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Using Path Diagrams as a Structural Equation Modelling
Tool

by Peter Spirtes, Thomas Richardson, Chris Meek, Richard Scheines, and
Clark Glymour1

1. Introduction

Linear structural equation models (SEMs) are widely used in sociology, econometrics,
biology, and other sciences. A SEM (without free parameters) has two parts: a probability
distribution (in the Normal case specified by a set of linear structural equations and a
covariance matrix among the “error” or “disturbance” terms), and an associated path
diagram corresponding to the causal relations among variables specified by the structural
equations and the correlations among the error terms. It is often thought that the path
diagram is nothing more than a heuristic device for illustrating the assumptions of the
model. However, in this paper, we will show how path diagrams can be used to solve a
number of important problems in structural equation modelling.

There are a number of problems associated with structural equation modeling. These
problems include:

•  How much do sample data underdetermine the correct model specification? Of course,
one must decide how much credence to give alternative explanations that afford different fits
to any particular data set. There are a variety of techniques for that purpose, including
Bayesian updating, and a variety of fit measures with well understood large sample
properties . But what about  two or more alternative models that fit a specific data set equally
well, or, subject  to certain restrictions, fit any data set meeting the restrictions equally well?
The number of such equivalents for a given linear structural equation model may be very
large. Even if there are sources of knowledge about structure from outside the data set, the
number of equivalent models all meeting those knowledge constraints may be considerable,
and the structures they postulate may have importantly different implications for policy.
Unless we characterize such equivalencies, selection of a particular model can only involve
an element of arbitrary choice.

                                                
1 Spirtes, Glymour and Scheines are in the Department of Philosophy, Carnegie Mellon University.
Richardson is in the Department of Statistics, University of Washington. Meek is at Microsoft Research.
Thomas Richardson wishes to thank the Isaac Newton Institute, where he was a Rosenbaum fellow, while
preparing this paper. The research was also supported under NSF Grants DMS-9704573, BES-940239, and
IRI-9424378.
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•  Given that there are equivalent models, is it possible to extract the features common to
those models? Under some circumstances, every member of a set of equivalent models may
share some of the same linear coefficients or correlated errors. If that is the case, then it is
possible that even though the data may not help us choose between the different models, the
data may provide evidence for features common to all of the best models.

•   When a modeler draws conclusions about coefficients in an unknown underlying
structural equation model from a multivariate regression, precisely what assumptions are
being made about the structural equation model? For example, when does a non-zero partial
regression coefficient correspond to a non-zero coefficient in a structural equation?

These questions have been addressed many times, though usually only for models with
special structures, and usually relying on linear algebra, the mathematics that seems most
natural for a study of linear models. The aim of this paper is to explain how the path
diagram provides much more than heuristics for special cases; the theory of path diagrams
helps to clarify several of the issues just noted, issues that have been the focus of intelligent-
-if, in our judgment, ultimately too sweeping-- criticism of the use of structural equation
models. What follows is a report that describes some of what has been learned about these
issues by following a different set of mathematical ideas that exploit the graphical structure
implicit in structural equation models.

In particular, we will present answers to these questions that depend upon an
understanding of the relationship between the path diagram used to represent a structural
equation model, and the zero partial correlations entailed by that path diagram (entailed in
the sense that every structural equation model that shares the path diagram has a zero partial
correlation). We will describe a graphical relation, the Pearl-Geiger-Verma d-separation
criterion, among a pair of variables X and Y, and a set of variables Z, that is a necessary and
sufficient condition for a structural equation model to entail a zero partial correlation. Such
necessary and sufficient conditions have been known for path diagrams without correlated
errors, but we will extend the conditions to path diagrams with correlated errors.

In section 2 we will motivate interest in the d-separation relation by describing the
problems that it helps to solve in more detail. Then in section 3 we will show how the zero
partial correlations entailed by a structural equation model can be read off from its path
diagram, and in section 4 use the machinery developed in section 3 to provide some
solutions to problems described in section 2. In section 5 we discuss the broader
implications of this work for model selection, and illustrate this with two examples in
section 6. In section 7 we prove the main theorem, hitherto unpublished, which justifies the
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use of d-separation in path diagrams representing correlated errors (represented by edges of
the form ´, which we call double-headed arrows).

2. Problems in SEM Modeling

In order to describe the problems listed in section 1 in more detail, we will first review
how path diagrams are used to represent structural equation models without free parameters.
The path diagram contains a directed edge from B to A if and only if there is a non-zero
coefficient for B in the equation for A; and there is a double-headed arrow between A and B
if and only if the error term for A and the error term for B have a non-zero correlation.2 The
path diagram associated with a SEM may contain directed cycles (representing feedback),
and double-headed arrows (representing correlated errors.) We will call a path diagram
which contains no double-headed arrows a directed graph. (We place sets of variables and
defined terms in boldface.) In a SEM M, we will denote the correlation matrix among the
non-error variables by S(M), and the corresponding path diagram by G(M). We will now
review the problems mentioned in section 1 in more detail.

2.1. Covariance Equivalence

Consider the following example. The graph in Figure 1(a) is the path diagram of a SEM
M proposed by Aberle (Blalock, 1961) as a model for evolutionary culture in American
Indian tribes, where W is matridominant division of labor, X is matrilocal residence, Y is
matricentered land tenure, and Z is matrilinear system of descent.

Suppose for the moment that there is a SEM with the path diagram in Figure 1(a) and
the p(c2), the AIC (Aikake Information Criterion), and the BIC (Bayes Information
Criterion) score for this SEM are all high3 (See Raftery (1995) for a discussion of the BIC
score.) In order to evaluate how well the data supports this model, it is still necessary to
know whether or not there are other models compatible with background knowledge that fit
the data equally well (Lee and Hershberger, (1990), Stelzl (1986)). In this case, for each of
the path diagrams in Figure 1, and for any data set D, there is a SEM with that path diagram
that fits D as well as M does (in the sense that each SEM has the same p(c2) and the same
                                                
2 This is slightly different than the usual convention in which if eA and eB are correlated, then they are
explicitly included in the graph, there is a directed edge from eA to A, a directed edge from eB, and the
double-headed arrow is placed between eA and eB. However, the convention adopted here will simplify later
theorems and proofs.
3 In counting degrees of freedom, we will assume that a SEM with free parameters (and no latents)
associates a linear coefficient parameter with each directed edge (i.e. Æ) in its path diagram, a correlation
parameter with each double-headed arrow (i.e. ´) in its path diagram, and a variance parameter with each
vertex. We also assume that no extra constraints (such as equality constraints among parameters) are
imposed.
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BIC and AIC scores.) If O represent the set of measured variables in path diagrams G1 and
G2, then G1 and G2 are covariance equivalent over O if and only if for every SEM M
such that G(M) = G1, there is a SEM M’ with path diagram G(M’) = G2, and the marginal
of S(M’) over O equals the marginal of S(M) over O, and vice-versa.4 (Informally, any
covariance matrix over O generated by a parameterization of path diagram G1 can be
generated by a parameterization of path diagram G2, and vice-versa.) If G1 and G2 have no
latent variables, (i.e all of the variables in their path diagrams are in O), then we will simply
say that G1 and G2 are covariance equivalent. If two covariance equivalent models are
equally compatible with background knowledge, and have the same degrees of freedom, the
data does not help distinguish them, so it is important to be able to find the complete set of
path diagrams that are covariance equivalent to a given path diagram. (Every SEM that
contains a path diagram in Figure 1 has the same number of degrees of freedom.)

Figure 1

As we will illustrate below, it is often far from obvious what constitutes a complete set of
path diagrams covariance equivalent to a given path diagram. We will call such a complete
set a covariance equivalence class over O. (Again, if we consider only SEMs without
latent variables, we will call such a complete set a covariance equivalence class. If it is a
complete set of path diagrams without correlated errors or directed cycles, i.e. directed
acyclic graphs, that are covariance equivalent we will call it a simple covariance
equivalence class over O.) As shown in section 4, the path diagrams in Figure 1 are a
simple covariance equivalence class.

                                                
4 For technical reasons, a more formal definition requires a slight complication. G is a  sub-path
diagram of G’ when G and G’ have the same vertices, and G has a subset of the edges in G’. G1 and G2 are
covariance equivalent over O if for every SEM M such that G(M) = G1, there is a SEM M’ with path
diagram G(M’) that is a sub-path diagram of G2, and the marginal over O of S(M’) equals the marginal over
O of S(M), and for every SEM M’ such that G(M’) = G2, there is a SEM M with path diagram G(M) that
is a sub-path diagram of G1, and the marginal over O of S(M) equals the marginal over O of S(M’).
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Another example of a case where it is not obvious whether or not two path diagrams are
covariance equivalent over O is shown below. It is often thought that the two path diagrams
in Figure 2 (each of which is part of a just-identified SEM) are covariance equivalent over O
= {X,Y,Z}.  However, as shown in Spirtes et al. (1996), there is a SEM with path diagram in
Figure 2(b) with the covariance matrix S over X, Y, and Z, but there is no SEM that contains
the path diagram in Figure 2 (a) with marginal covariance matrix S (where T1, T2, and T3 are
latent variables).

S =

1.0 0.99 0.99
0.99 1.0 0.99
0.99 0.99 1.0

Ê 

Ë 

Á 
Á 

ˆ 

¯ 

˜ ˜ 

    (a)       (b)
Figure 2

In section 4, we will describe how to efficiently test when two path diagrams without
correlated errors or directed cycles are covariance equivalent. We will also give informative
necessary conditions for two path diagrams with correlated errors, cycles, or latent variables
to be covariance equivalent over O. For related theorems see also Pearl (1997).

2.2. Features Common to a Covariance Equivalence Class

A second important question that arises with respect to covariance equivalence classes is
whether it is possible to extract the features that the set of covariance equivalent path
diagrams have in common. For example, every path diagram in Figure 1 has the same
adjacencies, but the path diagrams do not have any edge with the same orientation in every
member of the equivalence class (e.g. both W Æ X, and W ¨ X occur in path diagrams in
Figure 1).

However, there are other sets of covariance equivalent path diagrams in which a given
edge always occurs with the same orientation in every member of the equivalence class. For
example, Figure 3 shows another simple covariance equivalence class of graphs in which the
orientation X Æ Z occurs in every member of the equivalence class.

Figure 3
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This is informative because even though the data does not help choose between
members of the equivalence class, insofar as the data is evidence for the disjunction of the
members in the equivalence class, it is evidence for the orientation X Æ Z.

In section 4 we will show how to extract all of the features common to a simple
covariance equivalence class of path diagrams, and briefly indicate how it is possible to
extract some features common to a covariance equivalence class of path diagrams with
correlated errors, cycles, or latent variables.

2.3. Regression Coefficients and Structural Equation Coefficients

It is common knowledge among practising social scientists that for the coefficient of X
in the regression of Y upon X to be interpretable as the effect of X on Y there should be no
"confounding" variable Z which is a cause of both X and Y:

X
Z

Y

a

b
g

Figure 4

Simple calculations confirm this conclusion (using the notation in Figure 4):5

Cov(X, Y) = bV(X) + agV(Z)

Hence

 Cov(X, Y)
V(X)

=
bV(X) + agV(Z)

V(X)
≠ b .

Thus the coefficient from the regression of Y on X alone will be a consistent estimator only
if either a or g is equal to zero. Further, observe that the bias term agV(Z)/V(X) may be
either positive or negative, and of arbitrary magnitude.

However, Cov(X, Z) = aV(Z)  and Cov(Y, Z) = (ab+ g)V(Z) , and hence

Cov(X, Y | Z) ≡ Cov(X, Y) -
Cov(X,Z)Cov(Y, Z)

V(Z)
= bV(X) + agV(Z) - aV(Z)(ab+ g)
= b(V(X) - a 2V(Z))

                                                
5 Section 7 after Lemma 5 contains a simple rule for calculating covariances from a path diagram. This rule
is related to Wright's use of path coefficients (Wright, 1934).
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and

V(X | Z) ≡ V(X) -
Cov(X, Z)2

V(Z)
= V(X ) - a2V(Z) ,

so the coefficient of X in the regression of Y on X and Z is a consistent estimator of b since
Cov(X,Y|Z)/V(X|Z) = b.

The danger presented by failing to include confounding variables is well understood by
social scientists. Indeed, it is often used as the justification for considering a long “laundry
list” of “potential confounders” for inclusion in a given regression equation.

What is perhaps less well understood is that including a variable which is not a
confounder can also lead to biased estimates of the structural coefficient. We now consider
a number of simple cases demonstrating this.

X Y Z
b h

Figure 5
In the SEM with the path diagram depicted in Figure 5, Cov(X,Y) = bV(X), hence the

coefficient of X in the regression of Y upon X is a consistent estimator of b. However,
Cov(Y,Z) = hV(Y), and Cov(X,Z) = bhV(X), so that

Cov(X, Y| Z)
V(X|Z)

= b
V(Z) - h2V(Y )

V(Z) - b2h2V(X )
= b

V(eZ )
V(e Z) + h2V(eY )

Ê 

Ë 
Á ˆ 

¯ 
˜ 

Hence the coefficient of X in the regression of Y on X and Z is an inconsistent estimator
of b. The estimate will have the same sign as b, but will have smaller absolute magnitude.
Note that Cov(X,Y|Z)/V(X|Z) = 0 if and only if b = 0.

It might be objected that this type of error is unlikely to arise in practise since often
information about time order would rule out Z as a potential unmeasured confounder. In the
next example this response is not applicable since Z may temporally precede both X and Y.
Let eX, eY, and eZ be the error variables in Figure 6(a), and e’X, e’Y, and e’Z be the error
variables in Figure 6 (b).
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Figure 6
In the path diagram depicted in Figure 6(a) there are two unmeasured confounders T1

and T2, which are uncorrelated with one another. Any SEM with this path diagram may be
converted into a SEM with the path diagram depicted in Figure 6(b), letting r = Cov(X,Z) =
yV(T1), t = fV(T2), V(eX

* ) = V(eX) + V(T1) , V(eY
* ) = V(eY) + y2V(T1) + V(T2 ) , and

V(eZ
* ) = V(eZ ) + f2V(T2 ) .
Note however, that the reverse is not in general true: not every model containing

correlated errors (X ´ Y) can be converted into a SEM model with latent variables but
without correlated errors by introducing a latent T that is a parent of X and Y ( X¨ T ÆY ),
as pointed out in section 2.1. (It is however always possible to convert a model with
correlated errors into some latent variable model without correlated errors, but which may
contain more than one latent common cause of each pair of variables. This is because every
normal distribution is a linear transformation of a set of independent normal variables,
which can play the role of the latent variables.)

Returning to the path diagram in Figure 6(b) note that the regression of Y on X yields a
consistent estimate of b since Cov(X,Y) = bV(X). However,

Cov(X, Y| Z)
V(X|Z)

=
Cov(X,Y)V(Z) - Cov(X, Z)Cov(Y, Z)

V(X)V(Z) - Cov(X, Z)2

=
bV(X)V(Z) - r(rb + t)

V(X)V(Z) - r2

= b -
rt

V(X)V(Z) - r2

Hence the coefficient of X in the regression of Y on X and Z is not a consistent estimate of
b, (unless r = 0 or t = 0), and may even have a completely different sign. In the case where
b = 0, the coefficient of X in the regression of Y on X will be zero in the population, but will
become non-zero once Z is included.

SEM folklore often appears to suggest that it is better to include rather than exclude a
variable from a regression. This notion is perhaps given support by reference to
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“controlling for Z”, the implication being that controlling for Z eliminates a source of bias.
The conclusion to be drawn from these examples is that there is no sense in which one is
“playing safe” by including rather than excluding “potential confounders”; if they turn
out not to be potential confounders then this could change a consistent estimate into an
inconsistent estimate.

The situation is also made somewhat worse by the use of misleading definitions of
'confounder': sometimes a confounder is said to be a variable that is strongly correlated with
both X and Y, or even a variable whose inclusion changes the coefficient of X in the
regression. Since, for sufficiently large t  and r , Z in Figure 6 would qualify as a
confounder under either of these definitions, it follows that under either definition including
confounding variables in a regression may make a higherto consistent estimator
inconsistent.

Finally, it is worth reiterating the well-known fact that in certain circumstances there may
be no regression which will estimate the parameter of interest, (although some other
consistent estimator may exist):

X YW

T

ba

f1

Figure 7

In the SEM shown in Figure 7, Cov(X,Y) = bV(X) + fV(T); hence the coefficient of X
in the regression of Y on X is not a consistent estimator of b. Further  

Cov(X, Y| W)
V(X|W)

= b +
fV(T)

V(X) -a 2V(W)
= b +

fV(T)
V(T) + V(eX )

hence including W in the regression does not help matters. However, a consistent estimator
exists, the so-called Instrumental Variable estimator:

Cov(Y, W)
Cov(X, W)

=
abV(W)
aV(W)

= b

In this discussion we have highlighted a number of problems that arise when estimating
structural coefficients via regression. These examples raise the following general questions:

(a) If Y is regressed on a set of variables W, including X, in which SEMs will the partial
regression coefficient of X be a consistent estimate of the structural coefficient b associated
with the X Æ Y edge?
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(b) If Y is regressed on the set W, which includes X, in which SEMs will the partial
regression coefficient of X be zero if the structural coefficient associated with the X Æ Y
edge is zero?

(c) Given a particular SEM in which there is an edge X Æ Y with coefficient b, is it
possible to find a subset W  of observed variables (including X), such that when Y is
regressed on the set W, the coefficient of X in the regression is a consistent estimate of b?

(d) Given a particular SEM and a structural coefficient b, is it possible to find a function
h(S) (where S is the sample covariance matrix) that is a consistent estimator of b?

We shall answer questions (a), (b) and (c), by applying the graphical criterion of
d-separation. One advantage of a graphical criterion is that it can be applied simply by visual
inspection of the path diagram, and does not require lengthy algebraic manipulations which
become increasingly arduous when more variables are involved in the calculation. We do
not know the answer to (d), which is one form of the well-known "identification problem"; it
is possible that extensions of the graphical criteria we present may hold the key. For related
theorems, see Pearl (1997).

2.4. Other Applications

In addition to the uses described above, there are a number of other applications that we
do not have the space to describe here. The d-separation relation has proved useful in
automated search for causal structure from data and background knowledge (Spirtes and
Glymour, 1991, Spirtes, Glymour and Scheines, 1993, Pearl and Verma, 1991, Cooper,
1992), in calculating the effects of interventions on causal systems (Spirtes, Glymour and
Scheines, 1993, and Pearl, 1995), and has shed light on a number of issues in statistics
ranging from Simpson’s Paradox to experimental design (Spirtes, Glymour and Scheines,
1993). See also the applications in Pearl (1997).

3. Linear Structural Equation Models and d-separation
In a linear SEM the random variables are divided into two disjoint sets, the substantive

variables and the error variables. Corresponding to each substantive random variable V is a
unique error term eV.6 A linear SEM contains a set of linear equations in which each
substantive random variable V is written as a linear function of other substantive random
variables together with eV, and a correlation matrix among the error terms. Initially, we will
assume that the error variables are multi-variate Gaussian. However, many of the results that

                                                
6 There is an equivalent definition of a linear SEM in which parent-less or ‘exogenous’ substantive
variables have no associated error variables.
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we will prove are about partial correlations, which do not depend upon the distribution of the
error terms, but depend only upon the linear equations and the correlations among the error
terms.

Since we have no interest in first moments, without loss of generality each variable can
be expressed as a deviation from its mean.

For example, the following is a linear SEM M, eA, eB, eC, eD, and eE are Gaussian "error
terms", and A, B, C, D, and E are substantive random variables:

A = eA

B = eB

C = .2B + .8D + eC

D = -.5C + .1E + eD

E = eE

        Correlation Matrix Among Error Terms
eA eB eD eD eE

eA 1.0 0.5 0.0 0.0 0.0
eB 0.5 1.0 0.0 0.0 0.0
eC 0.0 0.0 1.0 0.0 0.0
eD 0.0 0.0 0.0 1.0 0.0
eE 0.0 0.0 0.0 0.0 1.0

Ê 

Ë 

Á 
Á 
Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
˜ 
˜ 

If the coefficients in the linear equations are such that the substantive variables are a
unique linear function of the error variables alone, the set of equations is said to have a
reduced form. A linear SEM with a reduced form also determines a joint distribution over
the substantive variables. We will consider only linear SEMs which have coefficients for
which there is a reduced form, all variances and partial variances among the substantive
variables are finite and positive, and all partial correlations among the substantive variables
are well defined (e.g. not infinite).

The path diagram of a linear SEM with uncorrelated errors is written with the
conventions that it contains an edge A Æ B if and only if the coefficient for A in the
structural equation for B is non-zero, and there is a double-headed arrow between two
variables A and B if and only if the correlation between eA and eB is non-zero. Thus the path
diagram for M is shown in Figure 8.

In order to define the d-separation relation, we need to introduce the following path
diagram terminology. The concepts defined here are illustrated in Figure 8. A path diagram
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consists of two parts, a set of vertices V and a set of edges E. Each edge in E is between
two distinct vertices in V. There are two kinds of edges in E, directed edges A Æ B or A ¨
B, and double-headed edges A ´ B; in either case A and B are endpoints of the edge;
further, A and B are said to be adjacent. There may be multiple edges between vertices. In
Figure 8 the set of vertices is {A,B,C,D,E} and the set of edges is {A ´ B, B Æ C, C Æ D,
D Æ C, E Æ D}. For a directed edge A Æ B, A is the tail of the edge and B is the head of
the edge, A is a parent of B, and B is a child of A.

An undirected path U between Xa and Xb is a sequence of edges <E1,...,Em> such that
one endpoint of E1 is Xa, one endpoint of Em is Xb, and for each pair of consecutive edges Ei,
Ei+1 in the sequence, Ei ≠ Ei+1, and one endpoint of Ei equals one endpoint of Ei+1. In Figure
8, A ´ B Æ C ¨ D is an example of an undirected path between A and D. A directed
path P between Xa and Xb is a sequence of directed edges <E1,...,Em> such that the tail of Ea

is X1, the head of Em is Xb, and for each pair of edges Ei, Ei+1 adjacent in the sequence, Ei ≠
Ei+1, and the head of Ei is the tail of Ei+1. For example, B Æ C Æ D is a directed path. A
vertex occurs on a path if it is an endpoint of one of the edges in the path. The set of
vertices on A ´ B Æ C ¨ D is {A, B, C, D}. A path is acyclic if no vertex occurs more
than once on the path. C Æ D Æ C is a cyclic directed path. The following is a list of all the
acyclic directed paths in Figure 8: B Æ C, C Æ D, E Æ D, D Æ C, B Æ C Æ D, E Æ D
Æ C.

A vertex A is an ancestor of B (and B is a descendant of A) if and only if either there
is a directed path from A to B or A = B. Thus the ancestor relation is the transitive, reflexive
closure of the parent relation. The following table lists the child, parent, descendant and
ancestor relations in Figure 8.

Vertex Children Parents Descendants Ancestors
A ∅ ∅ {A} {A}
B {C} ∅ {B,C,D} {B}
C {D} {B,D} {C,D} {B,C,D,E}
D {C} {C,E} {C,D} {B,C,D,E}
E {D} ∅ {C,D,E} {E}

A vertex X is a collider on undirected path U if and only if U contains a subpath Y ´
X ´ Z, or Y Æ X ´ Z, or Y Æ X ¨ Z, or Y ´ X ¨ Z; otherwise if X is on U it is a non-
collider on U. For example, C is a collider on B Æ C ¨ D but a non-collider on B Æ C
Æ D. X is an ancestor of a set of vertices Z if X is an ancestor of some member of Z.
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For disjoint sets of vertices, X, Y, and Z, X is d-connected to Y given Z if and only if
there is an acyclic undirected path U between some member X of X, and some member Y of
Y, such that every collider on U is an ancestor of Z, and every non-collider on U is not in Z.
For disjoint sets of vertices, X, Y, and Z, X is d-separated from Y given Z if and only if X
is not d-connected to Y given Z.

Figure 8

For example, the path E Æ D Æ C d-connects E and C given ∅; it also d-connects E
and C given {A}, {B}, or {A,B}. E Æ D ¨ C d-connects E and C given {D}, given {D,B},
{D,A}, or {D,A,B}. The following is a list of all the pairwise d-separation relations in
Figure 8 (where each pair is followed by a list of all of the sets that d-separate them):

{A} and {C} are d-separated given: {B}, {B,D}, {B,E}, {B,D,E}
{A} and {D} are d-separated given: {B}, {B,C}, {B,E}, {B,C,E}
{A} and {E} are d-separated given: ∅, {B}, {B,C}, {B,D}, {B,C,D}, {C,D}
{B} and {E} are d-separated given: ∅, {C,D}

The first theorem states that d-separation in a path diagram G is a sufficient condition
for G to entail that r(X,Y.Z) = 0 (i.e. in every SEM with path diagram G, the partial
correlation of X and Y given Z equals 0.)

Theorem 1: If M is a SEM, and {X} and {Y} are d-separated given Z in G(M),
then r(X,Y.Z) = 0 in S(M).

The second theorem states that d-separation is a necessary condition for a path diagram
to entail a zero partial correlation.

Theorem 2: If {Xi} and {Xj} are not d-separated given Z in path diagram G, then
there is a SEM M such that G(M) = G, and r(Xi,Xj.Z) ≠ 0 in S(M).

Theorem 2 does not say that there might not be an individual SEM M with “extra” zero
partial correlations among variables that are not d-separated in G(M), as the following
example shows.

A CB

DE
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X = .3 Y + .6 Z + eX

Y = -2 Z + eY

Z = eZ

Figure 9

 (The errors are uncorrelated because there are no double-headed arrows in the path
diagram.) In this case X and Y are independent, i.e. r(X,Y) = 0, even though {X} and {Y}
are not d-separated given ∅. However, this zero correlation holds because of the particular
linear coefficients. Thus, according to Theorem 2 there is some other SEM M such with the
same path diagram in which r(X,Y) ≠!0. It has been shown (Spirtes et. al 1993) that the set
of parameters which produce conditional independence relations among variables which are
not d-separated in G has zero Lebesgue measure over the parameter space.

4. Applications

4.1. Covariance Equivalence for Path diagrams Without Correlated Errors
or Directed Cycles

If for SEM M, there is another SEM M’ with a different path diagram but the same
number of degrees of freedom, and the same marginal distribution over the measured
variables in M, then the p(c2) for M’ equals p(C2) for M, and they have the same BIC
scores and AIC scores. Such SEMs are guaranteed to exist if there are SEMs that have the
same number of degrees of freedom and contain path diagrams which are covariance
equivalent to each other. Stelzl (1986) and Lee and Hershberger (1990) discuss sufficient
conditions for covariance equivalence (which they call simply equivalence). Theorem 3
states necessary, as well as sufficient conditions for covariance equivalence in path diagrams
without corrrelated errors or directed cycles.

G1 and G2 are d-separation equivalent if for each disjoint sets X, Y, and Z, X is d-
separated from Y given Z in G1 if and only if X is d-separated from Y given Z in G2.

Theorem 3: If G1 and G2 are directed acyclic graphs, G1 and G2 are covariance
equivalent if and only if G1 and G2 are d-separation equivalent.

The test for covariance equivalence of two path diagrams described in Lee and
Hershberger (1990) requires determining whether there is a series of edge replacements or
reversals preserving equivalence that lead from one path diagram to the other. Because they

Y ZX
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do not specify an ordering in which the tests are to be done, this could be a very slow
process. The following theorem, due to Verma and Pearl (1990) shows how d-separation
equivalence can be calculated in O(E2) time, where E is the number of edges in a path
diagram. X is an unshielded collider in directed acyclic graph G if and only if G contains
edges A Æ X ¨ B, and A is not adjacent to B in G.

Theorem 4: Two directed acyclic graphs are d-separation equivalent if and only if
they contain the same vertices, the same adjacencies, and the same unshielded colliders.

It is apparent from Theorem 4 that any two SEMs with covariance equivalent
directed acyclic graphs have the same degrees of freedom.

4.2. Covariance Equivalence for Path Diagrams with Correlated Errors or
Directed Cycles

Necessary conditions for covariance equivalence for path diagrams with correlated
errors or cycles, and for path diagrams with latent variables follow from Theorem 1 and
Theorem 2. If O is a subset of the vertices in G1 and a subset of the vertices in G2, then G1

and G2 are d-separation equivalent over O if for each disjoint X, Y, and Z included in O,
X is d-separated from Y given Z in G1 if and only if X is d-separated from Y given Z in G2.

Theorem 5: If G1 and G2 are path diagrams that are covariance equivalent over O,
then G1 and G2 are d-separation equivalent over O.

The converse is not generally true because while d-separation equivalence guarantees
that the conditional independence constraints imposed by two path diagrams are the same,
there are other, non-conditional independence constraints, that can be imposed by one path
diagram but not the other. The path diagrams in Figure 2 are examples of path diagrams that
are d-separation equivalent, but not covariance equivalent over O = {X,Y,Z}.

If V is the maximum of the number of variables in G1 or G2, and M is the number of
variables in O, Spirtes and Richardson (1996) presents an O(M3 ¥  V2) algorithm for
checking whether two acyclic path diagrams G1 and G2 (which may contain latent variables
and correlated errors) are d-separation equivalent over O. Richardson (1996) presents an
O(V7) algorithm for determining when two cyclic path diagrams without latent variables are
d-separation equivalent.

4.3. Extracting Features Common to a Covariance Equivalence Class

Theorem 4 is also the basis of a simple representation (called a pattern in Verma and
Pearl 1990) of the entire set of path diagrams without correlated errors or cycles covariance
equivalent to a given path diagram without correlated errors or cycles. The pattern for each
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path diagram in Figure 1 is shown in Figure 10(a), and the pattern for each path diagram in
Figure 3 is shown in Figure 10(b).

(a) (b)

Figure 10

A pattern has the same adjacencies as the path diagrams in the covariance equivalence
class that it represents. In addition, an edge is oriented as X Æ Z in the pattern if and only if
it is oriented as X Æ Z in every path diagram in the simple covariance equivalence class.
Meek (1995), Andersson et al. (1995), and Chickering (1995) show how to generate a
pattern from an acyclic graph in O(E) time (where E is the number of edges.)

In the case of acyclic path diagrams which may also contain latent variables, and the case
of cyclic path diagrams which do not contain latent variables, there is an object analogous to
a pattern called a Partial Ancestral Graph (PAG), which contains only measured variables
but represents some of the features common to the members of a covariance equivalence
class over O. Spirtes and Verma (1992) shows how to create a PAG7 from an acyclic path
diagram in O(V5) time (where V is the number of vertices in the path diagram). Richardson
(1996c) presents an O(V7) algorithm for constructing a PAG from a (possibly cyclic)
graph.

4.4. Solutions to the questions on regression

In this section we apply d-separation in order to answer three questions about the use of
regression to estimate structural coefficients that we raised earlier. We introduce the
following notation first: Given a SEM with path diagram G, we define G\{XÆY} as the
path diagram in which the X Æ Y edge is removed.

(a) If Y is regressed on a set of variables W, including X, in which SEMs will the
partial regression coefficient of X be a consistent estimate of the structural coefficient b
associated with the X Æ Y edge?

                                                
7 The algorithm given by Spirtes and Verma was designed to output an object called a partially oriented
inducing path graph (POIPG); however, it has subsequently been shown that the output can be re-interpreted
as a PAG.

XW

Y Z

XW

Y Z
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The coefficient of X is a consistent estimator of b if W does not contain any descendant
of Y in G, and X is d-separated from Y given W in G\{XÆY}.8 If this condition does not
hold, then for almost all instantiations of the parameters in the SEM, the coefficient of X will
fail to be a consistent estimator of b.

It follows directly from this that (almost surely) b cannot be estimated consistently via
any regression equation if either there is an edge X ´ Y (i.e. eX and eY are correlated) or if
X is a descendant of Y (so that the path diagram is cyclic). The result itself follows from the
fact that under the conditions stated,

Cov(X,eY | W\{X}) = Cov(X,Q | W\{X}) = 0

for each Q Œ Parents(Y,G)\{X}. (Parents(Y,G) is the set of parents of Y in G.) It follows
that

Cov(X, Y | W \ {X}) = Cov(X, bX + a iQi
Q i ŒParents(Y )

Â + eY | W \ {X}) = bV(X | W \ {X})

and hence Cov(X, Y | W \ {X})
V(X | W \ {X})

= b .

 (b) If Y is regressed on the set W , including X, in which SEMs will the partial
regression coefficient of X be zero if there is no edge between X and Y?

The coefficient of X will be zero if X and Y are d-separated given W\{X}. (See Scheines
(1994) and Glymour (1994)). This follows directly from the fact that the coefficient of X in
the regression equation is proportional to r(X,Y,W\{X}), which in turn will be zero if {X}
is d-separated from {Y} given W\{X}. As before, if {X} and {Y} are not d-separated given
W\{X}, then, even if there is no edge between X and Y, for almost all assignments of values
to the model parameters the coefficient of X will be non-zero.

(c) Given a particular SEM, with path diagram G, in which there is an edge X Æ Y,
with coefficient b, is it possible to find a subset W  of observed variables, (including X),
such that when Y is regressed on the set W, the coefficient of X in the regression is a
consistent estimate of b?

From (a), we know that if there is a subset W of the observed variables which contains
no descendant of Y, but which d-separates X from Y in G\{XÆY}, then the regression
coefficient of X in the regression of Y on W will be a consistent estimate of b.

                                                
8Note this criterion is similar to Pearl's back door criterion (Pearl, 1993), except that the back-door criterion
was proposed as a means of estimating the total effect of X on Y.



18

5. Implications for Model Selection

In this section, we discuss some of the methodological implications of the results
presented in the previous sections.

Social scientists who construct SEMs face many problems - among others, what
variables to measure, how to  construct measurement scales, how to remove outliers, and
how to transform the variables. Often the ultimate goal of SEM construction is to achieve
understanding of the causal relations among the variables, or to estimate the coefficients in
an underlying structural equation model. As we have demonstrated in 4.4, in the absence of
very strong background knowledge, regression is not a reliable technique for either of these
purposes. This leaves the social scientist with the task of selecting SEMs from among a vast
array of possibilities.  

SEM selection can be thought of as a search problem - it is a search among a space of
SEMs for the simplest SEMs that are compatible with background knowledge and fit the
data. The search problem is very difficult because of measurement error, non-random
samples, missing values, etc. However, here we wish to concentrate on the problems of the
sheer size of the search space, and the existence of many plausible alternatives.

Even if latent variables are excluded, the search space is enormous (the number of
different SEMs grows super-exponentially with the number of variables.) If latent variables
are allowed, the number of possible models becomes infinite. Of course background
knowledge, such as time order, can vastly reduce the search space. Nevertheless, even given
background knowledge, the number of a priori plausible alternatives is often orders of
magnitude too large to search by hand.

The problem is made even more difficult by the need to find not just one good SEM in
the search space, but all of the good SEMs. As we showed in 4.1, there are often many
SEMs  that have the same p-value (as well as the same BIC and AIC scores.) Although all
of these models receive the same scores, they can produce very different estimates of
underlying parameters, and represent very different theories of the causal relations among
the variables. In the absence of background knowledge to distinguish among these
alternatives, it is important to present all of the simplest alternatives compatible with the
background knowledge and data, rather to simply arbitrarily choose one. This suggests that
the proper output of a search procedure should at least include a set of covariance equivalent
SEMs compatible with background knowledge, rather than a single SEM.

Our approach to solving the problems of the large search space and the existence of
many SEMs that may receive a high BIC score has been to search the space of PAGs, rather
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than searching the space of SEMs with latent variables. One advantage of searching the
space of PAGs is that for a fixed number of observed variables, there are a finite number of
PAGs, but an infinite number of latent variable SEMs (since, in theory, one could add an
arbitrary number of latent variables). In addition, if a PAG represents a SEM that receives a
high BIC score, it also represents all of the SEMs that are covariance equivalent to that
SEM; hence a search algorithm that outputs a PAG is not making an arbitrary choice among
a set of covariance equivalent SEMs9. Further, while it is known that the BIC score is an
O(1) approximation of the posterior for a PAG, it is not known whether this is the case for
latent variable SEMs. Finally, it is much easier to calculate a BIC score for a PAG than it is
for many latent variable SEMs.

The FCI algorithm takes as input a covariance matrix, distributional assumptions, and
background knowledge (e.g. time order), and outputs a PAG. The search proceeds by
performing a sequence of conditional independence tests. In the large sample limit, the
search is guaranteed to be correct under assumptions described in Spirtes et al., 1993. In the
worst case (many direct connections among the observed variables, or many latent common
causes of pairs of observed variables) the time it takes to perform the search grows
exponentially as the number of variables. However, in some cases, it can perform searches
on up to 100 measured variables. How large a set of SEMs is represented by the output
depends upon what the true SEM is (if such exists), and how many latent variables it
contains. (When the FCI algorithm is restricted to the case where there are no latent
variables, the algorithm may be simplified, in which case it is called the PC algorithm.) See
Spirtes, et al. (1993) for details.

We have also devised a greedy BIC score algorithm, that at each stage makes the one
change to the PAG that most improves the score of the PAG. The greedy BIC score
algorithm takes as input a covariance matrix, distributional assumptions, and background
knowledge (e.g. time order), and outputs a set of PAGs, along with their BIC scores. See
Spirtes, Richardson and Meek (1996) for details. (Instructions for downloading and using a
program, TETRAD II, that contains both the FCI algorithm and the greedy BIC score
a lgor i thm can  be  found  o n  t h e  wor ld  w ide  w e b  at
http://hss.cmu.edu/philosophy/TETRAD/tetrad.html.)

There are a number of uses of the PAGs or set of PAGs output by these search
procedures. They can be used to answer some, but not all, questions about the effects of

                                                
9 While the set of SEMs represented by a PAG is not too small in the sense that if it represents a SEM it
also represents all of the SEMs covariance equivalent to it, it is larger than strictly necessary in that it
generally does not contain a single covariance equivalence class. While this does not affect the correctness of
the output, it does mean that the output is less informative than is theoretically possible.
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interventions upon causal systems. In addition, as we will illustrate in the next section, they
can be used as a starting point for selecting a particular latent variable SEM. See Spirtes et
al. 1993 for details.

6. Applications of PAG Searches

6.1. Foreign Investment

The first example illustrates how the PC and FCI algorithms can be used to generate
alternative models which cast doubt upon conclusions drawn from a regression. Timberlake
and Williams (1984) used regression to claim foreign investment in third-world countries
promotes dictatorship. They measured political exclusion (PO) (i.e., dictatorship), foreign
investment penetration in 1973 (FI), energy development in 1975 (EN), and civil liberties
(CV) for 72 countries. Civil liberties was measured on an ordered scale from 1 to 7, with
lower values indicating greater civil liberties.

Their inference is unwarranted. Their model (with the relations between the regressors
omitted) and the model obtained from the PC algorithm using a .12 significance level to test
for vanishing partial correlations) are shown in Figure 1.10 (Because the algorithm performs
a sequence of tests, one cannot read the reliability of the algoriothm off of the significance
level. We typically run the algorithms at a variety of different significance levels, and
compare the results to see if any of the features of the output are constant.)

    

FI

EN

CV

PO

.762

-.478

1.061

FI EN PO CV+ -

Regress ion Model PC Algorithm
Model

Figure 11

The PC Algorithm will not orient the FI-EN and EN-PO, edges, or determine whether
they are due to at least one unmeasured common cause. Maximum likelihood estimates of
any of the SEMs represented by the pattern output by the PC algorithm require that the

                                                
10Searches at lower significance levels remove the adjacency between FI and EN.
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influence of FI on PO (if any) be negative, and the models easily pass a likelihood ratio test
with the EQS program. If any of these SEMs is correct, Timberlake and William's
regression model appears to be a case in which an effect of the outcome variable is taken as
a regressor.

This analysis of the data assumes there are no unmeasured common causes. If we run
the correlations through the FCI algorithm using the same significance level, we obtain a
PAG that, together with the required signs of the dependencies, says that foreign investment
and energy consumption have a common cause, as do foreign investment and civil liberties,
that energy development has no influence on political exclusion, but political exclusion may
have a negative effect on energy development, and that foreign investment has no influence,
direct or indirect, on political exclusion.

Given the small sample size, and the uncertainty about the distributional assumptions,
we do not present the alternative models suggested by the PC and FCI algorithms as
particularly well-supported by the evidence. However, we do think that they are at least as
well-supported as the regression model, and hence serve to cast doubt upon conclusions
drawn from that model.

6.2. Lead and IQ

The next example shows how the FCI algorithm can be used to find a PAG, which can
then be used as a starting point for a search for a latent variable DAG model. It also
illustrates how such a procedure produces different results than simply applying regression
or using regression to generate more sophisticated models, such as errors-in-variables
models.

By measuring the concentration of lead in a child’s baby teeth, Herbert Needleman was
the first epidemiologist to even approximate a reliable measure of cumulative lead exposure.
His work helped convince the United States to eliminate lead from gasoline and most paint
(Needleman, et. al., 1979).In their 1985 article in Science, Needleman, Geiger and Frank
gave results for a multivariate linear regression of children’s IQ on lead exposure. Having
started their analysis with almost 40 covariates, they were faced with a variable selection
problem to which they applied backwards elimination regression, arriving at a final
regression equation involving lead and five covariates. The covariates were measures of
genetic contributions to the child’s IQ (the parent’s IQ), the amount of environmental
stimulation in the child’s early environment (the mother’s education), physical factors that
might compromise the child’s cognitive endowment (the number of previous live births),
and the parent’s age at the birth of the child, which might be a proxy for many factors.  The
measured variables they used are as follows:
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ciq - child’s verbal IQ score piq - parent’s IQ scores
lead - measured concentration in baby teeth mab - mother’s age at child’s birth
med - mother’s level of education in years fab - father’s age at child’s birth
nlb - number of live births previous to the sampled child

The standardized regression solution11 is as follows, with t-ratios in parentheses. Except for
fab, which is significant at 0.1, all coefficients are significant at 0.05, and R2 = .271.

cˆ i q  =  - .143 lead + .219 med + .247 piq + .237 mab - .204 fab - .159 nlb            [1]
              (2.32)         (3.08)         (3.87)        (1.97)         (1.79)        (2.30)

This analysis prompted criticism from Steve Klepper, an economist at Carnegie Mellon
(see Klepper, 1988; Klepper, Kamlet, & Frank, 1993). Klepper correctly argued that
Needleman’s statistical model (a linear regression) neglected to account for measurement
error in the regressors. That is, Needleman’s measured regressors were in fact imperfect
proxies for the actual but latent causes of variations in IQ, and in these circumstances a
regression analysis gives a biased estimate of the desired causal coefficients and their
standard errors. He constructed an errors-in-variables model to take into account the
measurement error. See Figure 12, where the latent variables are in boxes, and the relations
between the regressors are unconstrained.

Unfortunately, an errors-in-variables model that explicitly accounts for Needleman’s
measurement error is “underidentified,” and thus cannot be estimated by classical
techniques without making additional assumptions. Klepper, however, worked out an
ingenious technique to bound the estimates, provided one could reasonably bound the
amount of measurement error contaminating certain measured regressors (Klepper, 1988,
1993). The required measurement error bounds vary with each problem, however, and those
required in order to bound the effect of actual lead exposure below 0 in Needleman’s model
seemed wholly unreasonable. Klepper concluded that the statistical evidence for
Needleman’s hypothesis was indeed weak. A Bayesian analysis, based on Gibbs sampling
techniques, found that several posteriors corresponding to different priors lead to similar
results. Although the size of the Bayesian point estimate for lead’s influence on IQ moved

                                                

11 The covariance data for this reanalysis was originally obtained from Needleman by Steve Klepper, who
generously forwarded it. In this, and all subsequent analyses,  the correlation matrix is used.
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up and down slightly, its sign and significance (the 95% central region in the posterior over
the lead-iq connection always included zero) were robust.

Figure 12

A reanalysis using the FCI algorithm produced different results. Scheines first used
TETRAD II to first generate a PAG which was subsequently used as the basis for
constructing an errors-in-variables model.The FCI algorithm produced a PAG that indicated
that mab, fab, and nlb are not causes of ciq, contrary to Needleman’s regression.12 If we
construct an errors-in-variables model compatible with the PAG produced by the FCI
algorithm, the model does not contain mab, fab, or nlb. See Figure 12. (We emphasize that
there are other models compatible with the PAG which are not errors-in-variables models;
the selection of an error-in-variables model from the set of models represented by the PAG
is an assumption.) In fact the variables that the FCI algorithm eliminated were precisely
those which required unreasonable measurement error assumptions in Klepper's analysis.
With the remaining regressors, Scheines specified an errors-in-variables model to
parameterize the effect of actual lead exposure on childrens’ IQ.  This model is still
underidentified but under several priors, nearly all the mass in the posterior was over
negative values for the effect of actual lead exposure--now a latent variable--on measured
IQ. In addition, applying Klepper’s bounds analysis to this model indicated that the effect
of actual lead exposure on iq was bounded above zero given reasonable assumptions about
the degree of measurement error.

                                                
12 The fact that mab had a significant regression coefficient indicates that mab and ciq are correlated
conditional on the other variables; the FCI algorithm concluded that mab is not a cause of ciq because mab
and ciq are unconditionally uncorrelated. See Spirtes et al. 1993 for an explanation of the FCI algorithm in
more detail.

L1        L2         L3        L4       L5             L6              L1       L2        L3

mab        fab     nlb         med    piq              lead            med      piq              lead

                      ciq                                                                            ciq
Klepper’s errors-in-variables model                       FCI errors-in-variables model
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7. Appendix

We will prove Theorem 1 and Theorem 2 in two steps. First we will prove them for the
case where G(M) contains no double-headed arrows; then for the case where G(M) does
contain double-headed arrows.

A probability measure P over V satisfies the global directed Markov property for
path diagram G if and only if for any three disjoint sets of variables X, Y, and Z included in
V, if X is d-separated from Y given Z, then X is independent of Y given Z in P.

The following lemma relates the global directed Markov property to factorizations of a
density function. Denote a density function over V by f(V), where for any subset X of V,
f(X) denotes the marginal of f(V). Let An(X) be the set of ancestors of members of X. If
f(V) is the density function for a probability measure over a set of variables V, say that f(V)
factors according to directed graph G with vertices V if and only if for every subset X
of V,

f(An(X)) = gV(V,Parents(V)
VŒAn(X)
’ )

where gV is a non-negative function.

Lemma 1 was proved in Lauritzen et al. (1990) for the acyclic case, and the proof carries
over essentially unchanged for the cyclic case.

Lemma 1: If V is a set of random variables with a probability measure P that has a
density function f(V) and f(V) factors according to directed graph G, then P satisfies the
global directed Markov property for G.

Lemma 2 was proved in Spirtes (1995) and Koster (1995).

Lemma 2: If M is a SEM, and {X} and {Y} are d-separated given Z in directed graph
G(M), then r(X,Y.Z) = 0 in S(M).

Lemma 3 was proved in Spirtes (1995).

Lemma 3: For any directed graph G, if {X} and {Y} are not d-separated given Z in
G(M), there is a SEM M, G = G(M) and r(X,Y.Z) ≠ 0 in S(M).

We will now show that Theorem 1 and Theorem 2 hold even when G contains double-
headed arrows. Let the set of vertices in G be V. For a given triple X, Y, and Z, if {X} is
d-separated from {Y} given Z in G(M) and G(M) contains double-headed arrows, the
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strategy is to convert M into another SEM M’(M,X,Y,Z) such that G(M’(M,X,Y,Z)) has
additional latent variables, but no double-headed arrows, the marginal over V  of
S(M’(M,X,Y,Z)) is equal to S(M), and {X} and {Y} are d-separated given Z  in
G(M’(M,X,Y,Z)). (We write M’(M,X,Y,Z) in order to emphasize that the SEM M’
constructed from M is a function of the path diagram of M, and the vertices X, Y, and Z in
the d-separation relation being considered.) It will then follow from Lemma 2 that r(X,Y.Z)
= 0 in S(M).

If {X} is d-separated from {Y} given Z in G(M), the graph G(M’(M,X,Y,Z)) is
constructed by the following algorithm, where a trek between Xi and Xj is an undirected
path between Xi and Xj that contains no colliders. (We will illustrate the application of the
algorithm to the path diagram in Figure 13.)

Algorithm: Construct Latent Directed Graph   
Inputs - Path Diagram G with vertex set V, Vertices X, Y, Z;
Output - Directed Graph GConstruct(G,X,Y,Z), with vertex set V»T;
1. Order the variables so that X is first, Y is second, followed by each variable with a

descendant in Z, followed by any remaining variables that have X or Y as descendants in
G(M), followed by the rest of the variables. Given this ordering, we will now refer to the
variables as X1,...,Xn, where for all i, Xi is the ith variable in the ordering.

2. For each variable Xi, add to the existing graph G, a variable Ti, and edges from Ti to
Xj, for each j ≥ i. Call the resulting graph, which has vertex set (X1,...,Xn, T1,...,Tn) GConstruct(0).

3. Let GConstruct(i) be the the graph constructed after the ith iteration of the following step,
starting with i = 1: If r > i, and there is no trek between Xr and Xi in GConstruct(i-1) containing a
variable Tj, where j < i, and ei and ej are uncorrelated in S, then remove the Ti Æ Xr edge.

For inputs G, X, Y, and Z , we will refer to the output of this algorithm as
GConstruct(G,X,Y,Z). Note that it follows from step 2 of the construction algorithm that if there
is a trek Xi ¨ Tj Æ Xk, then j ≤ min(i,k).

Suppose for the graph in Figure 13 we are interested in whether r(X,Y) = 0 (i.e. Z =
∅).

X              A               B              C                D                Y

G
Figure 13
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Applying the first step of Algorithm Construct Latent Directed Graph to G in Figure 13
with vertex inputs X, Y, ∅, results in the naming of the vertices shown in Figure 14.

X1              X3            X5             X4               X6                X2

  Old Name:   X               A              B               C                 D                  Y
New Name:

Figure 14: G with vertices renamed

Applying steps 2 and 3 of Algorithm Construct Latent Directed Graph results in the
directed graph shown in Figure 15.

T1                 T3                T5               T4                  T6                 T2

X1                X3                 X5               X4                 X6                X2

Figure 15: GConstruct(X,Y, ∅)

As an example of an application of step 3, the edge from T3 to X4 is removed because in
GConstruct(2) there is no trek between X3 and X4 that contains T1 or T2, and there is no double-
headed arrow between X3 and X4 in G.

The next series of lemmas shows how to construct a SEM M’(M,X,Y,Z) with measured
variables V and latent variables T, so that the marginal over V of S(M’(M,X,Y,Z)) = S(M),
and G(M’(M,X,Y,Z)) = GConstruct(G(M),X,Y,Z).

Lemma 4: If S is a positive definite matrix, then there exists a positive definite matrix
S’ = S – dI, where d is a real positive number.

Proof. Suppose that S is a positive definite matrix. It follows then that for all solutions
of det(S – lI) = 0, l is positive. Let the smallest solution of det(S – lI) = 0 be l1. Let d be
less than l1 and greater than 0. Let S’ = S – dI. We will now show that all of the solutions
of det(S’ – l’I) = 0 are positive. S’ –l’I = S – dI – l’I = S – (l’ + d)I. If we set l’ = l –
d, then for each solution of det(S – lI) = 0, there is a solution of det(S – (l’ + d)I) = 0.
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Since l’ = l – d, and d is less than l1, the smallest solution of det(S’ – l’I) = 0 is greater
than 0. \

A linear transformation of a set of random variables is lower triangular if and only if
there is an ordering of the variables such that the matrix representing the transformation is
zero for all entries aij, when j > i.

Lemma 5: If X1, º, Xn have a joint normal distribution N(0,S), where S is positive
definite, then there is a set of n mutually independent standard normal variables T1, º, Tn,
such that X1, º, Xn are a lower triangular linear transformation of T1, º, Tn and for each i,
the coefficient of Ti in the equation for Xi is not equal to zero.

Proof. For every positive definite correlation matrix S , there is a SEM M with
correlation matrix S(M) = S, and directed acyclic graph G(M) that has each pair of vertices
in G(M) adjacent (Spirtes et al. 1993). The reduced form of a complete directed acyclic
graph is a lower triangular transformation of independent error variables (in this case the T
variables) that is non-zero on the diagonal, because S is positive definite. \

There is a simple rule for calculating Cov(X,Y) from a path diagram with no directed
cycles that is used in the following lemmas. There is an edge directed into a vertex A on a
path P if and only if P contains an edge A ¨ B or A ´ B.  A vertex on a trek with no
edges of the trek directed into it is called the source of a trek. Each trek has at most one
source.  (For example B is the source of the trek A ¨ B Æ C, A is the source of A Æ B Æ
C, and the trek A ¨ B ´ CÆ D has no source.) Associated with each edge A Æ B in a
graph is a label that corresponds to the coefficient of A in the equation for B, and associated
with each edge A ´ B is a label that corresponds to the correlation of the error terms for A
and B. Cov(X,Y) is equal to the sum over all of the treks, of the product of the edge labels
on the trek, times the variance of the source of the trek (if there is one). For example, in
Figure 4, Cov(Y, Z) = (ab+ g)V(Z) . For a proof of the case without correlated errors, see
Glymour et al. (1987); the case with correlated errors is a simple modification of the latter
proof.

Lemma 6: There is a SEM M’(M,X,Y,Z) with measured variables V and latent
variables T, such that G(M’(M,X,Y,Z)) = GConstruct(G(M),X,Y,Z), and the marginal over V of
S(M’(M,X,Y,Z)) is equal to S(M).

Proof. Let the correlation matrix among the error terms of M be S. If the equations in
M are:
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X i = bijX j
j≠i
Â + e i    (1)

(where some of the bij may equal zero, and some of the ei may be correlated) we will
construct equations in M’(M,X,Y,Z) that are:

X i = bijX j
j≠i
Â + a ijTj

j£i
Â + e' ' i (2)

by showing that there is a latent variable model of S of the form

e i = a ijTj
j£i
Â + e' ' i (3)

where each of the Ti and e’’i are uncorrelated.
By hypothesis, S is a positive definite matrix. By Lemma 4 there is a set of variables

e’1,...,e’n with positive definite matrix S’ = S – dI, where d > 0. So we can write
ei = ei’ + ei’ ’ (4)

where the ei’’ are uncorrelated with each other and the ei’ variables, each ei’’ is normally
distributed with mean zero and variance d. The e’’ variables will serve as the uncorrelated
error terms in the new model that we construct; the e’ variables are used only in intermediate
stages of constuction, and have the same covariance matrix as the e variables, except that the
variances of the variables have been decreased by a small amount d, i.e. S’ = S – dI. As a
first step to constructing a latent variable model of V, we will construct a latent variable
model of e’.

By Lemma 5, there is a set of variables T={T1, ..., Tn} such that e’1, ..., e’n with
correlation matrix S’ are a lower triangular linear transformation of T1,..., Tn and for each i,
the coefficient of Ti in the equation for e’i is not equal to zero. That is

e' i = aijTj
j £i
Â (5)

where aii ≠ 0.
There is a directed graph H that represents this latent variable model of the e’i variables,

in which there is an edge from Tj to e'i only if j ≤ i. From the construction of H, there are no
edges from Tj to e’1 unless j = 1. Hence, for every j ≠!1, in H every trek between e’1 and e’j

contains T1. It follows that there is at most one trek between e’1 and e’j. The edge from T1

to e’1 is not zero. Hence it follows from the trek rule for calculating covariances from a path
diagram, that if e1 and ej are not correlated in S  (i.e. there is no double-headed arrow
between X1 and Xj in G(M)) then the edge from T1 to e j is zero. (In the example from
Figure 14, a1 2 = a1 4 = a1 5 = a1 6 = 0.)
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Applying this strategy to each of the Ti variables in turn, we can now show that for each
i and r > i, if there is no trek between e’r and e’i containing a variable Tj, where j < i, and e’i

and e’j are uncorrelated in S, then there is no Ti Æ e’r edge in H. Suppose on the contrary
that in H there is no trek between e’r and e’i containing a variable Tj, where j < i, and ei and ej

are uncorrelated in M, but the Ti Æ e’r edge is in H. By the construction of H, if k > i, then
there is no edge from Tk to e’i. It follows that if in H there is no trek between e’r and e’i

containing a variable Tj, where j < i, then every trek between e’i and any other variable
contains the edge from Ti to e’i, which is in H since aii ≠ 0. The Ti Æ  e’r edge exists by
hypothesis, so there is exactly one trek between e’i and e’r in H. Hence, in every SEM L
with  vertices {e’1,...,e’n} and directed graph G(L) = H, e’i and e’r are correlated in S(L).
(Note that this could not be claimed if there were more than one trek between e’i and e’r

since in that case the treks might cancel each other.) Since the covariances between distinct
e’ variables are equal to the correlations between the corresponding e variables, it follows
that ei and er are correlated in S, and hence there is a double-headed arrow between e’i and
e’j in G(M). This is a contradiction.

The graph H for the path diagram in Figure 14 is shown in Figure 16.
T1                 T3                T5               T4                  T6                 T2

e' X1               e' X3             e' X5               e' X4               e' X6               e' X2

Figure 16: H

From the latent variable model of the e' variables, we can now form a model M’(M,X,Y,Z)
with measured variables V and latent variables T1,...,Tn, but without correlated errors.

X i = bijX j
j≠ i
Â + aijTj

j£i
Â + e' ' i

It follows from equations (1), (4), and (5) that the marginal distribution of V={X1,…Xn}
in M’(M,X,Y,Z) is the same as the distribution of V in M.

We will now show that G(M’(M,X,Y,Z)) = GConstruct(G(M),X,Y,Z). For variables A and
B in V, by the construction of M’, there is an edge between A and B in G(M’(M,X,Y,Z)) if
and only if there is an edge between A and B in G, and hence an edge between A and B in
GConstruct(G(M),X,Y,Z). (Hence the ancestor relations among the variables in G(M) are the
same as the ancestor relations among the corresponding variables in G(M’(M,X,Y,Z)).)
There is an edge between a variable T in T and a variable A in V in G(M’(M,X,Y,Z)) if and
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only if there is an edge between T and e’A in H. We have already shown that for each i and r
> i, if there is no trek between e’r and e’i containing a variable Tj, where j < i, and e’i and e’j

are uncorrelated in S, then there is no Ti Æ e’r edge in H. It follows that for each i and r > i,
if there is no trek between Xr and Xi containing a variable Tj, where j < i, and ei and ej are
uncorrelated in S, then there is no Ti Æ Xr edge in G(M’(M,X,Y,Z)). (This latter property is
the property obtaining in GConstruct(G(M),X,Y,Z) by application of steps 2 and 3.) Hence
GConstruct(G(M),X,Y,Z) = G(M’(M,X,Y,Z)) \

The next series of lemmas show that if X1 and X2 are d-separated given Z in G(M), then
X1 and X2 are d-separated given Z in G(M’(M,X,Y,Z)).

We will call a trek Xj ¨  Tm Æ  Xi that contains a T variable a latent trek in
GConstruct(G(M),X,Y,Z). In G(M), a correlated error trek sequence is a sequence of
vertices <Xi,..., Xk> such that no pair of vertices adjacent in the sequence are identical, and
for each consecutive pair of vertices Xr and Xs in the sequence, there is an edge Xr ´  Xs.
For example in Figure 13, the sequence of vertices <X,A,B,C,D,Y> is a correlated error trek
sequence between X and Y.

Lemma 7: If there is a latent trek between Xi and Xj in GConstruct(G(M),X,Y,Z) that
contains a variable Tr, i.e. Xi ¨  Tr Æ  Xj, then in G(M) there is a correlated error trek
sequence between Xi and Xj, such that every variable in the correlated error trek sequence,
with the possible exception of the endpoints, Xi and Xj, has index (i.e. subscript) less than or
equal to r (henceforth referred to as the correlated error trek sequence in G(M)
corresponding to the latent trek between Xi and Xj in GConstruct(G(M),X,Y,Z).)

Proof. The proof is by induction on r. Suppose first that r = 1. From the construction
algorithm for GConstruct(G(M),X,Y,Z), if there is a latent trek between Xi and Xj in
GConstruct(G(M),X,Y,Z) that contains T1 then there are edges Xi ´ X1 and Xj ´ X1 in G(M).
The concatenation of these two edges forms a correlated error trek sequence in which
(trivially) every variable in the sequence except for the endpoints has an index less than or
equal to 1. The induction hypothesis is that for all r ≤ k, if there is a latent trek between Xi

and Xj in GConstruct(G(M),X,Y,Z) that contains Tr, then in G(M) there is a correlated error trek
sequence between Xi and Xj, such that every variable in the sequence, with the possible
exception of the endpoints has an index less than r. Suppose now that in
GConstruct(G(M),X,Y,Z) there is a latent trek between Xi and Xj such that the trek contains
Tk+1, where i, j ≥ k+1.

Suppose first that both i , j > k+1. Since the edge between Tk+1 and Xi exists in
GConstruct(G(M),X,Y,Z), it follows from the construction algorithm for GConstruct(G(M),X,Y,Z)
that either there is a latent trek between Xi and Xk+1 in GConstruct(G(M),X,Y,Z) that contains
some Tr, r < k+1, or there is a double-headed arrow between Xk+1 and Xi in G(M). In the
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former case, by the induction hypothesis there is a correlated error trek sequence between Xi

and Xk+1 that, except for the endpoints, contains only vertices whose indices are less than or
equal to r, and hence less than or equal to k+1. In the latter case, <Xi,Xk+1> is a correlated
error trek sequence between Xi and Xk+1. Similarly, there is a correlated error trek sequence
between Xk+1 and Xj that, except for the endpoints, contains only vertices whose indices are
less than or equal to k+1. These two correlated error trek sequences can be concatenated to
form a correlated error trek sequence between Xi and Xj that, except for the endpoints,
contains only vertices whose indices are less than or equal to k+1.

Suppose now that one either i = k+1or j = k+1. Suppose without loss of generality that
j = k+1. Since the edge between Tj and Xi exists in GConstruct(G(M),X,Y,Z), it follows from
the construction algorithm for GConstruct(G(M),X,Y,Z) that either there is a latent trek between
Xi and Xj in GConstruct(G(M),X,Y,Z) that contains some Tr, r < j, or there is a double-headed
arrow between Xj and Xi in G(M). In either case there is a correlated error trek sequence
between Xi and Xj that, except for the endpoints, contains only vertices whose indices are
less than or equal to k+1. \

For GConstruct(G(M),X,Y,Z) shown in Figure 15, there is a latent trek between X5 ¨ T5 Æ
X6, and a corresponding correlated error trek sequence <X5,X4,X6> in the graph G in Figure
14.

We will make use of the following Lemma which is a simple extension to path diagrams
with directed cycles of Lemma 3.3.1 in Spirtes et al. (1993). This Lemma allows us to
concatenate ‘small’ d-connecting paths to form a larger d-connecting path. We say a path is
into endpoint X if the path contains some edge X ´ Y or X ¨ Y.

Lemma 8: In a path diagram G over a set of vertices V, if:

 (a) Q is a sequence of vertices in V from A to B, Q ≡ <A≡X0,…Xn+1≡B>, such that
"i,!0!≤ i ≤ n, Xi ≠ Xi+1 (the Xi are only pairwise distinct , i.e. not necessarily distinct),

(b)!Z Õ V\{A,B},
(c) P is a set of undirected paths such that

(i)!for each pair of consecutive vertices in Q, Xi and Xi+1, there is a unique
undirected path in P that d-connects Xi and Xi+1 given Z\{Xi , Xi+1},

(ii)!if some vertex Xk in Q , is in Z, then the paths in P that contain Xk as an
endpoint collide at Xk, (i.e. all such paths are directed into Xk)

(iii)!if for three vertices Xk–1, Xk, Xk+1 occurring in Q the d-connecting paths in P
between Xk–1 and Xk, and Xk and Xk+1, collide at Xk then Xk has a descendant in Z,

then there is a path U in G that d-connects A≡X0 and B≡Xn+1 given Z.
Note that we do not require that a vertex occur only once in Q. Hence one occurrence of

a vertex in Q may be a collider, and another occurrence of the same vertex in Q may be a
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non-collider. (We say that Yk is a collider (non-collider) in Q if the pair of consecutive paths
in P that contain Yk as an endpoint collide (do not collide) at Yk.)

Lemma 9: If X1 ≡  X and X2 ≡  Y are d-connected given Z  in the directed graph
GConstruct(G(M),X,Y,Z), then X and Y are d-connected given Z in the path diagram G(M).
(G(M) has vertex set V, GConstruct(G(M),X,Y,Z) has vertex set V»T, and {X,Y}»Z Õ V.)

Proof. Suppose that there is an undirected path U that d-connects X1 and X2 given Z in
GConstruct(G(M),X,Y,Z). We will prove that X and Y are d-connected given Z in G(M) by
constructing a sequence of vertices Q and a set P of paths in G between pairs of consecutive
vertices in Q satisfying the conditions of Lemma 8.

Our first step will be to use U to construct a sequence Q’ and a set of paths P’ in
GConstruct(G(M),X,Y,Z) from which we will then construct P and Q. Intuitively, we form Q’
and P’ by breaking U into pieces, such that each latent trek occurs as a separate piece. More
formally, form a sequence Q’ of vertices and an associated sequence P’  of paths in
GConstruct(G(M),X,Y,Z) with the following properties: (i) every vertex in Q’ is in V  and
occurs on U; (ii) no vertex occurs in Q’ more than once; (iii) if Xi occurs before Xj in Q’,
then Xi occurs before Xj on U; (iv) if the subpath of U between Xi and Xj is a latent trek, Xi

¨TrÆXj, then Xi and Xj both occur in that order in Q’. The path in P’ associated with a pair
Xi and Xj of consecutive vertices in Q’ is the subpath of U between Xi and Xj. In the
example in Figure 15, in GConstruct(G(M),X,Y,Z) the d-connecting path between X1 and X2

given Z = ∅ is X1 ¨ X5 ¨ T4 Æ X6 Æ X2, Q’ = <X1,X5,X6,X2>, and P’ = <X1 ¨ X5, X5 ¨
T4 Æ X6, X6 Æ X2>. In this example, there are no colliders in Q’.

Because U is a path that d-connects X1 and X2 given Z in GConstruct(G(M),X,Y,Z), it is
clear that the paths in P’ have the following properties in GConstruct(G(M),X,Y,Z): (i) Each
path in P’ d-connects its endpoints Xi and Xj given Z\{Xi,Xj}; (ii) if paths in P’ collide at Xi

then Xi has a descendant in Z; and (iii) if Xi is in Z then the paths in P’ collide at Xi.
We will now show how to construct a sequence of vertices Q and a set P of paths in

G(M) between pairs of consecutive vertices in Q satisfying the conditions of Lemma 8; it
follows then that X and Y are d-connected given Z in G.

We will create Q by several modifications of Q’. Step (1) in creating Q is to replace
each subsequence <Xr,Xs> of Q’ such that Xr and Xs are the endpoints of  a latent trek in P’,
with the corresponding correlated error trek sequence <Xr, º, Xs> in G(M). Then replace
the latent trek in P’ with the corresponding correlated error trek sequence in P’. Note that
each occurrence of Xk between <Xr, º,Xs> is a collider in Q. In the example, after the first
step Q = <X1,X5,X4,X6,X2> and P = <X1 ¨  X5, X5 ´  X4, X4 ´  X6, X6 Æ  X2>, i.e. we
replaced the subsequence <X5,X6> in Q’ by <X5,X4,X6>, and the latent trek X5 ¨ T4 Æ X6

by X5 ´ X4 and X4 ´ X6 in Q’.
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Recall that the ancestor relations among the variables in V (which includes the variables
in Z) in GConstruct(G(M),X,Y,Z) are the same as the ancestor relations among the variables in
G(M). After stage (1) in creating Q, if Xk is not an ancestor of Z  in G(M) (or in
GConstruct(G(M),X,Y,Z)), but has an occurrence in Q that is a collider, it follows that Xk was
added to Q by replacing a subsequence <Xr,Xs> of Q’ by a corresponding correlated error
trek sequence <Xr, º,Xs> in G(M). Hence any such Xk lies between some pair of vertices Xr

and Xs that are adjacent in Q’. Because every vertex in <Xr, º, Xs> in Q (except for Xr and
Xs) has an index less than r and s, and Xk is not an ancestor of Z in GConstruct(G(M),X,Y,Z), it
follows from the ordering of the variables that we chose, that Xr and Xs are not ancestors of
Z in GConstruct(G(M),X,Y,Z). If a path U d-connects X1 and X2 given Z, then every vertex on
U is an ancestor of X1 or X2 or Z. Because Xr and Xs are on U, but not ancestors of Z in
GConstruct(G(M),X,Y,Z), and U d-connects X1 and X2 given Z, Xr and Xs are both ancestors of
{X1,X2}. Because in GConstruct(G(M),X,Y,Z), Xr and Xs are both ancestors of {X1,X2}, and k <
r and s, it follows from the ordering of the variables that Xk is also an ancestor of {X1,X2} in
GConstruct(G(M),X,Y,Z). Hence Xk is an ancestor of {X1,X2} in G(M). In the example, in
G(M), X4 is not an ancestor of the empty set but is an ancestor of X1, and it is between two
vertices X5 and X6 which also are not ancestors of the empty set but are ancestors of X1 or
X2.

Thus, if there is some vertex Xk in Q that is not an ancestor of Z, but occurs in Q as a
collider then Xk is an ancestor of X1 or X2. Let Xa be the last occurrence of a collider in Q
that is an ancestor of X1 but not of Z, if there is one, otherwise let Xa = X1. Step (2) in
forming Q and P is to replace the subsequence <X1,º,Xa> by <X1,Xa> if Xa ≠!X1, and
replacing the corresponding paths in P by a directed path from Xa to X1 if Xa ≠!X1. (Such a
directed path exists if Xa ≠!X1 because Xa is an ancestor of X1.) This removes all
occurrences of vertices between X1 and Xa that are not ancestors of Z, but are colliders in Q.
In the example, Xa = X4, and after step 2, Q = <X1,X4,X6,X2> and P = <X1 ¨ X4, X4 ´ X6,
X6 Æ X2>.

By definition, every vertex that occurs as a collider between Xa and X2 in Q  is an
ancestor of Z or of X2. Let Xb be the first vertex after Xa in Q that is an ancestor of X2 but
not of Z, if there is one, otherwise let Xb = X2. Step (3) in forming Q and P is to replace the
subsequence <Xb, º,X2> by <Xb,X2> if Xb ≠ X2, and replacing the corresponding paths in P
by a directed path from Xb to X2 if Xb ≠!X2. This removes all occurrences of colliders
between Xb and X2 that are not ancestors of Z. Note that all occurrences of colliders that are
left are between Xa and Xb, and every occurrence of a collider between Xa and Xb is an
ancestor of Z by construction. In the example, Xb = X2, and after step (3), Q and P are
unchanged.
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We will now show that every path between a pair of variables Xu and Xv in P d-connects
Xu and Xv given Z\{Xu,Xv}. If the path between Xu and Xv is also in P’, then it d-connects
Xu and Xv given Z\{Xu,Xv} because every path in P’ has this property. If the path between
Xu and Xv is not in P’, but was added in step (1) of the formation of P, then the path
between Xu and Xv is a correlated error trek Xu ´ Xv, which clearly d-connects Xu and Xv

given Z\{Xu,Xv}. If the path between Xu and Xv is not in P’, but was added in step (2) of the
formation of P’, then Xu = X1, Xv = Xa, and the path between Xu and Xv is a directed path
from Xa to X1 that does not contain any member of Z since either Xa = X1 or Xa is not an
ancestor of Z. Hence the path d-connects Xu and Xu given Z. Similarly, if the path between
path between Xu and Xv is not in P’, but was added in step (3) of the formation of P, then Xu

= Xb, Xv = X2, and the path between Xu and Xv is a directed path from Xb to X2 that does not
contain any member of Z. Hence the path d-connects Xu and Xv given Z.

We will now show that every vertex that occurs as a collider in Q has a descendant in Z,
and every vertex that occurs as a non-collider in Q is not in Z. Every vertex that occurs as a
collider in Q is an ancestor of Z, because steps (2) and (3) in the formation of Q removed
all occurrences of colliders that were not ancestors of Z. Every vertex that occurs as a non-
collider in Q’ and as a non-collider in Q is not in Z, because every vertex that occurs as a
non-collider in Q is not in Z. The only vertices that may occur as non-colliders in Q but not
in Q’ are Xa and Xb. Xa is not in Z, because either it is equal to X1 or X2, neither of which is
in Z, or it is not an ancestor of Z by construction. Similarly, Xb is not in Z.

Hence Q is a sequence of paths that satisfy properties (i), (ii), and (iii) of Lemma 8. It
follows from Lemma 8 that X1 ≡ X and X2 ≡ Y are d-connected given Z in G(M). \

Theorem 1: If M is a SEM, and {X} and {Y} are d-separated given Z in G(M),
then r(X,Y.Z) = 0 in S(M).

Proof. By Lemma 6 and Lemma 9 there is a SEM M’(M,X,Y,Z) with the marginal of
S(M’(M,X,Y,Z)) = S(M), and {X} and {Y} d-separated given Z in G(M’(M,X,Y,Z)) =
GConstruct(G(M),X,Y,Z). Because GConstruct(G(M),X,Y,Z) is the directed graph of a latent
variable model M’(M,X,Y,Z) with correlation matrix that has marginal S(M), no correlated
errors, and X and Y are d-separated given Z  in GConstruct(G(M),X,Y,Z), it follows from
Lemma 2 that r(X,Y.Z) = 0 in S. \

Theorem 2: If {Xi} and {Xj} are not d-separated given Z in path diagram G, then there
is a SEM M such that G(M) = G, and r(Xi,Xj.Z) ≠ 0 in S(M).

Proof. Suppose that {Xi} and {Xj} are d-connected given Z in G, and the set of vertices
in G is V. Form a graph Transform(G) with vertices T » V in the following way. For a pair
of vertices Xk and Xm in V, there is a directed edge Xk Æ Xm in Transform(G) if and only if
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there is a directed edge Xk Æ  Xm in G. For vertices Xk and Xm in V , there is a vertex
T(Xk,Xm) in T, and edges Xm ¨  T(Xk,Xm) Æ  Xk if and if and only if there is a double-
headed arrow Xk ´ Xm in G. (For convenience in writing equations, for each latent variable
T(Xk,Xm) in Transform(G), we will also refer to it as T(Xm,Xk).)

For {Xi,Xj} » Z Õ V, if {Xi} and {Xj} are d-connected given Z in G, then they are d-
connected given Z in Transform(G). By Lemma 3 there is a SEM M’, with G(M’) =
Transform(G(M)), and r(Xi,Xj.Z) ≠!0.

Let Double(Xi) be the set of vertices Xm in G such that there is an edge Xm ´ Xj in G.
In M’,

X i = aim Xm + bijT(Xi,Xm ) + e' i
Xm ŒDouble( X i )

Â
X m ŒParents(X i )

Â

Now define
e i = bijT(Xi, Xm ) + e' i

X m ŒDouble(Xi )
Â

It follows then that
X i = aijX m + e i

X m ŒParents(X i )
Â

is a SEM M, with G(M) = G, and r(Xi,Xj.Z) ≠!0 in S(M). \

We will prove Theorem 5 before Theorem 3 because we will use Theorem 5 in the proof
of Theorem 3.

Theorem 5: If G1 and G2 are path diagrams that are covariance equivalent over O, then
G1 and G2 are d-separation equivalent over O.

Proof. Suppose that G1 and G2 are not d-separation equivalent over O. Suppose without
loss of generality that there is some {X}, {Y} and Z included in O, such that {X} and {Y}
are d-connected given Z in G1, but not in G2. By Theorem 2, there is some SEM M with
G(M) = G1 such that r(X,Y.Z) ≠!0. By Theorem 1, there is no SEM M’ with G(M’) = G2,
in which r(X,Y.Z) ≠!0. Hence G1 and G2 are not covariance equivalent over O. \

Let Ancestors*(X,G) be the set of ancestors of X, excluding X, in directed graph G, and
Descendants*(X,G) be the set of descendants of X excluding X in G.

Lemma 10: In a directed acyclic graph G, if X and Y are not adjacent, Y is not an
ancestor of X, Ancestors*(Y,G)\{X} Õ Z, and Z « Descendants*(Y,G) = ∅, then {X} and
{Y} are d-separated given Z.

Proof. Suppose that X and Y are not adjacent, but there is a path U that d-connects {X}
and {Y} given Z. Suppose that U contains an edge A Æ Y. Then Ancestors*(Y,G)\{X} Õ
Z, so A Œ Z. Since A is a non-collider on U (A≠X), it follows that U does not d-connect
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{X} and {Y} given Z, contrary to hypothesis. Suppose then that U contains an edge A ¨
Y. It follows that U contains a collider, because by hypothesis, Y is not an ancestor of X. Let
C be the collider on U closest to Y. C is a descendant of Y, so Descendants(C,G)Õ
Descendants*(Y,G). Hence Descendants(C,G) « Z = ∅, so again in this case U does not
d-connect {X} and {Y} given Z. \

Theorem 3: If G1 and G2 are directed acyclic graphs, G1 and G2 are covariance
equivalent if and only if G1 and G2 are d-separation equivalent

Proof. By Theorem 5, if G1 and G2 are covariance equivalent G1 and G2 are
d-separation equivalent.

Suppose that G1 and G2 are d-separation equivalent, and M is a SEM with directed
acyclic graph G(M) = G1. We can form a SEM M’’ where G(M’’) is a subgraph of G2

13

and S(M’’) = S(M) in the following way.
Order the variables in G2 so that X comes before Y in the ordering only if X is not a

descendant of Y. Form a directed acyclic graph G2’ that has G2 as a subgraph by putting an
edge between X and Y if and only if X precedes Y in the ordering. This is proportional to
cov of Y conditional on parents. In G2, Y independent of X conditional on parents. So
coefficient is zero.

Because G2’ is a complete graph there is a SEM M’ such that G(M’) is a subgraph of
G2’, and S(M’) = S(M). In any SEM M’ with graph G(M’) that is a subgraph of G2’, the
error term for a variable Y is independent of the parents of Y. Hence if X is a parent of Y in
G(M’), the regression coefficient of X when Y is regressed on its parents in G(M’) using
S(M) is equal to the linear coefficient of X in the equation for Y in M’. If X is an ancestor
of Y in G2’, there is no edge from X to Y in G(M’) if and only if the linear coefficient of X
in the equation for Y is 0 in M’.

Suppose X and Y are not adjacent in G2. In G2, either X is not an ancestor of Y or Y is
not an ancestor of X; suppose without loss of generality that Y is not an ancestor of X. Then
X and Y are d-separated given Parents(Y,G2) in G2. By Lemma 10, in G2, {X} and {Y} are
d-separated given Parents(Y,G2’), because Parents(Y,G2’) contains all of the ancestors of
Y in G2, and no descendants of Y in G2. Because G1 and G2 are d-separation equivalent,
{X} and {Y} are d-separated given Parents(Y,G2’) in G1. By Theorem 1,
r(X,Y.Parents(Y,G2’)) = 0 in S(M). Hence the regression coefficient of X when Y is
regressed on Parents(Y,G2’) using S(M), is equal to 0. It follows that there is no edge
between X and Y in G(M’). Hence S(M’) = S(M), and G(M’) is a subgraph of G2. \

                                                
13 Note this includes the possibility that G(M’’) = G2.
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