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ABSTRACT 
The ability to identify the mineral composition of rocks and 
softs is an important tool for the exploration of geological 
sites. For instance, NASA intends to design robots that 
are sufficiently autonomous to perform this task on plan- 
etary missions. Spectrometer readings provide one impor- 
tant source of data for identifying sites with minerals of 
interest. Reflectance spectrometers measure intensities of 
light reflected from surfaces over a range of wavelengths. 
Spectral intensity patterns may in some cases be sufficiently 
distinctive for proper identification of minerals or classes of 
minerals. For some mineral classes, carbonates for example, 
specific short spectral intervals are known to carry a distinc- 
tive signature. Finding similar distinctive spectral ranges 
for other mineral classes is not an easy problem. We pro- 
pose and evaluate data-driven techniques that automatically 
search for spectral ranges optimized for specific minerals. In 
one set of studies, we partition the whole interval of wave- 
lengths available in our data into sub-intervals, or bins, and 
use a genetic algorithm to evaluate a candidate selection of 
subintervals. As alternatives to this computationally expen- 
sive search technique, we present an entropy-based heuris- 
tic that  gives higher scores for wavelengths more likely to 
distinguish between classes, as well as other greedy search 
procedures. Results are presented for four different classes, 
showing reasonable improvements in identifying some, but 
not all, of the mineral classes tested. 

Categories and Subject Descriptors 
1.5.2 [ P a t t e r n  Recogn i t ion [ :  Design methodology; 1.5.4 
[ P a t t e r n  Recogn i t ion ] :  Applications 
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General Terms 
Algorithms, Experimentation, Performance 

1. INTRODUCTION 
Reflectance spectrometers have been used for identifica- 

tion of mineral composition of rocks and soil samples with 
varying degrees of success. This kind of spectrometer mea- 
sures the amount of sunlight reflected by a rock or soil sam- 
ple over a range of wavelengths. The reflectance obtained 
under different wavelengths can then be used to predict 
which minerals are present in that sample. 

For instance, NASA intends to design robots for planetary 
exploration that would be sufficiently autonomous to inter- 
pret spectrometer data and report only the results back to 
Earth. Robots equipped with automatic classifiers of rocks 
would also be useful for automatically planning which dif- 
ferent regions of a geological site would be more promising 
for prospecting certain classes of minerals in a more efficient 
way. 

The data sets collected by spectrometers consist of levels 
of reflectance intensity of a given rock at different wave- 
lengths. The intensity data are typically measured relative 
to a reference surface in order to be invariant with respect 
to the total amount of sunlight in the environment. 

The usual approach taken by someone interested in build- 
ing a predictive model out of this data is running a regres- 
sion model for each rock or soil sample, where the dependent 
variable is the reflectance intensity of the unknown rock and 
the independent variables are the reflectance intensities of 
a variety of different pure minerals that are possible com- 
ponents of the rock, measured over the same wavelengths. 
Libraries of such pure mineral spectra exist; in particular, 
the Jet Propulsion Laboratory has produced a library of 
spectra for ]35 different pure minerals [6], each containing 
reflectance intensities for 826 different wavelengths between 
0.4 and 2.5 p,m. 

Assuming that the intensity of the rock is a linear combi- 
nation of the intensity of its components, a regression model 
is built using each reflectance value at a wavelength as a data 
point. Then, only those minerals whose coefficients on the 
regression model pass a given test of statistical significance 
are considercd components of the rock. A successful learn- 
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ing algorithm should commit as few errors as possible, where 
an error is accepting a given mineral as part of a rock when 
this is not true, and rejecting a given mineral as part of a 
rock when in fact it is. 

Ramsey, et al. present evidence in [13] that a modified 
Bayesian network learning algorithm, the PC algorithm [15], 
performs better than simple linear regression for classifying 
carbonates. The PC algorithm tests partial correlation be-- 
tween a rock spectrum and different subsets of the library 
of mineral spectra, eliminating library spectra (hypothesized 
components) which are not correlated with the input. The; 
advantage over regression is a more refined search that cal-. 
culates partial correlations conditional on reduced subsets of 
the remaining variables, instead of considering all of them 
at once, as in regression. The remaining library spectra are 
assumed to be components of the input, and a classification 
can be performed based on the minerals that were not dis- 
carded, as explained in the previous paragraph. All of our 
work described below is based on this classification proce- 
dure. 

2. DESCRIPTION OF THE PROBLEM 
Experiments with the specific class of carbonates have 

shown that restricting the input of the PC algorithm to a 
smaller region of the spectrum can improve accuracy. In 
particular, a region suggested by prior expert knowledge 
(a region used by experts to identify carbonates) produces 
much better results than allowing the algorithm to consider 
the entire spectrum. In other words, the filtered spectrum 
does not include noninformative or noisy data that could 
confound mineral identification. This is a promising result 
that arguably can be extended to other classes. 

Carbonates show a very typical curve on the spectral re- 
gion between 2.0 and 2.5 #m, which motivated the scientists 
to focus on this region. However, coming up with a good 
range of wavelengths is not an easy task because little is 
known for other mineral classes. No automated method has 
been applied by the authors of [13] to find subintervals that 
would be more appropriate for identifying given classes and 
subclasses of minerals. 

Our goal is to find intervals of the spectrum, specific to 
each class of minerals, for which the PC algorithm performs 
better than the same algorithm using the entire spectrum. 
This is a search problem that complements other data pre- 
processing issues described in Section 4.We tried several 
methods, a collection representative of both heuristic and 
computational intensive approaches that also bear relation 
with feature selection techniques. 

3. DATA FILTERING TECHNIQUES 
Finding an appropriate subset of the spectrum range can 

be cast as a problem of search among the space of pos- 
sible subsets. Since we have over 800 available channels, 
an exhaustive search is infeasible. Also, a larger number 
of evaluated candidates increases the chance of overfitting 
[2]. One must decide how to trade-off the complexity of the 
search space depending on the chosen search algorithm, the 
available computational resources, and the amount of data 
available. 

By the terminology used in feature selection research, as 
described in [9], we are basically building wrappers over the 
PC algorithm. Four algorithms were tried: a computation- 

ally demanding genetic algorithm, two greedy hill-climbing 
algorithms and a simple grid search strategy over a rather 
reduced number of parameters of a customized evaluation 
function. 

The data filtering methodologies described here should be 
applied to each class of minerals at a time, since a interval 
that is suitable to one class is unlikely to be useful to other. 
Each experiment is therefore a binary classification problem. 

One general property of the data that is assumed in this 
work is a relative locality of importance for the reflectance 
signal. In other words, the informative spectrum for each 
rock and mineral must be smooth enough so that  grouping 
the whole range into a reasonably small number of subinter- 
vals does not harm the predictive accuracy of the signal. 

3.1 Genetic algorithm 
A genetic algorithm is an algorithm for combinatorial op- 

timization [5], which is directly related to the task of finding 
useful subsets of the spectra. The most straightforward rep- 
resentation of a candidate is through a string of 826 bits, 
where a positive bit represents that the respective channel 
will be used. However, due to the reasons explained in the 
beginning of this section, we divided the spectrum into a 
fixed number of blocks, each represented by a bit. Thus, all 
channels in the same block are selected or not selected at 
the same time. 

The evaluation function is very time-consuming: it con- 
sists in running the modified PC algorithm over a whole set 
of rock samples. The fitness of a candidate is the propor- 
tion of rocks that are correctly classified as containing or 
not containing the respective mineral. On our available im- 
plementation, it takes about 30 seconds to evaluate a single 
candidate feature mask on a Pentium III 733MHz processor. 

3.2 Bitwise hill-climbing 
We also used a greedy, hill-climbing algorithm that uses 

the same representation for search states and the same eval- 
uation function. On the initial state, all bits are activated. 
The next states are generated from the current state by set- 
ting to zero one of the currently activated bits. If the current 
candidate has n activated bits, it will generate n new can- 
didates. The candidate with the highest evaluation value is 
chosen to be the next state. 

3.3 "Peeling" algorithm 
This is another greedy algorithm that  is also used for rule 

induction ow'x continuous/ordered attributes [4]. It consists 
of trimming the extremes of an interval by some percent- 
age of the data and evaluating the new interval obtained. 
A typical strategy starts with the complete interval and, at 
each subsequent step, generates three new candidates: the 
current interval with the bottom a% of the ordered data 
discarded, the current interval with the upper (~% of the or- 
dered data discarded, and an interval constructed by drop- 
ping the bottom and upper ~% from the current interval. 

The underlying assumption of this algorithm is that in- 
teresting intervals are continuous. Unlike the previous algo- 
rithms, all selected subintervals are of tile form [a, b], where 
a and b are points of the original interval. It may clearly 
result in suboptimal selections, at the advantage of being 
much less time demanding. 
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F i g u r e  1: T h e  a v e r a g e  i n f o r m a t i o n  ga in  p e r  each  
c h a n n e l  us ing  four  bins  w i t h  r e s p e c t  to  t h e  ca rbon-  
a t e  class.  N o t i c e  t h a t  t h e  h ighes t  gains  lie on t h e  
u p p e r  r e g i o n  of  t h e  s p e c t r a ,  as s u g g e s t e d  by e x p e r t  
knowledge .  T h e  solid l ine is an  i n t e r p o l a t i o n  over  
t h e s e  po in t s ,  a d d e d  as an  aid to  v i sua l i za t ion .  

3.4 Information gain heuristic 
A more straightforward approach would be to construct a 

"relevance" heuristic, rank the channels accordingly, and se- 
lect those with relevance above a threshold. Intuitively, we 
wish to discover those channels that carry a large amount 
of information relevant to the question of whether a certain 
class of minerals is present. Therefore, we used information 
gain, a quantity based on entropy, for our relevance heuris- 
tic. 

The information gain algorithm for selecting a channel 
mask is as follows. For each channel, we divide the intensity 
range into some number of bins. Then for every spectrum in 
the reference library we look at the intensity at the current 
channel and take note of which bin it occupies and whether 
or not it is a member of the target class. When we have 
finished doing this for a given channel, we calculate the frac- 
tion of samples in each bin that  are in the desired class; this 
number is used to calculate an entropy value for that bin. A 
weighted sum of the entropies of the bins gives the expected 
entropy given the intensity of a particular channel; subtract- 
ing this from a constant gives the expected information gain 
associated with that  channel. 

When we have calculated the expected gain for each chan- 
nel, we create a channel mask by looking for intervals where 
the expected gain is higher than average. Specifically, we 
divide the spectrum into blocks and calculate the average 
expected gain in each block. Then blocks whose average ex- 
pected gain exceeds the global average by some margin are 
selected for use in classification. 

Under this technique, we optimize the number of bins and 
threshold parameters by performing a grid search over a 
given interval of possible values. The grid search consists 
in evaluating each pair of values (number of bins, threshold) 
over a predefined interval. The selection that gives the best 
classification accuracy for the training set is used. Figure 1 
shows how it is possible to visualize promising regions using 
this evaluation function. 

4. EXPERIMENTS 
For our experiments we used the NASA Jet  Propulsion 

Laboratory (JPL) data set as a reference library, a t tempt-  
ing to classi(y the rocks in the Johns Hopkins University 
(JHU) data set, a library of reflectance spectra for a vari- 
ety of solid and powdered rock samples. Each mineral on 
JPL was measured with different grain sizes. We used the 
largest grain size, which should give a closer approximation 
to rocks found on test fields. The data set was processed to 
treat issues such as making measures of relative reflectance 
with respect to a white surface, and so subtract the effect 
of environment luminosity. It was necessary to interpolate 
the measures of the JHU spectra in order to match the same 
wavelengths fbund on the JPL library. 

Also, most features of spectra which are diagnostic of the 
chemical structure of minerals are small scale "dips", or de- 
viations, from the overall background shape of the spectrum, 
with a width on the order of 1 to 50 p.m. By taking the 
hull difference of a spectrum [6], variations due to the large- 
scale shape of the spectrum are reduced or eliminated and 
variations due to these smaller, typically more diagnostic, 
variations are enhanced. The idea is that a hull is fitted to 
the spectrum and then the differences between the spectrum 
and the hull /br each wavelength are recorded. This set of 
differences as a function of wavelength is the hull differenced 
data. On tile following experiments, we refer to data treated 
by the hull difference process as the "processed data", while 
"raw data" will refer to spectra without this modification. 
For further infbrmation on these data sets, see Ramsey et 
al. [131. 

We performed experiments using four of the mineral classes 
available in the JPL library. These minerals were chosen ac- 
cording to the number of rocks present in the JHU data set 
that were reported to have these minerals: it would be un- 
reliable to try to find intervals for a class underrepresented 
in the available data. Among all 192 .IHU rocks, 92 have 
carbonates, 121 have phyllosilicates, 100 have oxides and 84 
have inosilicates. 

Tables 1 and 2 show the results for running the modified 
PC algorithm using the intervals selected by variations of 
each algorithm described on the previous sections. For each 
mineral class, we ran a five-fbld cross-validation. The ac- 
curacy measure is the number of correctly classified rocks 
(true positives plus true negatives) divided by the number 
of rocks on the corresponding sample.We opted for 5 folds 
instead of the usual 10 folds because: 

• the genetic algorithm is computationally intensive; 

• we wanted a reasonable amount of data on both train- 
ing and test sets. Using a high number of folds can 
in fact lead to worse generalization estimates when we 
have few data points and the prediction error is high, 
as it is typical of this domain [14]. 

The whole spectrum interval was divided in 15 subinter- 
vals of equal size. For the genetic algorithm, for example, 
this means we are using 15 genes per individual. The reason 
for this choice was to allow approximately 50 wavelengths 
per cell and to avoid introducing too much variation on the 
search for selected intervals. A more extensive experimen- 
tal analysis could include this choice as a parameter to be 
optimized. 
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Tab le  1: M e a n  a n d  s t a n d a r d  d e v i a t i o n  for c lass i f ica t ion  a c c u r a c y  (in %) o b t a i n e d  by us ing  t h e  r a w  da ta .  C=,A 
s t a n d s  for g e n e t i c  a l g o r i t h m s ,  H C  for t h e  g e n e r a l  h i l l - c l imbing  a l g o r i t h m ,  P E E L  for t h e  " p e e l i n g "  p r o c e d u r e  
a n d  IG  is t h e  l abe l  for t h e  i n f o r m a t i o n  ga in  resu l t s .  T h e  f irs t  c o l u m n  r e p r e s e n t s  t h e  r e su l t s  o b t a i n e d  w h e n  
all t h e  s p e c t r u m  is used.  

None GA HC PEEL IG 
Carbonates 56.3 + 8.6 64.0 4- 5.0 62.0 5= 4.2 52.7 5= 13.0 66.2 4- 6.9 
Inosilicates 61.4 4- 8.3 69.7 -4- 6.7 65.5 4- 7.5 60.0 4- 7.5 70.0 5= 8.1 

Oxides 56.3 4- 6.7 58.7 5= 6.7 49.9 + 3.1 48.9 4- 7.5 56.3 ± 4.0 
Phyllosilicates 56.3 5= 7.5 57.1 5= 3.8 50.2 4- 5.6 55.7 ± 2.1 50.0 5= 5.2 

Tab le  2: T h e  re su l t s  o b t a i n e d  for t h e  ~rocessed da ta .  
None GA HC PEEL IG 

Carbonates 63.4 5= 7.0 68.3 5= 3.9 66.1 ± 5.3 65.5 4- 5.2 61.4 4- 7.6 
Inosilicates 61.4 5= 4.3 66.3 + 4.3 68.4 4- 4.0 66.1 5= 11.1 60.0 4- 10.9 

Oxides 49.3 5= 6.1 48.5 5= 1.4 53.7 5= 9.6 50.0 5= 5.1 50.9 5= 5.9 
54.1 ± 6.0 52.7 4- 6.1 53.7 4- 7.5 53.7 5= 6.8 59.4 5= 3.1 Phyllosilicates 

For the genetic algorithm, we used 35 individuals. The 
training proceeded for at most 40 generations. In all cases, 
by the last generation the pool of individuals was almost; 
completely dominated by copies of a single individual (and 
in many cases, all individuals were identical), suggesting 
that  further optimization would not improve the result ob- 
tained significantly. The code of the genetic algorithm was 
adapted from [10], with its default parameters: 0.6 chance 
of crossover and a low (0.0001) chance of mutation. 

We also used cached statistics to scale up the algorithm: 
instead of passing through all the data points when comput- 
ing an element of the correlation matrix (as required by the 
PC algorithm), we precomputed the summations and inner 
products of variables for the data falling under each block. 
Getting a new element of the correlation matrix required 
only a pass over these cached statistics. This procedure re- 
duced the computational time by over 30%. 

For the standard hill-climbing search, we adopted the fol- 
lowing stopping criterion: as a trade-off to avoid bad lo-. 
cal maxima without searching till the last state, the search 
stopped when we did not get improved results for five con- 
secutive states. The best selection on this search path was 
the output. 

For the peeling algorithm, we used a value of 5% for a. 
We used the same stop criterion applied on the previously 
described hill-climbing technique. 

To find appropriate parameter values for the entropy heuris- 
tic, each training set was used to evaluate the masks pro- 
duced by several different parameter settings. In particular, 
all possible combinations of 3, 4 or 5 bins with thresholds of 
0.1, 0.2, 0.3, 0.4 or 0.5 standard deviations above the mean 
gain were tried. For each training set, the mask that pro- 
duced the best accuracy was selected as the optimal mask 
and its fitness was measured with the corresponding test set. 

Using the interval selected by experts for carbonate clas- 
sification, we get an accuracy of 67.7% for the raw data and 
66.1% for the processed data. By comparison with the re-- 
suits obtained, it is clear that some of our approaches were 
overall able to find selections with similar performance, but 
unable to significantly improve over it. We should not forget, 
however, that  these results were attained without relying on 
background knowledge and hence provide evidence that for 
cases where this knowledge is actually unavailable this set. 

of approaches can be a useful tool. 
The data pre-processing by taking hull differences can help 

in some occmsions, as it was the case for carbonates. For 
the inosilicates, however, reasonable better results were ob- 
tained using the raw data. As any smoothing procedure, it 
can be useful in some situations, but not always. The in- 
formation gain heuristic proved especially sensitive to this 
technique. 

While our performance on carbonates and inosilicates im- 
proved relative to the baseline of enabling all channels, we 
got unimpressive results with phyllosilicates and oxides. It 
was expected that for some classes the reflectance spectrum 
information is not sufficient to provide a good separation 
between those classes and the remaining ones. In this ill- 
defined situation, data filtering would not be able to help 
much. Notice that taking hull differences actually harmed 
the predictive accuracy of our classifier for these cases. 

The variance of the results is due not only to sample vari- 
ance, but also to the variance of the underlying classifier, a 
simplified PC algorithm. Depending on the data selection 
algorithm, we have also small or big variance on the selected 
intervals. Figure 2 depicts the number of times each cell was 
chosen for some of the algorithms on the raw data. Due to its 
simplicity and reduced number of parameters, the entropy 
heuristic was the most stable. 

Also, it is interesting to point out that  simple algorithms 
such as the hill climbing algorithms were competit ive when 
compared with the genetic algorithm. Since our data sets 
were small, computational time was not a major issue, but 
in applications where a larger number of measurements is 
performed, they may be viable solutions. 

Under the assumption that  cross-validation is a valid mech- 
anism for estimation of generalization error, these exper- 
iments can be used to decide which algorithm should be 
trained in the whole data set in order to be used in a real 
world application. For example, the genetic algorithm and 
information gain can be applied to the whole JHU data set 
and generate one mask for future classification of inosilicates 
using the raw data, since they have very close accuracy, but 
are both reasonably superior to the non-filtered data. The 
model generated from the whole data set would be the final 
model I . 

1One alternative would be to combine masks generated for 
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Genetic Algorithm Hill Climbing Entropy Search 

F i g u r e  2: Th i s  f igure  dep ic t s  t he  n u m b e r  of t imes  each of the  f i f teen cells was chosen  across  the  five t r a i n i n g  
sets  u sed  in  t he  c ross -va l ida ted  e x p e r i m e n t s .  A cell t h a t  is t o t a l ly  b lack  was chosen  e ve r y  t i me ,  whi le  a wh i t e  
space  r e p r e s e n t s  a cell t h a t  was neve r  chosen.  I t  is i n t e r e s t i n g  to no t ice  t h a t  the  e n t r o p y  sea rch  was t he  mos t  
s tab le ,  b u t  t h a t  t he  exac t  se lec t ion  of a g iven  mask  is no t  r e q u i r e d  for r e a s o n a b l y  good  g e n e r a l i z a t i o n .  

5. RELATED WORK 
l~amsey, et a/.[13] discuss extensive experiments analyz- 

ing the performance measure of different classification algo- 
rithms, including decision trees that already carry out an 
entropy-based selection of data. However, none of these re- 
sults performed better than the baseline for the PC algo- 
rithm with no wavelength selection depicted in Tables 1 and 
2. Our approach can be interpreted as an effective combi- 
nation of different inductive biases that works better than 
standard decision trees for the case of entropy selection. 

The techniques applied in this work are related to the 
areas of feature selection and data cleaning. Wettschereck, 
Aha and Mohri [17] formulate a framework for feature weight- 
ing methods under the context of lazy learning. 2 Even 
though in a strict sense the wavelength channels are in fact 
rows of our data set, not attributes, in principle one can 
use these techniques to weight the relevance of each data 
point (or intervals for practical purposes). According to the 
categories of Wettschereck et al's framework, the genetic al- 
gorithm and hill-climbing approaches would be classified as 
having: 

• a performance bias, since we use the actual results of 
classification for deciding the selection; 

• a binary weight space (i.e.,  0/1 weights); 

• a transformed representations, since we divide the data 
into blocks; 

• a global weighting, because the same intervals are se- 
lected for all minerals; 

knowledge-poor, since we did not use prior knowledge 
in our experiments. Hull differences help in some sit- 
uations. 

The performance bias is also commonly described as a 
wrapper approach [9]: our selection policies use the modi- 
fied PC algorithm as a black box that outputs a measure of 
performance. 

each fold and count the different votes in an independent test 
set. However, since our main purpose in this paper was to 
provide a more reliable comparison of different approaches 
with respect to the baseline achieved by using the whole 
wavelength range, and our sample of rocks was small, we 
opted to use the whole sample for cross-validation. 
2In this survey, the authors do not compare different batch 
optimization techniques: among this class of learning algo- 
rithms, only a gradient-based one is used. 

Unlike general feature selection problems, we do not have 
the concern of selecting features that present fewer miss- 
ing values on the available data bases, nor do we have to 
consider which are more expensive to measure (e.g., some 
medical exams for diagnosis problems). That  makes our fit- 
ness function even simpler than most ones used in feature 
selection literature [11, 16, 18]. These approaches are vir- 
tually identical to the genetic algorithm for data selection 
described in this work, where the difference is mainly a more 
complicated evaluation function. Demiroz and Cuvenir [3] 
also describe mechanisms for learning continuous weights 
between 0 and 1, which arguably are not very useful for our 
problem, where we have too little data to accomodate such 
a precise tuning of parameters. 

In contrast, the information gain heuristic operates as hy- 
brid between a wrapper and a filter approach. The filter 
approach applies for each feature a measure of importance 
that is independent of the learning algorithm that will be 
used. Hall [8] provides a comparison of filters and wrap- 
pers, as well as an overview of feature selection. He favors 
the filter approach due to its much higher scalability, but 
in his discussion it is mentioned that ideally the features 
themselves should be a function of the bias of the learning 
algorithm that will be used. An intermediate approach such 
as using the entropy measurements to search for a combina- 
tion of prominent intervals, which can then be successfully 
used by the modified PC algorithm, is a way to trade-off 
these issues. 

Entropy measures are commonly related to the degree of 
unexpectedness of a pattern, and such a characteristic has 
been explored for data set cleaning. Guyon, Matic and Vap- 
nik [7] describe different ways of using intbrmation theoret- 
ical measures to identify outliers or highly informative ex- 
amples. Data points are ranked according to information 
gain and then submitted to a expert that will classit~¢ them 
as outliers or representative examples. Guyon ¢t al. warn 
against the risk of getting improved results during training 
by dropping t, he most difficult examples and then achieving 
bad generalization accuracy. 

Another application of information theoretical measures 
for data clealfing is discussed by Pyle [12], where it is also 
described how to find ill-defined regions of a function by 
checking symmetries between the input and output vari- 
ables. This specially affects inverse function estimators. 
Pyle also describes what he calls "attention processing" of 
data: how to efficiently perform data surveying in a large 
combinatorial space of potentially problematic regions of the 
data. 
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6. SUMMARY AND FUTURE WORK 
The most important lesson from this study is that  signal- 

processing algorithms can benefit from search procedures 
that automatically decide which parts of the signal must be 
taken into account when making a decision. From the initial 
hypothesis that the behavior observed in carbonates could 
be replicated by automated procedures, our experiments 
were able to achieve a similar performance from scratch. 
An interesting experimental hypothesis is applying a sim- 
ilar framework for other domains. It must be emphasized 
that this approach is a complement to other smoothing pro- 
cedures, as illustrated by running experiments along with 
the application of hull differences. Even though our main 
techniques are straightforward, to the best of our knowl- 
edge there are no experiments exploring similar ideas for 
this problem. One of the main goals of this work is pointing 
out simple yet effective alternative approaches of tackling 
spectroscopic analysis of material composition and possibly 
component detection problems of other blind source separa- 
tion domains. 

However, sampling variability may be a concern and the 
fact that  the underlying classifier provides its own source of 
variability may amplify this problem. Kohavi and George [9] 
report that feature selection algorithms may over fit easily. 
Approaches to minimize this problem and perform more reli- 
able performance assessment include resampling techniques 
such as bootstrapping [1]. 

For example, it may be possible that more robust masks 
of selected intervals can be obtained by the combination of 
different masks. One simple policy is obtaining multiple 
masks by resampling and then giving to each bin a weight 
proportional to the number of times each one appears. 

This improved reliability does not come for free, and more 
computational time is required. For instance, Punch et al. 
[11] reported experiments with genetic algorithms for fea- 
ture selection that took 14 days. In this case, one might 
not want genetic algorithms, since the difference in accu- 
racy when compared with other approaches may not be great; 
enough to justify the extra effort. Alternatively, one could 
just gather more labelled data. For example, the U.S. Geo-. 
logical Survey has produced a data set of about 400 labelled 
rocks. However, some of these labels are wrong, or incon- 
sistent with the classification scheme of the JPL data set. 
Before combining these data with the JHU data, additional 
preprocessing would be required. 

Concerning the variability of the underlying classifier, a 
straightforward way to alleviate this problem is to modify 
the evaluation function of the search algorithms to consider 
the outcome of an ensemble of classifiers. Future experi- 
ments may include this approach. 
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