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Conditioning and Intervening
Christopher Meek and Clark Glymour

ABSTRACT

We consider the dispute between causal decision theorists and evidential decision
theorists over Newcomb-like problems. We introduce a framework relating causa-
tion and directed graphs developed by Spirtes et al. (1993) and evaluate several
arguments in this context. We argue that much of the debate between the two
camps is misplaced; the disputes turn on the distinction between conditioning on an
event E as against conditioning on an event I which is an action to bring about E.
We give the essential machinery for calculating the effect of an intervention and
consider recent work which extends the basic account given here to the case where
causal knowledge is incomplete.

1 The Markov condition
2 Intervening and conditioning
3 Inquiry and decision

Two essays have come to our attention. One, a recent piece in Science,
claims that despite the expense of 200 million dollars the Agency for
Health Care Policy and Research (AHCPR) has failed to extract from
records of medical data a single correct conclusion relevant to decisions to
alter medical practice.! The other, an essay of Robert Nozick’s long
familiar to most philosophers [1969], concerns difficulties in the theory
of rational decision-making that arise when actions and their outcomes are
both influenced by some feature of the world not under the agent’s control.
We will argue that both essays turn on the same logical facts, and that
partial resolutions of the problems to which they call attention are found in
recent work on causal inference and the design of empirical studies. Our
exposition invokes a parallelism in the philosophical discussion of rational
decision-making and the statistical discussion of experimental design. We
begin with Nozick’s problem.

Suppose you believe, truly and with justification, that a genetic factor
causes people both to smoke and to contract cancer of the lung, and that
smoking itself has no influence on disease. Suppose further that you believe
you would enjoy smoking but it is very much more important to you that
you not die of cancer. The probabilities you assign accord with these
beliefs: the probability that you will get cancer, given that you smoke (in

! Science [1994], 263, pp. 1080-2.



1002 C. Meek and C. Glymour

the future) is greater than the corresponding probability given that you do
not smoke (in the future), and cancer and smoking are independent in
probability conditional on the value of your genotype. Your utilities
likewise accord with these preferences. A simple calculation shows the
expected utility of not smoking is greater than the expected utility of
smoking; but, whatever your unknown genotype, you are better off
smoking than not. Ought you to smoke?

Nozick’s essay considers variants of this question, which he views as
indications of a conflict between two decision theoretic principles: if, in
every possible circumstance, one action gives outcomes at least as good as
another and in some circumstances better, then the first action should be
preferred to the second (weak dominance), and if the sum over all possible
states of the world of the probability of the state multiplied by the value of
the outcome produced by one action in that state is greater than the like
sum for a second action, then the first action is to be preferred to the second
(expected utility). Nozick’s conclusion is that the expected utility principle
must give way to the dominance principle ‘if the actions or decisions to do
the actions do not affect, help bring about, influence, and so on, which state
obtains ...”

Since Nozick’s essay appeared, a considerable literature has developed
around ‘causal decision theory’. Following a suggestion of Robert
Stalnaker, Alan Gibbard and William Harper claimed the issue is not
between dominance and expected utility, but rather between two forms of
the expected utility principle, one using probabilities of states conditional
on actions and the other using probabilities for subjunctive (Gibbard and
Harper say ‘counterfactual’) claims as to the consequences were some
particular action to be taken. A related theory has been published by
David Lewis.’ Avoiding subjunctives, Brian Skyrms proposed that one
should choose the action that maximizes the sum, over each outcome of
interest and each ‘maximally specific specification of factors outside our
influence’, of the product of the probability of the outcome given the action
and the factor value, the probability of the factor value, and the utility of
the outcome, action, and factor value. Where no unique set of such specific
factors is known, Skyrms proposed that the probabilities be mixtures over

2 Newcomb’s problem—you must decide either to open only the second of two boxes or to
open both, knowing that a perfect predictor of your decision put a thousand dollars in the first
box and one million dollars in the second if he predicted you would open only the second box,
and nothing in the second box if he predicted you would open both—is formally a special case
of a problem of this sort, in which the decision-maker believes that both the probability of
smoking and the probability of contracting cancer given the appropriate genotype are one,
and strict dominance holds.

3 R. Stalnaker [1972]; A. Gibbard and W. Harper [1978]; D. Lewis [1981]. Stalnaker’s
suggestion is anticipated by P. Fishburn [1964].
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alternative sets of specific factors, and he showed his theory to be formally
equivalent to the account proposed by Lewis. Brad Armendt has given a
representation theorem for Skyrms’ theory in terms of axioms on prefer-
ences over appropriate objects.*

No idea is without objections. Ellery Eells [1982] argued that in assessing
choices the probabilities used must be conditional on the total evidence,
and that in the relevant cases Nozick and others consider the disposition to
take a particular action is itself evidence conditional on which the state of
the world and the action are independent. By using ‘evidental’ decision
theory and claiming the situation contains additional information, Eells
obtains, in almost all cases, the same decisions as do advocates of causal
decision theory. At least in the most celebrated case of this kind,
Newcomb’s problem, Teddy Seidenfeld rejects altogether Nozick’s con-
clusion that conditional expected utility must give way to dominance, and
rejects the causal decision theorists’ calculations: for example, in the
extreme case of Newcomb’s problem with a perfect predictor, one is
faced with a decision under certainty: you are certain to be better off if
you open only one box.>

1 The Markov condition

Most of the discussion of causal decision theory, both for and against, has
shared assumptions about the connection between beliefs about causality
and beliefs about probability (or about the connection between causality
and probability) that are perfectly reflected in the statistical literature on
causal inference. Most of the philosophical discussion, from Nozick on,
supposes that the causal relations in the smoking example, which we may
represent graphically as

G
S/ \C
imply a ‘factorization’ of the probabilities;’ in obvious notation:

P(S,C, G) = P(S|G)P(C|G)P(G).

All of the philosophical commentators appear to agree that if smoking
and cancer have no effect on one another and have only genotype as their

4 B. Skyrms [1980], [1982] and [1984]; B. Armendt [1988]. For a view similar to Skyrms, see
D. Papineau [1989].
5 T. Seidenfeld [1990].

There are exceptions. In their [1986], Eells and Sober appeal to the notion ‘interactive fork’
in which the causal relations are represented as in the graph above but the factorization does
not hold. In our view all putative examples of ‘interactive forks’ that are not from quantum
mechanics are simply cases where further causal connections, as between S and C or between
other causes and S and C, have been omitted. That of course was the point of Simon’s [1954].
For a discussion, see Spirtes, Glymour, and Scheines [1993].
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common cause, then they are independent conditional on genotype, or in
the notation now common among statisticians:

S1LC|G

which is an immediate consequence of the factorization formula. Related
claims are made more generally in the statistical literature on factor
analysis, which supposes that when two or more variables have no
influence on one another they are independent conditional on the set of
all of their common causes.” Herbert Simon’s once influential paper on
‘spurious correlation’ made the same point.8

No philosophical commenator appears to disagree with Eells that if in
the same circumstance genotype only produces smoking through the
occurrence of a conscious desire to smoke, they smoking and cancer are
independent conditional on the desire to smoke. Eells represents the
circumstance graphically, as can we.

/G
N

If the Causal Markov condition (see below) holds, then the graph of causal
relations implies that the probabilities satisfy the factorization

P(SDCG) = P(S|D)P(D|G)P(C|G)P(G)

and that Eells’ independence claim
S1LCD

follows. Again, related claims are made in the statistical literature on
experimental design. Consider an example due to Donald Rubin. In an
educational experiment in which reading program assignments T are
assigned on the basis of a randomly sampled value of some pre-test
variable X which shares one or more unmeasured common causes, V,
with Y, the score on a post-test, we wish to predict the average difference 7
in Y values if all students in the population were given treatment T =1 as
against if all students were given treatment T = 2. The situation in the
experiment is represented by the graph

7 For a particularly clear statement of this assumption, see D. Bartholomew [1987].
8 H. Simon [1954].
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Rubin’s analysis assumes that if the influence from T to Y does not exist,
then T and Y are independent conditional on X.?

A special case arises when an action has no influence on an outcome, and
neither is there a common cause of the action and the outcome. Then we
should expect the action and the outcome to be independent. The same
principle is of course at the center of experimental design. The ‘null
hypotheses’ that Ronald Fisher introduced in The Design of Experiments
are hypotheses of independence (or consequences of such hypotheses)
associated with the hypothesis that the treatment has no influence on the
outcome in experiments arranged so that it is known that no causes act to
determine directly both the treatment a unit receives and the outcome it
exhibits.'” Randomization of treatment assignments serves two purposes
in Fisher’s theory: one is to help ensure that treatment assignment and
outcome have no common cause and are independent if treatment has no
effect on outcome; the other is to determine a definite joint probability
distribution for treatment and outcome under the assumption of no effect.
Even Kadane and Seidenfeld [1990],!! the most articulate critics from a
subjectivist viewpoint of Fisher’s views on experimental design, assume
that Fisher is correct that when there is no causal relation of any kind
between treatment and outcome they should be regarded as independent.

Hans Reichenbach [1956] formulated various general connections
between causal hypotheses and probability constraints, but the relation
that seems correctly and fully to generalize these and other uncontroversial
examples was first formulated by Kiiveri and Speed [1982], who titled it,
perhaps unfairly to Reichenbach, the ‘Markov condition’: We will give it
in two versions:

Causal Markov Condition (Frequency Version): Let G be a directed acyclic
graph describing the causal relations among a set V of variables, where
every common cause of variation of two or more variables in V is itself in
V, and let P be a population of units all sharing the same causal relations G.
Let P be the frequency distribution of variablesin V. Then every variable X
in V is independent of its nondescendants (i.e., of variables it does not
affect) conditional on its parents.

Causal Markov Condition (Subjective Version): Let G describe the causal
relations among a set V of variables, where every common cause of

° D. Rubin [1977].

10 R. Fisher [1951].

' C. Howson and P. Urbach [1988] also criticize Fisher from a subjectivist viewpoint, and
appear to agree with the independence claim. Their chief complaint against Fisher seems to be
that randomization does not guarantee the absence of an unintended causal connection
between the outcome and some concomitant of treatment, which is correct but seems an
odd argument against randomizing at all.
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variation of two or more variables in V is itself in V, and let P be the
distribution of degrees of belief over V conditional on G. Then (G, P)
ought to be so related that every variable X in V is independent of its
nondescendants conditional on its parents.

The independence relations in the philosophical examples follow from
treating the relevant properties—smoking and cancer, for example—as
binary variables, and from the fact that for sets of random variables X, Y,
Z, if X is independent of Y given Z then each member of X is independent
of each member of Y given Z. It is important to stress that the causal
structure constrains the probabilistic structure, e.g. independence relation-
ships, if the Causal Markov condition obtains.

The Markov condition entails a version of what has been called the
common cause principle, specifically: if in a system of variables satisfying
the Markov condition, neither X nor Y influences one another and they are
statistically dependent, then there exists a set Z of variables not containing
X or Y but causing both, and conditional on Z X and Y are independent.
Elliott Sober [1987] objects that the common cause principle typically
appears to be violated in mutually increasing (or decreasing) time series,
where variables without apparent causal connection seem to be probabil-
istically dependent. Sober’s point was made early in this century by G.
Udny Yule [1926], who attributed such statistical dependencies either to an
unobserved common cause or to an unrepresentative sample or to mixing
populations with different causal structures and different probability
distributions, all consistent with holding that the Markov condition
describes the causal relations among an appropriately extended set of
variables in such time series. Frank Arntzenius'? has formulated a version
of the common cause principle that requires causes to precede their effects,
and has given a number of counterexamples, either quantum mechanical
or else involving purely logical relations—as in correlations among two
descriptions of the same event—or violating his temporal order require-
ment. Only the quantum mechanical cases clearly violate the Markov
condition, and presumably such circumstances rarely if ever apply in
making decisions. The Bayesian version of the Markov condition is perhaps
more difficult to justify, since, as Brian Skyrms has noted,'* nothing prevents
one from believing that an odd lot of dissimilar appearing coins of different
manufacture and history all have exactly the same bias. In that case the
outcomes of flips of one coin are not independent of flips of others, although
there is no direct influence and no common cause, and the subjective Markov

12 F. Arntzenius, ‘The Common Cause Principle’, preprint, Department of Philosophy,
University of Southern California.
3 (Hitherto) private communication.
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condition is not satisfied. Such beliefs might appear very odd but they are not
incoherent; still, as the examples of Kadane, Seidenfeld, and Rubin illustrate,
and as examples in the next section will further show, statisticians writing
from the subjective Bayesian perspective like to set up probabilities in
agreement with the Markov condition.

We emphasize that the Causal Markov condition, in either version, does
not imply that probabilities uniquely determine causal relations. In
general, quite distinct directed graphs can, according to the Causal
Markov condition, imply exactly the same constraints—the same condi-
tional independence relations—on admissible probability distributions.
For example, the graphs X — Y — Z and X — Y «— Z both imply that X
and Z are independent conditional on Y, and imply no other constraints
on probabilities. Characterizations of the classes of graphs that imply the
same constraints on probabilities according to the Markov condition, as
well as according to other general hypotheses about the connection
between causal graphs and probabilities, are given in Spirtes, Glymour,
and Scheines [1993].

2 Intervening and conditioning

There is a difference between predicting and deciding, even between
predicting one’s own fate and choosing it, and the difference is more
than resignation. We find something odd in questions about what an
agent, no matter whether oneself or another, ought to do when one
knows the agent’s action, whatever it is, will be necessitated by circum-
stances that cannot be influenced by any response to the question. Both
deliberation and advice then seems pointless, and their benefits illusory.
Even so, two possible reasons to deliberate or advise suggest themselves.
Deliberation, when one believes one’s actions are caused by circumstances
not under one’s control, may have a kind intellectual value: You may wish
to know—perhaps to satisfy a curiosity or to regret your limitations—
what someone otherwise like you but free to choose among alternative
actions would rationally choose to do. Alternatively, one may view
decisions, one’s own or another’s, as the result of the action of a dual
system with a default part and an extraordinary part—the default part
subject to causes that may also influence the outcome through another
mechanism, but the extraordinary part not so influenced and having the
power to intervene and displace or modify the productions of the default
part. For brevity we will describe the extraordinary part as the Will,
although one need only assume, as in an example Isaac Levi [1985] uses,
that, without influence by causes of the outcome of interest, decisions can
be made to take prior actions that will influence the decision made
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subsequently in the original problem. Either account—and there may of
course be others that have not occurred to us—requires that we consider
two related structures: First, the system of causal and stochastic relations
in which the actual agent, or the default part of the actual agent, is
enmeshed; second, the system of causal and stochastic relations that
would govern an agent freed of the influences on the decision-making of
the actual agent, but otherwise like the actual agent, or that would obtain
were the Will to act to overrule, or partially to overrule, the causal
influences on the default part of the agent.'

Any number of scenarios can be—and have been'’—imagined for the
counterfactual causal and probabilistic properties of an agent and a
circumstance of decision-making, but what is supposed to happen when
the Will intervenes seems comparatively definite. In the smoking case, for
example, the Will may intervene to alter the probability of smoking
conditional on genotype, and, in the simplest case, the Will simply
determines whether or not one smokes, and smoking becomes indepen-
dent of genotype.

Suppose we consider the simple case, which is complicated enough:
When the Will intervenes, the Will alone determines whether one
smokes or not; when the Will does not intervene, whether one smokes or
not is influenced by genotype. Representing the Will by W, then, the full
causal situation is like this:

G

w——s‘/ ~c

GComb

According to the Causal Markov condition, the probability distribution
Pc,mp in this circumstance must satisfy:

(1) Pcoms (S, C, G, W) = P(S|W, G)P(C|G)P(G)P(W)

We have supposed that three states of the Will are relevant: (i) to intervene
for smoking, (ii) to intervene against smoking, or (iii) not to intervene. By
elementary calculations, these three states of the Will issue in three
conditional probability distributions over G, S, and C, namely:

2 Pcoms(S,C,GIW = i) = P(S|W = i, G)P(C|G)P(G)
3) Pcoms(S,C, G|W = ii) = P(S|W = ii, G)P(C|G)P(G)
(4) Pcoms(S, C, G|W = iii) = P(S|W = iii, G)P(C|G)P(G)

4 We do not wish to suggest that either account is without puzzles.
15 See T. Horgan [1981].
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These conditional distributions are not the same. By assumption, if S = 1
stands for smoking, S=0 for not smoking, P(S=1|W =1i,G) =
PS=1W=i) =1, PS=1W=i,G)=P(S=1W=ii)=0, and
P(S|W = iii, G) = P(S|G). Again by elementary calculations, these three
conditional distributions give different distributions for C given S:

4) Pcoms(ClS = 1,W =1i) = P(C|W =) = P(C)
(5) Pcoms(C|S = 1, W = ii) =undefined
(6) Pcoms(C|S = 1, W =iii) = P(C|S = 1)

= [26P(CIG)P(S = 1|G)P(G)]/P(S = 1)

(4) is the conditional probability recommended by causal decision theorists
for calculating the probability of cancer given smoking; (6) is the con-
ditional probability causal decision theorists claim is required by ‘eviden-
tial’ decision theory. The two recommendations both calculate the
maximum expected utilities, but they do so using different conditional
probabilities. The conditional probabilities differ because different events
have been conditioned on. The causal decision theorist conditions on the
event of an intervention, willing to smoke, and the stalking horse ‘evi-
dential’ decision theorist conditions on an event, smoking, that is not an
intervention. The difference in the two recommendations does not turn on
any difference in normative principles, but on a substantive difference
about the causal processes at work in the context of decision making—
the causal decision theorist thinks that when someone decides whether to
smoke, an intervention occurs, and the ‘evidential’ decision theorist thinks
otherwise.

The calculations in this example illustrate a general theorem that
provides the real reason for interpreting as casual hypotheses the directed
graphs that encode conditional independence relations according to
the Markov condition. Causal claims are generally thought to entail
claims—perhaps only ceteris paribus claims—about interventions or
manipulations. Let Gy, be the directed graph describing the causal
relations in a system or population of systems. In the example just
considered, Gypman 1S

G
S/ \C

In order to manipulate features of Gy,,,, Something must be done, some
state of affairs M must be changed in such a way as to force values on some
of the variables in G y,,q,. (In the example just considered, M is of course
W.) Expand the graph G, by introducing an additional variable, M—
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representing the manipulation—and directed edges from the variable M to
whatever variables in Gy, are directly controlled or influenced by the
manipulation under consideration. M must have a special value, say 0,
representing the unperturbed state of affairs, the state of affairs without the
intervention or manipulation. Call the expanded graph, Gy, plus M
and the additional edges, G¢,pms- Suppose Pymq, is the probability dis-
tribution generated by the causal structure Gy, and satisfying the
Markov conditon for Gy,ma. Suppose P, is the probability distribu-
tion generated by the expanded causal structure Gg,,,;, and satisfying the
Causal Markov condition for that graph. Then Py, ( |M = 0) = Pypman-
Let Py,,—; be the probability distribution of the original variables (those
in Gypmaen) Upon a manipulation M = i. Py, _; is the thing one wants to
predict, the distribution that a genuinely causal hypothesis, Gyman, and
Pyuman are supposed to provide information about. They do. It follows
from the Causal Markov condition that for any value i of M,
Pcoms( |M =1) can be computed from Gypmans Pnman, and the probabil-
ities, conditional on M =i, of the variables in Gy,,,,, that are directly
influenced by M.

A general rule for calculating the manipulated probability distributions
from the unmanipulated distribution and causal graph and information
about the nature of the intervention is given by the Manipulation theorem.

Manipulation Theorem: With the definitions just given, the manipulated
distribution, P,,,,_;, is obtained by replacing in the factorization of P ynan
the conditional probabilities for the variables X directly influenced by M
with Py (XM = i).!6

The Bayesian version of the Manipulation Theorem is obvious enough,
and specifies what the probabilities ought to be conditional on an inter-
vention. Graphically, in the case of an ideal manipulation—one where a
particular value is forced on the manipulated variable (as is the case in the
example above)—the theorem amounts to saying that we can compute the
probabilities on an intervention by removing all edges directed into a
manipulated variable, and using the factorization with the same con-
ditional probabilities as before but in accord with the new, abbreviated
graph.

The significance of the Manipulation Theorem for the issue before us is
that, if a decision to act is regarded as an intervention in a system—and it

16 The theorem follows from the Markov condition; the rather trivial derivation is given in
Spirtes et al., [1993]. The same principle was given as an independent condition in P. Spirtes,
C. Glymour, R. Scheines, C. Meek, S. Fienberg, and E. Slate [1991], ‘Prediction and
Experimental Design with Graphical Causal Models’, unpublished, and still earlier in a
different but equivalent formalism by J. Robins [1986].
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seems that the examples in the literature are all intended to involve
interventions of this sort—then there is nothing in the causal decision
theorist’s examples that threatens ordinary Bayesian decision theory.
Nothing at all. The differences in judgments about cases are entirely
explained by the fact that different events—sometimes interventions,
sometimes not—are conditioned on.

Once again, the philosophical cases parallel a statistical literature. Pratt
and Schlaifer, for example, have given ad hoc rules for when the con-
ditional probability of Y conditonal on X = x equals the probability of Y
when X is forced to have the value x. Their rules follow from the Markov
condition and the Manipulation theorem.!” An equivalent of the Mani-
pulation theorem has for some years been used by James Robins to obtain
predictions from non-randomized experiments of the outcomes of rando-
mized trials that were not, but could have been, performed. Consider, for
example, an experiment in which patients with HIV virus are randomly
assigned to treatment groups given differ dosages of AZT. Some of the
patients develop pneumonia, and at the determination of their respective
physicians the patients may be given a drug D which acts against pneu-
monia. For all one knows, AZT may influence mortality through its
influence on pneumonia, through its influence on other symptoms that
induce physicians to give or withhold the drug D, or directly. Pneumonia
influences mortality directly, and also influences whether a patient is given
D, which in turn may influence mortality. So the apparent dependencies in
the experiment look something like this:

AZT — Pneumonia —D —Death
\_______/

One might put the question of the efficacy of AZT this way: what is the
probability of death in a similar experiment in which administraton of D is
also randomized? It isn’t the probability in the actual experiment without
conditioning on pneumonia, and neither is it the probability in the actual
experiment conditional on pneumonia. Instead we must think of a rando-
mized experiment as breaking the edges into D and assigning it a new
probability independent of pneumonia and AZT, but leaving unchanged
the probability of pneumonia and conditional on AZT and the probability
of death conditional on D, pneumonia, and AZT. And that is exactly the
probability Robins’ algorithm computes in answer to the question.'®

17 J. Pratt and R. Schlaifer [1988]. A derivation of their conditions is given in P. Spirtes, C.
Glymour, and R. Scheines [1993].

18 "See J. Robins [1986] and J. Robins, D. Blevins, G. Ritter, and M. Wulfoshn [1982]. In the

case Robins et al. discuss, there are repeated applications in substantially more difficult than
in our simplified example.
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Another well-known example that illustrates some of the issues is given
by Lindley and Novick [1981]. They consider the two following Simpson-
like cases:

Case 1: We obtain data on recoveries for samples of males and females who
have received a treatment (t) and a control (c).

Males R=1 R=0 Females R=1 R=0
T=t 18 12 T=t 2 8
T=c 7 3 T=c 9 21
Combined R=1 R=0
T=t 20 20
T=c 16 24

Case 1.

The sample is understood to be very, very large. We are not given
information as to how persons were chosen for the sample or for treatment
value. Note that the recovery rate is higher for T = ¢ for both males and
females but the recovery rate is higher for T = t for the combined group.

In view of this information, if we are presented with a new subject whose
gender is unknown, which treatment should we prefer, t or c? Lindley and
Novick say we should prefer T = c.

Case 2: We obtain analogous data on yields and heights for samples of
black and white plants.

Tall Y=1 Y=0 Short Y=1 Y=0
C=w 18 12 C=w 2 8
C=b 7 3 C=b 9 21
Combined Y=1 Y=0

C=w 20 20

C=b 16 24

Case 2.
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This time we must decide whether to plant a white (C = w) or a black
variety of plant, in ignorance of the height the plant will grow to. Lindley
and Novick say we should prefer C = w.

Lindley and Novick make it quite plain that the difference they see in the
two cases is causal, but say they prefer not to talk about that. Instead they
say that in the second case, but not the first, the new unit about which the
decision must be made is ‘exchangeable’ in De Finetti’s sense with previous
units." Lindley’s and Novick’s idea is that in Case 1 in the sample data the
treatment T and gender (which they denote by M) are statistically depen-
dent, but since the decision-maker does not know the gender of the new
subject, the new subject’s gender can have no ‘effect’ (their word), no
influence, on the choice for the value of T for the new subject, and
therefore (?) for the new subject one should treat T and M as statistically
independent. By contrast, in Case 2 the decision as to which variety of
plant to grow does nothing to alter the causal processes that produce in the
sample the statistical dependency between plant height and colour, and
therefore (?) one’s probability distribution for the new subject should treat
plant height and colour as statistically dependent just as they are in the
sample. So in the second case the sample conditional probability of Y on C
should equal the probability of Y given that variety C is planted. The
principles on which the inferences we have queried are grounded are
nowhere explained.

The Markov condition and the Manipulation theorem give a smooth
account of what is going on in Lindley’s and Novick’s two cases and of the
grounds for the inferences they wish to make. In Case 1 we need not
know—or even have detailed views about—the actual causal structure.
We need only believe that gender (M) is not an effect (a descendant) of
treatment T, and that the decision to treat or not to treat does not
otherwise alter the influence of other factors on recovery. We then find
that when we decide to impose a treatment on the new subject, T and M
must be independent, whereas for subjects in the data sample T and M are
not independent, presumably because for them gender in some way
influenced the treatment they received. In Case 2, the decision to plant
one variety or another does not interfere in the causal processes (e.g. the
genetic features) that produce the association between height and colour in
the sample, and whatever the causal structure may be, no processes are
altered that terminate in colour and connect to height and yield, and by the
two conditions we again have Lindley and Novick’s solution.

Y The terminology seems to us only to suggest that judgments of exchangeability are related,
in a way that remains to be clarified, to judgments about uniformity of causal structure, and
that an explicit account of the interaction of causal beliefs and probabilities is necessary to
understand when exchangeability should and should not be assumed.
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All of the realistic cases in the philosophical disputes that have evolved
from Nozick’s paper appear to turn on the difference between changing
probabilities by conditioning on an event and changing probabilities by
intervening—or, in the subjectivist version, the difference between con-
ditioning on an event E and conditioning on an event I which is an
intervention to bring about E. Our analysis explains in these cases, and
all others, how to calculate the probabilities that result from an interven-
tion when the relevant parts of the causal structure are known, when
probabilities are available agreeing with the unperturbed causal structure
through the Markov condition, and when the intervention is ideal in the
sense of the Manipulation theorem. The probability of an outcome on an
intervention can be worked out by using the Markov condition to find the
factorization of the joint distribution, substituting according to the
Manipulation theorem the distributions forced directly on variables by
the intervention, and then computing the marginal probability of the
outcome.

We think the Markov condition explains as well some of the views of
those who oppose the very idea of causal decision theory. Isaac Levi
(op. cit., p. 244), writes:

Suppose that genotype G yields lifetime smokers 100 per cent of the
time and likewise yields sufferers of cancer 100 per cent of the time.
Genotype not-G never yields lifetime smokers and never yields suf-
ferers of cancer. Jones can know this about himself and also regard

himself as free to choose whether to break the habit or not without
contradiction or incoherence.

We read Levi’s view as an affirmation of ‘soft determinism’ and a denial
of libertarianism,”’ and likewise a denial that the decision to smoke
constitutes an intervention. Using slightly different terminology, Seiden-
feld is explicit about the matter in the case of Newcomb’s problem, and he
is a one-boxer. Given that the actions in the Newcomb case do not alter the
relevant causal relations or probabilities, Seidenfeld’s judgment is fully in
accord with the Markov and Manipulation theorems; were it stipulated
with Seidenfeld that there is no intervention, his judgment is also that
which causal decision theory ought to give.21 The same is true of Eells if he
does not view action that results from deliberation as an intervention.
Our analysis of the dispute between causal and ‘evidential’ decision
theory does not put us neatly on either side, exactly because we think

2 We are indebted to T. Seidenfeld for suggesting this reading to us.

2! Things are a bit more complicated. Levi and Seidenfeld do not allow unconditional
probabilities over one’s own acts to be used in rational deliberation. (See I. Levi [1992],
and J. Kadane and T. Seidenfeld [1992]). We are unclear as to what constitutes such a use, but
it seems to us that our entire discussion, including the Manipulation theorem, can be carried
out in terms of probabilities conditional on acts.
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the dispute has been misdescribed, from Nozick on. From our perspective,
whether causal or ‘evidential’ recommendations should be followed
depends only on what one believes about the causal character of a context
of decision. We agree with ‘evidential’ decision theorists that nothing but
an ordinary calculation of the maximum expected utility is required; we
agree with causal decision theorists that sometimes the relevant probabil-
ities in the calculation are not the obvious conditional probabilities; we
agree with Skyrms in avoiding an appeal to sui generis subjunctive rela-
tions, but we retain the subjunctive flavour of causal decision theory by
showing how causal hypotheses constrain probabilities and by showing
how to reproduce the causal decision theorists’ calculations using nothing
but (less obvious) conditional probabilities. Our suggestion is that the
differences in recommendations offered by causal decision theorists and
most of their critics do not result from whatever differences they may have
about principles of rational choice, which is not to say they have no such
differences. Where they recommend different decisions in particular cases
causal decision theorists have discussed it is because they differ about
whether an action is an intervention; whether the manipulated and
unmanipulated distributions are different. If so, then a different event
must be conditioned on than if not, and a different calculation results.?
Of course, the methods by which the various decision theorists reach
their recommendations may differ. The method that we suggest is to use
the combined causal graph, the knowledge of the direct effects of a
manipulation, and the Manipulation theorem. To this extent we are
causal decision theorists. But if one believes that a decision will not
produce an intervention in the system, our calculation will agree with
‘evidential’ decision theorists; we only disagree with those critics of
causal decision theory who believe that an action is an intervention in
the sense we have described. With our method, uncertainties, and therefore
disagreements in recommendations for action, can occur in many circum-
stances: from a lack of knowledge about the side-effects of an interven-
tion—G,mp is not known—or from a lack of knowledge about how the
manipulated variables will be effected by the manipulation. Both of these
epistemic problems are familiar to researchers; the usual solution is to run
pilot studies (e.g. drug safety and efficacy tests in the pharmaceutical

22 Whether this happy reconciliation is news is unclear. Bill Harper tells us that causal
decision theorists always thought they were addressing the difference between conditioning
on an event and conditioning on an intervention to bring about that event, and that causal
decision theory was intended to give the ordinary results when the actions considered are not
interventions. Skyrms’ assessment is that while there is a correspondence between an analysis
in terms of his K-partitions, probabilities of counterfactuals, and probabilities calculated
conditional on interventions, causal decision theorists did not think of the matter in exactly
the last way. We thank them both.
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industry) to identify possible side-effects and quantitative knowledge
about the intervention.

3 Inquiry and decision

Eells objects that Skyrms’ proposal can seldom be applied, since we
rarely know all of the most specific factors influencing an outcome, or
even, Eells claims, a complete set of alternative most specific factors.
Ordinary, evidential decision theory, Eells claims, gives the right answers
without requiring any such special knowledge. In our view, of course,
the issue is not about the proper decision theory, or about two kinds of
utilities, or about dominance versus expected utility, but about the
difference between computing probabilities by conditioning or an event
and computing probabilities upon (or by conditioning upon) an inter-
vention to bring about that event. What is required for the latter sort of
computation? If, when causal relations are known, probabilities should
satisfy the Markov condition and probabilities on appropriate interven-
tions should satisfy the Manipulation theorem, what properties should
probabilities before and after intervention have when only fragments of
the relevant causal structure are known? For example, what are the
probabilities on an intervention if a causal structure is known, but the
probability relations are known only for a proper subset of the features?
What are the probabilities on an intervention if the causal structure is
unknown but probabilities among a set of variables are known? On our
reconstruction of what is at issue in causal decision theory, these ques-
tions ought to be among the most urgent in the subject, and the subject
ought therefore to engage some of the most difficult problems in statis-
tics. For example, the problem of determining the probability on an
intervention when the causal structure is known but the probabilities are
known only for a proper subset of features contained within it is the whole
of what econometricians call the ‘identification problem’.

Peter Spirtes”® has provided an important part of the answer to how
to calculate the probabilities that result from an intervention when one
has only very incomplete causal knowledge. When probability relations
are known among a set of variables or features Spirtes has described a
graphical object—a ‘partially ordered inducing path graph’—that
encodes all of the graphical properties that are shared by all causal
structures (that is, all directed acyclic graphs) that, individually, accord
with the known probability relations under the Markov condition.
Using the Manipulation theorem, he has also described for such circum-

» Spirtes, Glymour and Scheines [1993].
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stances sufficient conditions for the probability of an outcome upon an
intervention to be calculable from the known probabilities before inter-
vention and from the probabilities to be imposed upon a manipulated
feature by an intervention. Of course, in many cases more causal knowl-
edge than the initial probabilities and the Markov condition provide is
required to calculate the probability of an outcome given an interven-
tion. And that brings us to the difficulties described in the essay in
Science.

When, as in the case of public health and other public policy decisions,
for all one knows some interventions may worsen circumstances, others
may entail great costs but yield no benefits, while still others may markedly
improve things, and no one knows which interventions have which proper-
ties, there may be considerable utility in further inquiry. One aim of such
inquiry ought to be to enable us to compute the probabilities of outcomes
upon interventions in accord with the two conditions we have described.
Essential to that aim is providing evidence that will help us decide the
causal structure behind associations among features that policy might
manipulate and feature representing outcomes of interest. In applied
research, the most common form of approaching the problem is to
determine whether an association is due to the influence of one feature
on another, or to some unrecorded common cause, or both. Only in the
first case will conditioning give the probabilities appropriate for policy
decisions. And, as Ronald Fisher insisted in the 1950s, one problem with
research on medical records is that statisticians and epidemiologists have
found and adopted no methods to distinguish any of these three cases from
the others.?* That is the chief problem alleged with research undertaken
with the auspices of the AHCPR. The research sponsored by the AHCPR
attempts to infer causal structure from non-experimental data, envisioning
using that knowledge to guide decisions about changes in medical prac-
tices. The chief problem with research of this kind is exactly to know
when—or how much of—a statistical association between a feature which
policy might manipulate and a desired outcome is due entirely to an
influence of the first on the second.

Fisher claimed that nothing but experimental controls can tell us
whether smoking causes cancer or some third unrecorded thing causes
both. As everyone knows, his opinion did not carry the day, and epide-
miologists concluded that when everything plausible is measured and

2% Kadane and Seidenfeld [1990] point out, correctly, that Fisher thought that observational
studies of smoking did not meet Fisher’s conditions for a reference class sufficiently well
defined to permit tests of statistical hypotheses. We agree, but we also read Fisher, and those
who in the 1960s commented on Fisher on smoking, as giving an underdetermination
argument.
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conditioned on and an association between smoking and lung cancer still
remains, smoking causes cancer. It is worth observing that, under some-
what stronger assumptions about the connections between causality and
probability, Fisher was wrong.

Suppose some feature X is measured which is known to influence cancer,
if at all, only through smoking. Let S and C also be measured, but G be
some unmeasured feature. The three alternative causal structures Fisher
and other statisticians®® envisioned and the associated independence
relations that follow from the Markov condition are:

G
X—>S/ \C X1 C

/G
x—sZ3c
X—S—=C X 1.C[S

The structures can be distinguished by the independence relations they
entail among X, S, C. It is not essential even to know that factor X causes
smoking if two features, X and Y, can be found that are independent but
not independent conditional on smoking. The general theory of the
structures that can and cannot be distinguished by the conditional inde-
pendence relations they entail among a subset of features has been worked
out in detail®® and the completeness of the theory is shown in an unpub-
lished paper by Spirtes and Verma.?” The general theory can be used to
discover structure if one assumes that all (and only) the observed inde-
pendence relations result from the Markov condition applied to an
(unknown) causal structure. Whether the theory is a guide in inquiry
depends, for Bayesians, on their prior probabilities. Paul Teller some-
where remarked that if two hypotheses, H; and H,, each entail a piece
of evidence, then the ratio of the posterior probabilities of the hypotheses
on the evidence equals the ratio of their prior probabilities. When X
precedes Y precedes Z and X and Z are independent conditional on Y,
the latter fact is entailed either by (H;) the Markov condition and the
absence of any unrecorded common cause of Y and Z, or (H,) by the
Markov condition and the existence of two or more unrecorded common
causes of Y and Z that perfectly balance. If one is sufficiently close to
certain of the existence of unrecorded common causes, then the prior
probability of H,, while very low, will be greater than the prior probability

% Compare K. Brownlee [1965].
% Spirtes, Glymour, and Scheines [1993].
27 p. Spirtes and T. Verma [1992].
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of H; and will remain so no matter the evidence of the conditional
independence.?

This is not the place further to describe disputes over causal inference,
but it is perhaps the place to conclude with two remarks. First (with the
notable exception of Brian Skyrms), advocates of causal decision theory
seem to have missed that their calculations—if not their descriptions—are
part and parcel of both Bayesian and non-Bayesian statistical practice.
Isaac Levi is correct in saying that causal decision theory entangles
Bayesian decision theory with controversial ‘causal metaphysics’ that
‘must seem questionable to all but rabid partisans of such views’.” But
the entanglement already runs through and through scientific practice;
nothing is gained, philosophically or scientifically, by declining to work
out the principles and consequences of the connection. Second, causal
decision theorists and their critics tend in each controversial case to share
an assumption, the Causal Markov condition, and their differences and
their agreements turn on different sensibilities about how to apply con-
sequences of the condition to the cases. The Causal Markov condition does
not obviously follow from coherence alone, or from the expected utility
principle, or from axioms on prefererences. Why then are instances of the
condition so ubiquitous, so uncontroversially assumed and applied in
otherwise controversial cases? Does the condition follow in some
unobvious way from principles of rationality, or is it, like John Stuart
Mill’s arithmetic, simply a substantive regularity so widely exemplified
that we usually assume it without acknowledgment or dispute?
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