zaret simply did not distinguish what is being tested
with respect to what and did not note that, when actually developed, the
expanded Curved Theory plus Zax is structurally indistinguishable from
the Flat Theory plus Maxwell’s electrodynamics. It seems to us that the
relations of the expanded theories only give further evidence of the sound-
ness of the structural principles (1) and (2). CNGT + Zax and
FNGT + Max are obviously structurally equivalent, and one would surely
demand of any proposed intertranslation of the two theories that it pre-
serve that structure. But if, as Zaret proposes, one takes FNGT and
CNGT to be synonymous, there will be no natural translation of the ex-
panded theories into one another, for the natural translation, which pre-
serves the structure of the expanded theories, does not take FNGT into
CNGT, or conversely.

APPENDIX

There are several different theories of the global structure of Newtonian space-time. The
theories described here are similar to those found in Trautman (1964) and Glymour (1980).
In the Flat Space Theory (FNGT), M is a four dimensional manifold homomorphic to R*.
On this manifold, there is a scalar field ¢, the absolute time, which is an affine parameter
of every timelike geodesic; a singular 2,0 metric tensor field g with signature (0,+,+,+);
the mass density p; the gravitational potential U; and an affine connection compatible with
the metric. The field equations are:
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R5s=0 1)
tag =0, (t, = 0t/0x%) )
g¥=0 (3)

g8P1,t5=10 @
8PU 5 = 4mkp ©)]
FP = ma® (6)
Ft.=8"U, O]

a® is the B component of the covariant acceleration and F* is the 8 component of the
force. The semicolon signifies covariant differentiation with respect to the index following
it. R; , is the Riemannian curvature tensor, which is definable in terms of the affine con-
nection; equation (1) simply states that the space-time is flat. (6) and (7) imply that the
equation of motion of this theory is (8)

d*x%/dr> + TS (dx®/dt)(dx®/dt) = —g**U.,. (8)

Thus, according to FNGT, particles in the presence of no forces follow geodesics.

In CNGT, another theory of Newtonian space-time, the space-time is curved. M is still
a four-dimensional manifold homomorphic to R*. There is still a scalar field 7 representing
absolute time; a singular 2,0 metric tensor field g with signature (0,+,+,+); and the mass
density p. However, there is no gravitational potential U, and the flat affine connection
of FNGT is replaced by an affine connection which is curved in the presence of matter.
(It is possible for both the flat connection of FNGT and the curved connection of CNGT
to be compatible with g, since it is singular.) The field equations of CNGT are:

laoryB15 = O (*
8% Ry = 8” Rips @*
lop =0 (3)*
g% =0 (4)*
g*t,1,=0 (5)*
Rop = —4mpt,t, (6)*

F? = ma® (7*

In these equations, the brackets denote antisymmetrization with respect to the indices be-
tween them, °Rj,; is the Riemannian curvature tensor defined in terms of the curved con-
nection. °R,g is the contraction of the Riemannian curvature tensor, and the slash represents
covariant differentiation with respect to the curved connection. The equation of motion of

CNGT is
d*x°/de* + °T'gs (dxP/dr)(dx’/dr) = 0 ®)*

where °I'g, is the Christoffel symbol of the curved connection. (8)* is just the equation
of a geodesic of CNGT; thus, according to CNGT, freely falling particles travel along
geodesics.

There is a definitional extension of FNGT which implies CNGT. More specifically,
FNGT w{I" by = ng + tgt, g"5 U} implies CNGT (where A U B is the set of consequences



SPACE-TIME AND SYNONYMY 475

of the set theoretical union of A and B). However, there is no definitional extension of
CNGT which implies FNGT.

FNGT, unlike CNGT, is not bootstrap tested relative to itself by the available evidence
(provided by mechanical clocks, rigid rods, and the trajectories of freely falling bodies).
Trautman (1964) has shown that neither the gravitational potential nor the affine connection
of any model of FNGT is uniquely determined by g, ¢, p, and the family of free fall
trajectories, all of which will be assumed to be ‘‘observable’’ or determined by ‘‘observ-
able” evidence. Let (M, g, ¢, p, U, I', H) be a model of FNGT, where H is the collection
of free falls. Let ¢ be any scalar field, and I'' any connection such that:

Hauoxmp = O
Vao o ad
gy =T% — ta1.8° s

where, as before, the semicolon signifies covariant differentiation, using I'. Trautman has
shown that it follows that (M, g, ¢, p, &, I'' H) is also a model of FNGT. Thus, the con-
nection and the gravitational potential are not determined by the other quantities in the
theory. This, in turn, implies that the available evidence fails to test equations such as
(1) and (5) relative to FNGT, since it is impossible to use the other hypotheses of FNGT
to produce instances or counterinstances of (1) and (5). Thus, the available evidence does
not completely test FNGT relative to itself.

On the other hand, the affine connection of CNGT is uniquely determined by g, ¢, p,
and H. (This follows from the fact that an affine connection is uniquely determined by a
geodesic spray and an affine parameter). Furthermore, CNGT is completely testable rel-
ative to itself by the available evidence.

It is possible to extend FNGT into a theory of electromagnetism. Let us call this extended
theory FNGT + Max. In order to extend FNGT into FNGT + Max, it is necessary to
introduce an ‘‘ether’’ or a ‘‘rigging’’. The function of a ‘‘rigging”’ is to associate with
each point of a hypersurface of simultaneity a vector V tangent to the world line of an
observer at rest in the ether. It may be supposed that the rest frame of the ether is an
inertial frame of FNGT. The vector field satisfies the following laws:

Ve =0 )
Ve, =1 (10)

If G,z is the Maxwell tensor, then Maxwell’s electrodynamic equations may be written in
the form:

G¥ = —-4nJ° (11)
Grapy =0 (12)
Fie = q(G3(dxP/dr) — ;G (dxP/d) V*) (13)

where J represents the current, g represents charge, and G** = (g*Y — V*V"/c?)(g" —
VEV®/cH)G ;. (c is the velocity of light).

CNGT can be extended into CNGT + Zax, a theory of classical electrodynamics. In
order to do this it is necessary not only to introduce the rigging of space-time, it is also
necessary to introduce the potential U. The equations for the vector field V are:

VP — 151,87 U, V2=0 9*
Ve, =1 (10)*
The field equations, and new equation of motion are:

Gi§ — (8°G* + g”°G™)Ust 1y = —4ml® (1)
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Glagy =0 (12)*
(3 (3 dXB de «
Foe =4q|Gp ’ -G} o v (13)*

The observable evidence relevant to FNGT + Max and CNGT + Zax includes not only
the behavior of solid rods and mechanical clocks, and the trajectories of freely falling
bodies, but also the trajectories of bodies moving under the influence of electromagnetic
forces and the behavior of light rays.

Consider the following two equations.

OFEV = FE*/ + gasU:SZBZV (14)

Is,=°I%, — g°Ustgt, (14)*

We will now use these two equations to demonstrate that FNGT U Max and CNGT
U Zax are intertranslatable, by showing that they have a common definitional extension.
In particular, FNGT W Max W {14} = CNGT U Zax U {14*}.

It has already been pointed out that FNGT W {14} implies CNGT. It is also the case
that CNGT U {14*} implies FNGT. (Of course, when 14* is added to CNGT, the resulting
theory is not a definitional extension of CNGT, since the gravitational potential U does
not occur in CNGT, nor is it definable in CNGT. However, when 14* is added to CNGT
U Zax, the resulting theory is a definitional extension of CNGT U Zax, since the gravi-
tational potential U does occur in the equations of Zax). Thus, in order to show that
FNGT U Max U {14} = CNGT U Zax U {14*}, it is only necessary to show that
FNGT U Max U {14} implies CNGT W {14*}, and that CNGT U Zax U {14*} implies
FNGT U {14*}.

First, we will show that FNGT U Max U {14} implies CNGT U {14*} (equations
9*-14%). Equation 9 of Max is:

VE =0 ' ©)
When this equation is written in its non-abbreviated form, it is:
V8 =V*E + I'f, V® =0, (where “,”’ represents coordinate differentiation).

When °I;, — g*°U, 41, is substituted for each occurrence of I3 in the latter equation, the
result is:

Vit CT5 = 151,80, VP = Vi, = 151,870,V = 0
But this latter equation is just 9%.
10* obviously follows from FNGT U Max U {14}, since it is identical to 10.
If °I'g, — g*°U 4t,t, is substituted in for [ in 11, the result is 11*.

Gf=—-4mr° =

G + I5G™ + [fG™ =

G+ (T3 —1,1,8U,, ) G® + (T — 151,8°U,,)G** =
Gif — (87G¥ + g°7G*) U,y 13ty = —4ml". a1+
Similarly, if °I'§, — g**U,,1,t, is substituted in for 5 in 12, the result is 12%,

Gogyy =0 = 1/3![Gagyy T Gpya T Graip ~ Gpaiy ~ Grpa = Gaysl
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=2/3![Gupyy + Gpya + Grp] =

apiy
2/3! [(Gagy — Fina;a - ngGaa) + (Gpyo — l"f;,‘Gé7 - anGpa)
+ (Gyop — F‘;BG&, - FzBG,/S)] =

2/3' [(Gupy — ("1"2y - g‘s‘U,staty)Gsﬁ - ("l"f,y - ga‘U,EtBty)Gas)
+ (Gpya = CTha = 8%Ust1.)Goy — T30 = 8°Usc,1,)Gps)

+ (Ghap = CT% = 8Uety15)Goo — (Tog = 8% Ul 13)Gop)] =
Glapry) + Use8%(tat,Gop + 152,G o5 + 151, Gsy + 1,1, Ggs

+ 1,15Gs0 + 1,15G5) =
Giapy = 0. (12)*

Finally, 13* is identical to 13, and 14* obviously follows from 14 by simple arithmetic.

Thus, FNGT W Max U {14} implies Zax | {14*}.

It is easy to see from an examination of the derivation of Zax from FNGT U Max U
{14} that the equations of Max can be derived from CNGT U Zax U {14*} by substituting
Iz, + g°°U 51,41, for each occurrence of °I's in the equations of Zax. Thus, Max can be
derived from CNGT U {14*}.

It follows that FNGT W Max U {14} = CNGT U Zax U {14*}, and that FNGT U Max,
and CNGT U Zax are formally intertranslatable.
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