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KEVIN T. KELLY AND CLARK GLYMOQUR

INDUCTIVE INFERENCTE FROM THEORY
LADEN DATA

i. INTRODUCTION

Consider the problem of an investigator who knows some things, who
receives a stream of data, and who would like to be on the path to
the truth about some matter. This is a familiar philosophical picture
of the scientist’s predicament; an image to be found in the work of
such philosophers as Plato, Aristotle, Bacon, Mill, Peirce, Popper,
and Reichenbach. In the 1960’s, Hilary Putnam [17] and E. Mark
Gold [6], [7] independently combined this model of the problem of
inquiry with recursion ‘theory to found a new subject, now known as
formal learning theory or computational learning theory. The mar-
riage of inductive methodology with recursion theory has proved to
be very fruitful (for reviews cf [2), [3], and [15]). Formal learning
theorists routinely separate solvable inductive problems from unsolv-
able problems, assess traditional methodological rules in terms of
their implications for reliability, prove various inductive frameworks
to be equivalent or inequivalent, and assess the effects on the intrinsic
difficulty of induction of such factors as noisy data, hypothesis
language syntax, and weaker and stronger notions of success, Lately,
the theory has been adapted to the topic of inferring theories
expressed in logical languages from data of various kinds [11], {12],
[15].

Learning theoretic analysis assumes that there is a fixed language of
inquiry and that there is fixed, true data to help us get to the truth in
this language. Both of these assumptions are firmly rejected by many
prominent philosophers of science [8], [10], [13], [19], [20], [21]. Accord-
ing to these philosophers, truth, syntax, and observability change
during “scientific revolutions™ or major breaks in scientific traditions.
For example, in the move from Newtonian mechanics to the special
theory of relativity, the meaning and even the syntactic valence of the
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relation “simultancous with” changed. This change forced subtle
changes in the meanings of many other Newtonian terms, including
“mass” and “energy”. So evidence phrased in these terms has a dif-
ferent meaning for scientists who hold different theories. Thus,
philosophers often say that evidence is ineluctably “theory laden”,
and truth is relative to a “‘conceptual framework™ or to a “system of
beliefs”,

More generally, the issue is relativism, the thesis that truth, mean-
ing, and observability can shift as a function of what the process of
inquiry does, or of what the inquirer believes. There are many stories
in the annals of metaphysics about what truth depends upon {e.g.
concepts, conventions, networks of inferential dispositions, scientific
social units, history, community norms, experimental regimens, the
scientist’s behavior) and about how the dependence actually works.

Philosophical speculation about meaning change is not the only
source of relativistic concerns. The Copenhagen interpretation of
quantum mechanics teaches that the classical nature of a system {(e.g.
wave vs. billiard ball) is determined by the application of an obser-
vational procedure which “collapses” the wave system into a particle
system, and that there is no unique truth to the matter. Relativity
theory, of course, asserts that the truth about simultaneity is relative
to the reference frame of the observer. Relativity is straightforwardly
rampant in the social sciences. For example, the dire predictions of a
panel of expert economists can precipitate “self-fulfilling prophecies”
in light of the effect of these predicitons on individual investors.
Herds of anthropologists can alter the social relations of a small tribe
by their mere presence. In these cases, the truth dependency is a
straightforward causal relation between the deeds and statements of
the scientist and the nature of the system under study.'

Whether relativism looms due to metaphysical or semantic con-
siderations or merely to concrete worries about uncontrollable inter-
ference between the investigator’s states and those of the subject matter
under study, the basic issue posed to inductive methodology remains
the same. What sense does it make for science to pursue the truth
when the truth feints as science lunges?

Philosophers today tend to stress short-run, rational agrecment
among investigators. For realists, who deny any significant relativism,
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convergence to the truth is a way of eventually arriving at rational
agreement, since there is one truth and those who find it will agree.
But relativism severs this connection, since two investigators could
both arrive at their own, distinct truths without ending up in agree-
ment. The pessimists conclude that science is an irrational process
because individual theory choices cannot be agreed upon by all par-
ticipants. The optimists attempt to show that there is still sufficient
basis for agreement in actual case studies.

We propose a different approach. Unlike the optimists, we concede
that relativism may be rampant, for all we know. And unlike both the
optimists and the pessimists, we focus squarely on reliable conver-
gence to the truth, rather than on rational agreement based on shared
data in the short run, Even though truth is not unigue, and even
though it may depend upon us in subtle ways we do not understand
a priori, it may still be possible for a scientist to converge to his own
truth.

There are perhaps two main reasons why getting to the relative
truth has not captured the imagination of relativists. First, the goal
seems too hard. It is one thing, so the story goes, to find the truth in
a fixed, spoon-fed framework of concepts, but it is quite another to
search among different frameworks to find one that is suitable. But
this obsevation is flawed. The assumption that truth is fixed does not
make convergence to the truth easy, as the many negative results in
formal learning theory already attest. And finding the truth in the
system of one’s choice can make the problem of finding the truth
casier, for the scientist may sidestep inductive difficulties by altering
auxiliary assumptions, concepts, and so forth,

'Thus we are led to the second reason for concern, namely, that
getting to the relative truth may be too easy, and thus unworthy as a
proposed aim for science. If truth depends upon you, then what is the
point of careful inquiry? Just make your favorite theory true, and be
done with it! Admittedly, if the scientist has absolute control over
truth, then inductive inquiry is trivial. But radical subjectivism, the
view that the scientist knows how to make any given theory true, is
just one, trivial form of relativism. If we drop the assumption that the
scientist knows how to make any theory he pleases true, the situation
becomes interesting, even when the scientist has the power to make
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any theory true by doing something (he knows not what). If there are
constraints on his powers as well as on his knowledge, then the situ-
ation becomes still more interesting. It is not hard to imagine that in
such circumstances, relativism could be rampant, and yet convergence
to the relative truth might be highly non-trivial.? The project of this
paper is to extend learning-theoretic analysis to such problems.

In this paper, we examine three precise notions of getting to the
relative truth, The first requires that the scientist converge to a con-
ceptual framework and to the correct truth value of a given hypothe-
sis in this framework. We call this notion of success scheme-stable
truth detection, since the scientist must eventually settle down to a
particular conceptual scheme, and then must converge to the correct
truth value of a given hypothesis. More leniently, we may permit the
scientist to have conceptual revolutions forever, just so long as there
is a time after which the truth value of the hypothesis under investi-
gation is fixed. Then the scientist must discover this fixed truth value,
We refer to this sense of success as truth-stable truth detection. Finally,
we may be so liberal as not even to require that the scientist eventu-
ally stabilize the truth value of the hypothesis under investigation.
Instead, we require only that after some time, he always gets the correct
truth value of the hypothesis for the conceptual scheme he currently
adopts. This notion of success we refer to as truth detection simpliciter.

The ontology of our setting for relativism is simple, There is some
set C of things we call conceptual schemes. In applying our frame-
work, these may actually stand for conceptual schemes, or for any-
thing else that syntax, truth, and observability are alleged to depend
upon. No mathematical structure is imposed upon this set. We also
assume a fixed alphabet X. This is innocuous, since ¥ can contain
every typographical symbol ever used and ever to be used. The set £*
of all finite strings of characters in £ provides the raw material for
evidence sentences and hypotheses. We may think of well-formedness,
truth, and observability as determining subsets of £*. Each such div-
ision of £* according to syntax, truth, and observability is referred to
as a world of inquiry. Since syntax, truth, and observability depend
upon conceptual scheme, we represent the possible such dependencies
as functions from conceptual schemes to worlds of inquiry. Such
functions are referred to as worlds-in-themselves.
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A scientist does empirical research because he is uncertain about
something. In our framework, his uncertainty is represented as a set
of possible worlds-in-themselves, one of which is actual. We refer to
a set of possible worlds-in-themselves as a relativistic spstem. The
“conceptual scheme” represents everything about the world of inquiry
that depends upon the scientist and the world-in-itself represents
everything about the world of inquiry over which the scientist has no
control.}

The notion of a relativistic data stream may seem problematic. The
data received depends upon the conceptual scheme of the scientist,
but the conceptual scheme of the scientist depends upon the data he
receives. But there is no difficulty if we streich the circle into a spiral
through time. The datum reccived by the scientist at stage # of inquiry
is true and observable in the world-of-inquiry determined by his
choice of conceptual scheme at stage n — 1. Since the data received
at different times may come from different worlds of inquiry, the data
received at one time may be false, nonsensical, or “metaphysical”
(empirically indeterminable} at another time. But the scientist can
remember what sort of strings he fook to be observable and true when
his conceptual schemes were different.

The main result of this paper is a demonstration of necessary and
sufficient conditions for the existence of a methoed that can detect the
semantic status of a given string over a given relativistic system. This
theorem may be thought of as a generalization of Angluin’s necessary
and sufficient conditions for language acquisition from positive data
[1]. The positive side of the proof, together with establishing com-
pleteness of our technique for proving relativistic problems unsolv-
able, involves the construction of a relativistic inductive method. The
negative side of the proof may be viewed as a completeness theorem
for this.method, in the following sense: given a specification of how
truth, syntax, and observability can possibly depend upon conceptual
scheme (i.e. given a relativistic system) and given a string in *, the
method will detect the semantic status of the string if and only if it is
possible to do so. Similar results are given for truth-stable and
scheme-stable truth detection.

Section 2 presents the concepts that make precise our three notions
of convergence to the relative truth. In Section 3, we prove a locking
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sequence lemma for each of these notions of success. The locking
sequence lemmas are useful in proving certain relativistic inductive
inference problems to be unsolvable. In Section 4, we apply the lock-
ing sequence lemmas to prove a characterization theorem for cach of
our three notions of convergence o the relative truth. In Section 5,
we apply these characterization theorems to prove that our three
notions of success are distinct in terms of the difficulties of the
problems they pose to the scientist. Finally, Section 6 draws some
philosophical morals from the results, and suggests some open paths
for research in the area.

2. NOTATION AND DEFINITIONS

2.1. Sequence Operations

Unless it is stated otherwise, the following operations are defined both
for finite sequences and for w-sequences.

last{t) = the object occurring at the end of finite sequence 1.

1, = the item occurring in position n of sequence 1.

decr(z) = the result of deleting the last item in finite sequence 1.
o*t is the concatenation of | 2quence 1 and finite sequence o.
rng(t) = the set of all objeuis occurring in 7.

t[n} = the initial segment of length » of sequence .

2.2, Metaphysics

Let £ be a countable alphabet.

Let £* = the set of all finite strings on I (including the empty
string).

A hypothesis is some string s € £*.

A world-of-investigation 1B is a triple of sets (H, E, T such that

T, B c He I*

H represents the well-formed hypotheses in 8. Note that according
to our usage, a hypothesis need not be well-formed. Whether or not a
given hypothesis is well-formed is one of the things the scientist must
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figure out for himself. £ represents the “evidence language” subset of
Hin . T represents the subset of H that is true in 98.

E

T true frue
evidence hypotheses
gibberish

false faise
evidence hypotheses

A relativistic system is just some triple {F, C, W where

(' is an arbitrary set.
W is some set of worlds-of-investigation,
F is some set of total maps f: C - W.

Let a relativistic system: (F, C, W be given.

A conceptual scheme is 2 member of C.
A world-in-itself is a member of F,

A world-in-itself is a specification of a particular way in which truth,
observability, and syntax depend upon conceptual scheme. A relativis-
tic system specifies the set of such dependencies that may, for all we
know, be the case.

For example let £ = the standard keyboard symbols, let C = {a, b},
let W = {,, W,} where W, = (I, E,, T\, and B, = (H,, E,,
1>, and where H, = the well-formed first-order sentences on a non-
logical vocabulary consisting of unary predicate P, H, = the well-
formed first-order sentences on a non-logical vocabulary consisting of
binary predicate @, E, = the atomic sentences of H,, E, = the literal
sentences of H,, T = the truths in H, according to some chosen
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relational structure for H,, and T, = the truths in /, according to
some chosen relational structure for H,, except that the truth con-
ditions are all reversed so that negations count as assertions and
assertions as negations. Let f; = {{a, W, >, b, MW, >} and let [2 =
{{a, W, >, <b, W >}, and let F = {£,, £,}. In £, truth, syntax and
observability do not depend upon conceptual scheme, since f1isa
constant function. In f;, vocabulary, obsevability, and the meaning of
negation all depend in a radical way upon coneeptual scheme. The
triple {F, C, W) is a relativistic system.

In subsequent discussions, F, C, and W are all to be understood as
constituents of some fixed, arbitrary, relativistic system.

The truth values are {T, F, U}.
Define tv: * % W — {1, F, U} as follows, where I = (H, E,
Ty

tvis, W) = TifseT
tv(s, ) = FifseHd — T
tv(s, W) = Uifs¢ H.

Intuitively, T means “true”, F means “false” and U means “no truth
value”,

2.3. Data Presentations

A data presentation is an w-sequence of strings in X*.
SEQ = the set of all finite segments of data presentations,

2.4. Truth Detectors
A truth detector is a function §: £* x SEQ - C x {T, F, U}

A truth detector is given a hypothesis to investigate and is given some
finite sequence of data. On the basis of this data, the truth detector is
required to produce a choice of conceptual scheme and a guess as to
the truth value of the given hypothesis. Think of the truth detector as
investigating a single hypothesis as the data sequences get ever larger
through the course of inquiry. Since we will not examine questions of
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computability in this paper, we may assume without loss of generality
that truth detectors are total functions.

Suppose é(s, 6) = <c, by, where s is a hypothesis, ¢ € SEQ, c e C
and b e {T, F, U}. Then

o8(s, o), = ¢
o(s, o), = b

2.5. Data Presentations for Worlds and Detectors
Let ¢ be a data presentation. Then define;

t[é, ¢, 5], = ¢, where k is the nth position in ¢ such that
as, tlk — 1P, = .
119, ¢, s] = the sequence {4, c, s}, 7[5, ¢, s],, . . ., [, ¢, 8], ... >

1[d, ¢, 5] may be thought of as the result of deleting each position in ¢
such that & does not choose conceptual scheme ¢ at the previous pos-
ition in 7. Hence, {[J, ¢, 5] is the total data presented in ¢ for concep-
tual scheme ¢ when the truth detector choosing conceptual schemes
is 4. Now define:

evill) = T'm E, where M = (H, E, T>.

ev(IB) should be thought of as the total evidence true of world-of-
investigation . Let  be a truth detector, s be a hypothesis, f be a
world-in-itself, and ¢ be a conceptual scheme.

o & SEQ is sound for 8, f, s < Ve, rng(o]d, ¢, sD) < ev(f(c).
data presentation ¢ is sound for 8, f, s < Ve € C rg{t[5, ¢, 5]) <

ev(F(0)). -

Soundness requires that the data read at stage # + 1 be true with
respect to the conceptual scheme produced by 6 at stage n. This
relationship is clarified in the following figure.

We require not only that data presentations be sound, but also that
they be complete. Completeness demands that all the data in world-
of-inquiry f{c) be presented to é only when § selects ¢ infinitely often.
Otherwise, an infinite data set for f(c) could not possibly be presented
to 4.
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Relativistic Data Presentations

new evidence at stage n+1
is drawn from world f(c}

Data at stage n % f
R

V//////// <C, b> |

Conjecture at stage n

data presentation ¢ is complete for 6, f, s <

Yo e C, 1[4, c] is infinite = rag(t}d, ¢, s)) = ev(f(e)).
data presentation # is for J, f, s <

t is complete for 4, f, s and ¢ is sound for &, f, s.
PRES(f, 8, 5) = {r: tis for &, f, s}.

2.6. Reliable Detection

Let (F, C, W) be a relativistic system.
Now we define various notions of convergence to a {ruth value on

a data presentation.

d convergesto c,bont, s <
In Vm>n 8(s, tfm]), = c and 8(s, ![m}), = b

& convergesto bon i, s <
dn ¥m>n (s, ([m]), = b.

S detects s on [ <
3n Ym>n 8(s, i(fm]), = (s, f{8(s, t[m]),)).

Let (F, C, W) be a relativistic system. Let f€ F, and let s be a
hypothesis. Let t e PRES(/, &, 5). Let & be a truth detector.
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d scheme-stably detects 5 on { <>
& detects s on f and
dc, b such that é converges to ¢, b on ¢, 5.

& truth-stably detects 5 on t <=
d detects s on ¢ and
3b such that & converges to b on ¢, s.

& [scheme-stably, truth-stably] detects s in f <
Vi e PRES(S, £, 5), & [scheme-stably, truth-stably] detects s on 1.

& [scheme-stably, truth-stably] detects s over F <
Vf € F, 6 [scheme-stably, truth-stably] detects s in f;

Detection requires that after some time, § always produces a truth
value that is correct for the conceptual scheme produced at the same
moment as this truth value. Truth-stable detection requires, in addition,
that after some time the truth value of s is stabilized by §’s choices of
conceptual scheme. Scheme-stable detection requires, in addition, that
& stabilizes to a unique conceptual scheme.

3. LOCKING SEQUENCE LEMMAS

The basic notion of locking sequences is familiar to learning theorists
working with non-relativistic systems [15], [16]. In the present section,
we generalize the notion to the relativistic case.

Loosely speaking, a data sequence o Jocks a scientist onto a world-
in-itself f'if the scientist produces only conjectures correct for Supon
seeing o and he continues to produce conjectures correct for Suntil he
sees data unsound for f. That is, a locking sequence is data that the
scientist finds absolutely compelling for f until further data proves
that he is wrong.

A locking sequence lemma tells us that whenever a scientist suc-
ceeds in a world-in-itself, there is finite data sequence that locks the
scientist onto this world. For each of our three senses of getting to
the relative truth we isolate a respective notion of locking sequence
and we prove a corresponding locking sequence lemma. The locking
sequence lemmas are useful in proving that no reliable scientist exists
for a given relativistic system. They will also serve as lemmas in the
proofs of our respective characterizations of truth detectability, truth-
stable detectability, and scheme-stable detectability.
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3.1. Locking Sequence Lemma for Detection Simpliciter.

o € SEQ is locking for 6, f, s =
g is sound for 6, £, s and
wis, f(8(s, 6),)) = 6(s, 6); and
VYt e SEQ if
(a) ¢ < 7 and
(b) 7 is sound for 8, f, s
then (s, ©), = tv(s, f(3(s, T)).

LEMMA 3.1. If § detects s in f then
¥y sound for f, 8,
Jo € SEQ such that
y € ¢ and
a is locking for 4, f, x.
Proof. See Appendix.

3.2. Locking Sequence Lemma for Truth-Stable Detection

a € SEQ is truth-locking for 8, f, 5, b =
a is sound for &, f, s and
d(s, @) = {e, b> and
tv{s, f(c)} = b and
Y1 e SEQ if
(a) o = tand
(b) v is sound for 4, f, s
then 8(s, 1), = b = tv(s, f(8(s, T),).

LEMMA 3.2. If § truth-stably detects 5 in £, then
¥y sound for f, 4,
Jo € SEQ, 36 e {7, F, U} such that
y € g and
& is truth-locking for 8, f, s, b.
Proof. Similar to the proof of Lemma 3.1 except that during each
fooling stage 2n, we search for a © such that either (s, 1), # &(s, ¢

{2n - 1}), or 8(s, 1), # tv(s, f(3(s, T)-
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3.3. Locking Sequence Lenma for Scheme-Stable Detection

o € SEQ is scheme-locking for 8, f, 5, ¢ <
o is sound for é, f, s and
a(s, o) = e, tv(s, f{c))> and
Y1 e SEQ if
(2) 0 = rand
(b) t is sound for §, f, s
then (s, 7). = d(s, o), and 8(s, 7}, = c.

LEMMA 3.3, If é scheme-stably detects s in f then
¥y sound for f, d
Jdo e SEQ, dc € C such that
y € o and
@ is scheme-locking for é, f, s.
Proof. Similar to the proof of Lemma 3.1, except that during each
fooling stage 2n, we search for a t such that 8(s, 1), # (s, t{2n — 1)),
or 8(s, T), # (s, t{2n — 1}),. [

4. CHARACTERIZATION THEOREMS

For each string and relativistic system, either the string is reliably
detectable over the system or not. A characterization theorem pro-
vides necessary and sufficient conditions for detectability entirely in
terms of the structure of relativistic systems. In this section, we pre-
sent characterization theorems for truth detectability, for truth-stable
detectability, and for scheme-stable detectability. The characterizations
do not hold for arbitrary relativistic systems. The result for scheme-
stable detectability is valid only for systems in which € and F are
countable. The characterizations for truth detectability and truth-
stable detectability are valid only when C is finite and F is countable.
The issues that arise when we relax the finitude of C are discussed in
Section 6.

There is a useful, alternative perspective on the characterization
theorems. Think of an adaptive detector as a map ¢(F, s, o), such that
the result of fixing argument F is a truth detector. An adapiive detec-
tor may be thought of as using “background knowledge” F to try to
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detect 5. For each adaptive detector, there is some range of paits

(F, s> such that ¢(F, _, _) detects s over F. We may then speak of
an adaptive detector as being complete if for each pair (F, 53, it detects
s over Fif some truth detector can. From this point of view, each of
our characterization theorems involves the construction of a complete
adaptive detector. Accordingly, the proofs of the characterization
theorems may be viewed as completeness theorems for the adaptive
detection systems so constructed.

4.1. Truth Detectability Characterized

4.1.1. Definitions The following sequence of definitions is necessary in
order to state the characterization theorem.

A clue is a finite subset of C x Z*,

clue D is sound for f <> V{c, ey € D, e € ev(f(c)).

clue D involves ¢ € C <> Je &€ T¥ such that {¢, e) € D.

es(D) = {c e C: D involves ¢}.

clues(6) = {{c, e>: In such that I < n < length(c) and ¢, = ¢ and
¢ = 8(s, aln — 1), }.

D is contained in o mod &, s <> D < clugg(a).

Let (F, C, W be a relativistic system and let /' < F.

The agreement zone of F' mod 5 =

{1V, g € F'tv(s, (0) = (s, g(e))}-

az (F") = the agreement zone of F mad s.
a path is an element of {(F »x Clue)*.

I"c"p = <<.fls DI): vt <.ﬁn Dn>> be a path'
clues(p) = {Dy, ... .D,}.

worlds(p) = {fi, ..., [u}
lastclue(p) = D,.

lastworld(p) = f,.
When p is empty, lastclue (p) and lastworld(p) are undefined.

[ may extend p mod F, s <
(1) clues(p) is sound for f and
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{2) if p is non-empty then

Ve e az(worlds(p)), ev(f(c)) <= ev(lastworld( p)(c)) and
(3) if p is non-empty then

az,(worlds(p)) — az (worlds(p), /) # ¢ and
(4) az(worlds(p), /) # &.

A tree is a subset of (F x  Clue)* that is closed under finite, initial
segments.

Let T be a tree. We now define the notion of revolution tree. Revol-
ution trees are so named because they will instruct our truth detector

when to have conceptual revolutions (i.e. when to change his concep-
tual scheme).

T is a revolution tree mod F, 5 <
Vp*(f, D) e T,
(1) f may extend p mod F, s and
(2) cs(D) < az.(worlds(p)) and
(3) D is sound for f.

T is complete mod F, 5 <
() {>eTand
(2) Vp e TVSfc F, if fmay extend p mod F, s then 3D such that
pLDyeT
T is safe mod F, 5 =
¥ non-empty p e I, ¥fe F
if
{1) clues(p) is sound for fand
(2) az(worlds(p), f) = (&
then ¢ € az, (worlds( p)) such that ev(f(c)) — ev(last-
world(p)(c)) # .

4.1.2. Example: a complete, safe, revolution tree. We now provide an
cxample of a complete, safe revolution tree for a finite relativistic
system. It shoud be understood, however, that the concept is in no
way limited in application to finite systems. Let relativistic system
{F, C, W) be presented by the following matrix, in which cach row

represents a world-in-itself in F and each column represents a concep-
tual scheme.
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f1

12

3

f4

There are four worlds-in-themselves in F, called £, /3, f3, and f;. Each
world-in-itself is defined over four conceptual schemes, 1, 2, 3, and 4,
Cell i,k corresponds to world-of-inquiry f; (i). Let s be the string
whose truth value is to be detected over F. We assume that in system
F, the string s is never observable. The truth value in the upper left
corner of cell £, (i) corresponds to the truth value assigned to s in
fi(i). We put * — {s} into 1-1 correspondence with the natural
numbers, The set of natural numbers in the lower right of cell £, (i) is
the set of all code numbers of strings in ev{f,({}) (i.e., the well-
formed, true, observable strings in world of inquiry f;(¢)). This will be
our standard representation of relativistic systems in the balance of
the paper.

There is a complete, safe revolution tree for F, 5. To find it, we
apply the following procedure. We start constructing T by putting the
empty path () into T. Thereafter, for each path p in T, we extend
the path by each f € F that may extend p mod F, 5. No path in T can
have a length greater than 4 by the definition of “may extend” and
the fact that |Cl = 4, so our process of additions terminates at least
by then. Next, beginning at the root, we examine each path p in T in
order to verify safety, under the assumption that each clue in the path
is empty. If safety is violated, we add data to some clue along the
path until safety is no longer viclated by this path. Then we eliminate
all paths in T that extend p and that involve worlds-in-themselves for
which some clue in p is not sound.
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Let us proceed: T[0] = {{ >}. By definition of “may extend”, each
fe Fmay extend (> mod F, 5. So, if we omit initial segments of
paths to avoid clutter, we have T[1] = {{ />, {£;), {frsD, < fi>}. Now
it gets a bit more challenging to figure out who may extend whom.
Recall that the agreement zone of a singleton path is the set € of all
conceptual schemes. By exhaustively considering all pairs of distinet
worlds (twelve in all) to see which may extend which, we conclude that
2] = {{fi. 52, {fos fo), {05 {Jus oo {fis 3D} At the next level,
we must pay altention to the agreement zone of each path in T[2].
Again, checking to see who may extend whom, we have 3[3] = T[2).
Since we have arrived at a fixed point in our construction, T = I[2].
Now we assume that each world in T is paired with the empty
clue.

I

<f1,|®> <f2,I®> <f3, &> <f4, &>

<f3r D> <f4l > <f2, &> <f3: &>

Now we must add clues to make T safe. For each path pin T, we
must check whether there is an /'€ F such that az (worlds(p), /) = @&
and such that V¢ e az, (worlds(p)) ev(f(c)) = ev(lastworld(p)}. No
pair of worlds in F has an empty agreement zone, so it suffices if we
examine paths of length 2 for possible violations of safety. Checking
each path of length 2 in order against every other world in F, we find
that f| violates safety on paths {f;, fi>, {fi, fo>, and {J;, £3D, and
that there are no other violations of safety in T. Seeing a 0 in the
data under conceptual scheme 1 can eliminate f, from consideration.
So if we add the pair {1, 0> to the clue for £, in path {f;, /;>, then
safety is no longer violated by this path. Next consider the path

{fi, fi). We can’t see a 0 under scheme 1 in f;. Hence, we go up to

[+, where we can see a { under | and we add <1, 0) to the clue for
f+- This forces us to cut away path ¢ £, /3>, and at the same time

eliminates the violation of safety in path {f, /2>. The resulting
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complete, safe revolution tree T is

<H, D> -.’.f2,I &> <f3, &> «iy, {<’1, 0>}>
|
<13, D> «fq, {<1, O>)> <fo, &>

That having this tree is tantamount to having a method that detects x
over {F, C, W will be proved in the next section.

4.1.3. Characterization theorem for relativistic truth detectability
THEOREM 4.1. If C is finite and F is countable then

s is detectable over F <

there is a complete, safe, revolution tree mod F, s.

Proof. = Suppose that C is finite, F is countable and that some &
detects s over F. Using &, we will construct a complete, safe, revol-
ution tree for F, s,

Stage 0: TIO] = {{>}.

Stage n -+ I ¥p e I[x} of length #, Yf that may extend p mod F, s,
define lock(p, /) inductively as follows: lock({ >, f) is some locking
sequence for f. Lock(p*{ f, D>, g) is some locking sequence for g that
extends lock(p, /) if such a sequence exists. If f may extend p mod F,
s, then lock(p, f) exists, by the locking sequence lemma and the fact
that lock(decr(p), lastworld( p)) is sound for £, § by the definition of
“may extend”. For each p € Iln| of length », define

ext(p) = {p*(f, clues(tock(p, /)
S may extend p mod F, 5}.

Now define
I+ 1] = Tn] U ext(p

pedln]
length{ p)=n

We need to know that Vr, I[#] is a revolution tree. By construction,
condition (1) of the definition of revolution tree is satisfied by each
added path. Since D = clue;(lock( p, 1)), we have that (3) D is sound
for f, 8. So it suffices to show that (2) for each p*{f, D> e I[n],
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cs(D) < az,(worlds( p)). This is done in the following lemma, which
proves a bit more.

LEMMA A. Let p*{f, D) € [n]. Then
(1) es(P) & az (world(p)) and
(2) D is sound for each f e worlds( p).

Proof. See Appendix. B

Suppose there is a stage » at which T[#] is not safe for F mod s.
Then by the definition of safety, 3p € Tn] Af € F such thai (1)
clues( p) is sound for fand (2) az,(worlds(p), f) = 5 and (3)
Ye € az(worlds(p)), ev(f(c)) = ev(lastworld(p)(c)). Pick a locking
sequence o for f, ¢ that extends lock{dccr(p), lastworld( p)). There is
one by (1), and by the locking sequence lemma. By lemma A, we
know that for each g € worlds(p), lock(p, lastworld( p)) is sound
for g with respect to . Hence, until § sees evidence unsound for
some g € worlds(p), é produces conjectures only in az {worlds{ p)).
But by (3), no data unsound for some g € worlds(p) is sound for f
if it involves only schemes in az (worlds( p}). So ¢ is sound for f
and for each g € worlds(p). Hence, by the definition of locking
sequence, once o is read, § must produce conjectures correct for
each g € worlds( p). But this is impossible, since by (2) we have that
az,(worlds(p), f) = &I.

So there is no stage n at which T{#] is not safe for F mod s.
Define

T = U I
feXN

T is safe mod F, s, because each T{i] is. And T is complete mod F,
s, because every f that may extend a path in T is added by some
stage T[i]. So T is a complete, safe revolution iree.

<= Supposc that there is a complete, safe, revolution tree T mod
F, 5. We construct a é that uses T to detect 5 over F.

Let p be a path in . Define the conjecture range of p, (denoted
by cr(p)), as follows:

{{e, 1>: c & C} if p is empty

cr(p) = { {{c, bd:ceaz(p) & b = tvis, lastworld({ p)(c)},
otherwise.
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Now, for each path p in I, associate an enumeration w( p} of cr(p) in
which each element of cr( p) occurs infinitely often. For each such
enumeration we supply a pointer whose position in the enumeration
at stage » in the operation of our soon to be defined scientist is
denoted by n,[x].

pointer

Given T, together with the associated enumerations u( p) we define
the following method 4, where E[#] is an inductively maintained
sequence of clues and Q[#] is an inductively maintained sequence of
worlds-in-themselves maintained so that {Qx),, Z[n], >, (QAnl,, Z[x],>,
ooy {&fn),, Elnl, > is always a path in T. § may be thought of as
maintaining Qfx] and Eln] as stacks, so as to perform a depth-first
search of T. Accordingly, define

pathlp] = (Qfn),, E[n) >, <Qnly, Elnl,>, . . .,
&Ynl,, Elnl, >, where K = length(Z[n]).

1 I

We may think of & as always “visiting™ the end-point of path[#] at
stage n. The conjecture of § at stage » is defined to be the conjecture
at position 7,40 [7] of enumeration p(path(n]) of cr(path[s]). So &
produces conjectures from the conjecture tape associated with a node
in T until either data unsound for the world in its current node is
read (in which case § “pops” up to an ancestor of its current node) or
until a clue deeper in ¥ is read (in which case § “pushes” down below
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its current node). Each time & “pops” a node in I, it produces con-
iectures according to the parent node it pops to, picking up at the
position where the pointer was left when conjectures were last made
from the parent node. It is very important that § start producing con-
jectures at a parent node from the point where it teft off in u(p) when
it was last producing conjectures from that node. This is because we
will need to argue that if infinitely many daughters of a parent {f, D)
are considered and rejected, then complete data for f is eventually
received. If & always starts at the beginning of u(p) each time {f, D>
is visited, then 8 might never see any data past the first few entries on
w{ p). The pointers are required to mark the place in uf p) last visted
by &, so that & can remember where he was last time the node was
visited.

& may be thought of as trying to balance two different and some-
what opposed strategies for success. The first strategy is to throw out
of contention any world-in-itself that makes the currently observed
data false. The second strategy is to find a restricted range of concep-
tual schemes over which many worlds-in-themselves agree about the
semantic status of s, Unfortunately, the former strategy suggests look-
ing at lots of different conceptual schemes to find possible data
unsound for a given world-in-itself, and the latter strategy suggests
looking at as narrow a range of concepinal schemes as possible to
maintain as much agreement among worlds-in-themselves as possible.
¢ implements the *‘refutation” strategy by producing conjectures over
all conceptual schemes in cr(path]r]) while considering pathin]. If
there is data unsound for f that can be read over this range of con-
ceptual schemes, ¢ will find it. & implements the “agreement mainten-
ance” strategy by producing conjectures only in cr(path[x]) while con-
sidering path[n] (recall that each world-in-itself in path|n] agrees about
the semantic status of s over the conceptual schemes occurring in con-
jectures in cr(path{n])). Perhaps the most striking result of this paper
is that this curious mixture of the two strategies yields an optimally
reliable, universal method for inductive inference through conceptual
revolutions.

These considerations, together with the following diagram, should
help to provide a basic understanding of the method before the
details of the formal definition are consulted.



412 KEVIN T. KELLY AND CLARK GLYMOUR

Operation of method 8-

Conjecture drawn from this pointer
each tima this node is visited
(e.g. when daughter was refuted)

Conjectures drawn from
agreement zone of this path
until node is refuted or lower
clue is found

Definition of method &:

Stage O:

set 2[0] = ()

set Q0] = (;

for each path p in X, set #,[0] = O;
set DATA = (5.

Stage n + 1:

define path(Q[x], En)) = Qn],, EF]L D, - . ., {Q],, 8], >, where
k = length (Q[n])

Consider the following two situations:

{a) DATA[#] is not sound for last(Qn]) with respect to 4.
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(b) 3 pair {f’, D' such that
(i) D’ is contained in DATA[#] with respect to § and

(i) path(r], E[x)*( /", D> is a path in T and
(iily DATA[n] is sound for £ with respect to 8.

If (a) is satisfied, then
set Qn + 1] = decr(Qn]);
set Bln + 1] = decr(E[x]);
for each path p in T, set n,[n + 1] = =,[n];
set DATA[r + 1] = DATA[x);
go to stage i + 2.

If (b} is satisfied, but (a) is not satisfied, then

let {f’, D> be the least pair (in a fixed enumeration} whose
existence is guaranteed by (b);

set Qn + 1] = Qu)*f";

set E[n + 1] = E[H]*D’;

for each path p in X, set m,[n + 1] = m,ln];

set DATA[r 4+ 1] = DATA[#];

go to stage n + 2

If neither (a) nor (b) is satisfied, then
set Qfn + 1] = Q[x);
set E[n + 1] = Elx);
set &k = length{Q[n]);
set p = path{Q[n], Zx]);
conjecture the pair (¢, b} at position z,[1] of u(p),
setm,[n + 1] = m [n] + 1;
Vp' # p,setmyn + 1} = m,[n];
set DATAr + 1] = DATA[n]* (read next datum);
go to stage n + 2.

Let us consider what § does in a particular example. Recall the fol-
lowing system (D, C, W5,
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¢l c2 c3 c4

1 i) Neo] N-fo] N-o

U | Nl A W)
T /I T F
{3
N-{o}jN-{0,1] N-{o)}N-{0,1]
T T F T
f4

We have seen that the following tree ¥ is a complete, safe, revolution
tree for F, s.

<f{, &> <f2,i D <f3, @> <«i4, {<j1' 0>}>
|
<f3, @> «fq, {<1, 0>}> <fp, &>

Now, let us examine how § behaves when we hand it ¥ and turn it
loose in an arbitrary world-in-itself f e F.

Suppose f, is actual: Then on no evidence, § sinks to the bottom of
the first path in T and sits there producing conjectures that agree for
fi and f; until £ is refuted by new data. In fact, the only such conjec-
ture is {3, T'>. Since no data refuting f; will ever be seen under
scheme 3, § converges to a correct conjecture for f;.

Suppose f, is actual: As before, § sinks to the bottom of the first
path in T on no evidence. But since f; is actual, and since £, has total
data N under scheme 3, eventually f; is refuted by a 0 under scheme
3. At this point, 8 pops to the root of the tree and sinks to world f; in
the second path on no evidence, producing conjectures over all four
conceptual schemes according to f;. Since f is the actual world-in-
itself, £, will never be refuted. So datum 0 will eventually be read
under scheme 1, and & will then drop to f; in the second path, since
{<1, 0>} is the clue for doing so. The agreement zone of £, f; is just
{1}. Since f, ,and f, have exactly the same data under scheme 1, f; is
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never refuted as & produces cnjecture {{1, 7))} forever after. So §
succeeds.

Suppose f; is actual: As usual, § plunges blindly to the bottom of
path {f;, 37 on no evidence, and conjectures {3, T until data refut-
ing f; is seen. But no such data is ever seen, so & succeeds.

Suppose [, is actual: Again, § plunges to the bottom of path
<1, /3> on no evidence and conjectures {3, 7> until data refuting f;
is seen, But f; eventually yields such data, at which point & pops fo
the root node and plunges down to f, on the second path on the basis
of no data. Here, § produces conjectures agrecing with S over all con-
ceptual schemes until either ( is read under scheme 1 (causing & to
plunge to f;), or data unsound for f; is read (causing & to pop to the
tree root and plunge to £, on no data). The latter will never occur,
since f; has data everywhere identical to f,. But eventually, a 0 is read
under scheme 1 and & plunges to f,. Since no data unsound for Jican
be read, § converges to conjectures correct for £, at this point.

So by exhaustion, we see that § succeeds.

Some observations are in order, that will be useful in following the
general proof that & succeeds. First, § sometimes succeeds by over-
shooting the actual world-in-itself along a path (c.g. when fiorfy
is actual). This causes no harm, since all subsequent conjectures
along a path must still agree with earlier worlds along the path (cf.
Lemma 3).

Second, the tree serves as a sort of computer program branch
instruction that tells § what to conjecture, when to wait for refuting
data, and when to wait for a sign that § should narrow the range of
conceptual schemes to be visited infinitely often. Together, the first
two paths of T amount to the following instruction:

&’s procedure.

Until data unsound for f; is read, do repeat conjecture (3, 7).
Until clue {1, 0>} is read do repeat conjectures agreeing with f,.
Repeat conjecture {1, T,

This is a sensible way to handle problem F, and it cmerges effec-
tively from our procedure for constructing T.

The order in which § considers paths n T is irrelevant to the
correctness of o’s performance. But the program read off of T may
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be very different under a different ordering of paths. In our example,
& only has to examine the first two branches of T to succeed. But the
unused branches may be necessary to ensure §’s success under some
other ordering.

To complete the proof of the theorem, it suffices to show:

LEMMA B. If T is a complete, safe revolution tree mod F, s then &

detects s over F.
Proof. See Appendix. B

4.1.4. An infinite example. In this section we prove a negative result
about an infinite relativistic system by applying Theorem 4.1. Con-
sider problem G depicted in the following figure.* G is presented as a
tree, because its infinite structure would be obscured if depicted in a
finite fragment of a matrix. G involves three conceptual schemes.
Bach daughter world-in-itself has its total data sets included in the
total data sets of its parent. Finally, each daughter differs in its truth
assignment for s in exactly one place where all its parents agree.

F T T T F T T T F

N N N | A A-p ] A N-{1,2IN-{1,2]N-{1,2
T T F
N-{1,3]N-{1,3N-{1.3]

T/ /T T/l 1/ F

FACT 4.1.4. s is not detectable over G.
Proof. Call the root of the tree g. Let I[1] = {{, {g, D)}, where
D is sound for g. T is not yet complete, for whatever data occurs in

N-{2} |N-{2} [N-{2} N-{2,1]N-{2, 1]N-{2,1
T T F
N-{2,3IN-{2,3|n-(2.3
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D, we can choose a daughter f of g that may extend (g, D> mod G, s.
Choose D’ sound for fand set 2] = {{ 5, g, D, Kg, D>,

(/. D">>}. No matter what data occurs in D, I, some daughter of
Sfis a witness of the fact that T[2] is not safe. So there is no complete,
safe revolution tree mod G, 5. Now apply Theorem 4.1. B

It is often easier to give a proof by nested locking sequences directly,
without invoking Theorem 4.1. Such proofs also help to illustrate
what is going on in the negative side of the proof of Theorem 4.1,

Alternate proof of Fact 4.1.4. Suppose § succeeds. Choose g, to be
locking for 8, £}, s, where f) is the root of the tree. Now choose
some daughter f; of f; such that g, is sound for f£;, é, 5. Choose o,
to be locking for 4, f;, s so that o, = o,. Choose some daughter
S5 of f, so that g, is sound for f;, 4, s. Choose g, to be locking for
J1s 6, 5 so that o, € 05. 03 is sound for f|, 3, 6, s. Hence, §(s, ¢3)
must be correct for f1, £2, £3. But this is impossible, since

az,({fi, /. iD) = . |

4.1.5. When C is infinite. The characterization given in Theorem 4.1,
covers only relativistic systems in which C is finite, The results of this
section establish that the characterization condition is necessary for
arbitrary relativistic systems, but is not sufficient when F and C are
countably infinite.

COROLLARY to Theorem 4.1: Let {F, C, W) be an arbitrary
relativistic system, and let s ¢ Z*, Then

if 5 is truth detectable over F then there is a complete, safe, revolution
tree mod F, s,

Proof. Nothing in the necessity side of the proof of Theorem 4.1
made use of the cardinality of F or of C. As the cardinalities of ¥ and
C increase, the branch factor of the tree increases, but its depth is still
bounded by w. ]

The following example shows that our characterization condition is
not sufficient for truth detectability when C is infinite.
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Let K = N — {0}. Define F to be the following problem, consist-
ing of a tree of worlds-in-themselves together with an additional set
of worlds-in-themselves.

K- K- .

K K K K - {1} {K - {1}]K - {1} (1.2} [(1.2 j{1.21
T /A T i F o

(1.3} [(1.3}) j{1,3}

-2 K- 2K - {2} (2.1} 2.1} ji2,1}
TAVTALFAL
{2.3) 1(2,3} {{2,3}

-(2] N-{2] AN-(2]

-[3] /N-{3] AN-(3

All worlds-in-themselves are infinite matrix rows, so only initial seg-
ments can be shown. Each world-in-itself in the additional sequence
has T in the first place and has F everywhere else. Moreover, for each
world in the sequence, the total data is N — {i}, for some ie N. In
the tree, each world occurring at level » of the tree has F only under
conceptual scheme » and has total data K — D where 0 ¢ D and

K = N — {0} and |D}| = »n. Now we proceed to show that there is a
complete, safe revolution tree mod F, s but ¢ is not truth detectable
over F.
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FACT 4.1.5.a. There is a complete, safe revolution tree mod F, s.
Proof. We will construct a tree T in which all clues are empty. For
each path {f, f;. .. ., f,> in the “tree part” of F, let < f,, &>, . ..,
{fr. @y be a path in T. Each fin the “table part” of Fis extended
as follows; for each /" in the “tree-part” of F whose data is inctuded
in the data of £, add the path £, @5, {f", &» to T. It is straight-
forward to verify that the resulting T is a complete, saf¢ revolution
free. B

FACT 4,1.5.b. 5is not truth
detectable over F.

Proof. Suppose d can detect s over F. Pick o) to be locking for &
and for the root f, of the tree. Now, choose a daughter £, of the root
of the tree for which &, is sound. There is one, by construction. Pick
o, to extend o and to be locking for f;, 8. Pick £; so that g, is sound
for f7, etc. Observe that o; will be sound for each Jpforj < i, by
construction of the tree. Since each o, is locking for £, and is sound
for each f; for j < i, we know that the conceptual schemes occurring
in o, are in az,(f;, ..., f,_,), clse  makes an incorrect conjecture for
one of f, . .., f,., after seeing locking sequences for f,, . . ., [, |
and after seeing no data unsound for f|, . . ., f._,. Notice that
az,(fi.....f,} = {i:i > n}. Hence, for each conceptual scheme 7,
there is a time & in reading w,, o,, . . ., 0,, . . . after which i is no
longer in az.(f,, . . ., f;) or in any further agreement zone. Hence,
the data presentation ¢ such that each o; is an initial segment of 1 is
Jor any world-in-itself for which it is sound (recall that completeness
of data demands only that all true data be presented when & stops at
a conceptual scheme infinitely often).

Now we will show that 7 is sound and hence complete for some
world in the sequence below the tree. Suppose ¢ is sound for no world
in that sequence. Then for each n > 0, » occurs under some concep-
tual scheme in ¢ But then ¢ is sound only for £, which contradicts the
fact that o, is sound for each f; such that j < /. So we have that ¢ is
sound for some fin the list following the tree. But observe that f
disagrees with /5, . . ., f,, . . . over az.( £}, f;). Hence on some data
presentation ¢ for f, § makes infinitely many mistakes about f, for we
have seen that once § see o,, 6 must produce conjectures correct for £,
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forever after, and that these conjectures must occur over schemes in
az,( f,, /»), but f, disagrees with f everywhere over this region. B

Let us refer to the “‘tree part™ of F as F'. F’ is an infinite-dimensional
generalization of the three dimensional problem G examined in the
previous section. It is interesting that F” is solvable, while G is not.
To solve F’, one may simply conjecture {1, T>, (2, T'>, ..., <{n, T,
.. . without ever looking at the data. The trouble in the finite prob-
lem G is that eventually, one must stop choosing new conceptual
schemes, because there are only finitely many to choose from.

Problem F is unsolvable for a reason that is not captured in our
characterization theorem. It forces a conflict between two strategies
for relativistic induction. The first is the visit each conceptual scheme
at most finitely often, saying T each time. In the tree this works fine,
for after some time you walk to the right of the one scheme in which
you should have said F, and you are correct thereafter. But if you are
in the sequence, this strategy fails. In the sequence, you can get by
if you always say “F*" and stay away from conceptual scheme 1. So
we know what to do if we know whether we are in the tree or in
the sequence. How could we tell which we are in? If we are in the
sequence, then if we wait long enough in one place, we will see a zero;
something that we would never see in the tree. So it would make
sense to assume we are in the tree until we see a zero. But we are
only gnaranteed to see a zero if we visit some conceptual scheme infi-
nitely often and wait for the zero there. And if the actual world-in-
itself is m the tree, and in fact is the one that has “F” under the
scheme where we search for a zero, then we are wrong infinitely often.
So if we don’t stay in one place we can’t tell if we are in the tree or in
the sequence and if we do wait for data, then we may be wrong in the
tree. In more popular language, the example shows a fundamental
dilemnma between “revolutionary”™ and “normal” science,

The failure of our characierization condition to be sufficient for
success when C is infinite is tied to the possibility that two worlds
of inquiry under the same conceptual scheme can assign distinct
truth values to s, while the complete data for one is included in the
complete data for the other. This may happen because s involves
unobservable vocabulary under some conceptual scheme, because the
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evidence language lacks a negation operator under some conceptual
scheme, or because the negations of some observable strings are not
observable. The following simple result shows that when these circum-
stances do not obtain under some conceptual scheme, no conceptual
revolutions are necessary for truth detection, regardiess of the cardi-
nality of C. So under these circumstances, virtually all of the structure
discussed in this paper collapses. This is the circumstance assumed,
for example, in Gaifman and Snir’s Theorem 2.1. concerning the con-
vergence to the truth of conditional measures [5].

Say that s is data-determined mod F, ¢ <

Vf, 2 € F, if tv(s, f(¢)) = tv(s, g{c)) then

ev( f(¢)) is not a subset of ev(g(c))

FACT 4.1.5.c. Suppose that Fis countable and there is a ¢ € C such
that s is data-determined mod F. Then s is delectable over F by a
method that never switches conceptual scheme.

Proof. Forletf,, ..., f,, ... Dbean enumeration of F. Define
a(s, o) to conjecture {c, tv(s, fi{c))>, where f; is the first world-in-itself
in F for which ¢ is sound with respect to 8. It is easily verified that §
succeeds in the required sense, B

The triviality of data-determined truth detection disappears when Fis
uncountable (cf. [11], Proposition 12).

4.1.6. Why simpler conditions don’t work. The characterization con-
ditions provided in Theorem 4.1 may seem unduly complex. In this
section, we consider two plausible alternatives, and show how they
fail.

FACT 4.1.6.a. The following condition is necessary for truth detec-
tability over arbitrary relativistic systems, but is not sufficient even
when C and F are both finite:
Vf e Fi clue D sound for f's.t.
¥f e Fif D is also sound for /7 then
de € C s.t. either
tv(s, f(e)) = tv(s, f{c)) or
ev(fle) — ev(f o)) # .



422 KEVIN T. KELLY AND CLARK GLYMOUR

Proof. To show necessity, deny the condition and suppose that ¢
succeeds, Pick a locking sequence o for f, 4, s, and then choose /'’ so
that ¢ is sound for /', 4, 5. Extend ¢ to a presentation ¢ for f7, 4. ¢
fails on 7. Contractiction.

To see that sufficiency fails for finite relativistic systems, consider
the following problem F

1 2
T
Q N N
F T
f1 N N
T F
f2
N N

F satisfles the condition (each pair or worlds-in-themselves aprees
about the truth value of s in some place), but s is not truth-detectable
in F. The evidence is the same no matter what. So suppose that 6
succeeds in g. Then he fails to detect s either in f1 or in 2, since &
must make infinitely many conjectures either under scheme 1 or under
scheme 2. |

FACT 4.1.6.b. The following condition is sufficient when C is count-
able and I is countable but is not necessary for truth-detectability
even when C is finite:
¥fe F4 clue D sound for fs.t.
¥ e Fif D is also sound for £ then
Ve e C either
(s, fle)) = tvls, f(0)) or
ev(f(a)) — ev(f{(eh) # .

The method & simply produces conjectures from an infinitely repeti-
tive enumeration u of cr = {{¢, T>: ¢ € C} until it finds a clue D for
some unrefuted f'e F, and when it finds one, it moves to the last
position visited on another infinitely repetitive enumeration u(f) of

er(f) = {{e, by ce C & tv(s, f(e)) = b}
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To see that the condition is not necessary, consider again the prob-
lem ' in the proof of Lemma 6.2,

2
T T
g N-{0,/N-{0
F/IF
i1 K (0
F /F
f2 -{0] /N

Let D be any clue sound for g. This clue is also sound for f;. But
under scheme 2, the total data is the same for f; and for g, but the
truth values assigned to x by these two worlds differ. Hence the con-
dition fails to hold. But s is truth-stably detectable over G”. ]

4.2, Truth-stable truth detectability characterized

4.2.1. Definitions. Our characterization of truth-stable detectablity dif-
fers from the one given for truth detection simpliciter primarily in that
the latter notion of success requires a stricter notion of agreement
zone. In the case of truth detection simpliciter, the agreement zone of
a collection of worlds-in-themselves is just the set of all conceptual
schemes under which no two worlds in the collection assign distinct
truth values to x. For truth-stable truth detection, we insist, in
addition, that no world-in-itself in the collection assign different truth
values to s on different conceptual schemes in the agreement zone. Let
be (T, F, U}

az,o({fis - L)) =
= {ceC:iVist. ] <i<nivsfile) = b)

The concepts of may extend, revolution tree, and safe are just as
before, except for the substitution of the new notion of agreement
zone and for their mheritance of the agreement zone’s relativization
to b. It also turns out to be useful to make completeness relative to
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worlds-in-themselves, as follows.

T is complete for fe Fmod F, 5, b <=
AD{f, D> e T and

VpeIV¥f e F
if p extends {f, D) in T and
fmay extend p mod F, 5, b
then dD'p*(f, D"> € X.

4.2.2, Characterization theorem for truth-stable detetability

THEOREM 4.2. Suppose F is countable and C is finite. Then
5 is truth-stably detectable over F <>
YfeF 3T Jb s.t.
T is a safe, revolution tree complete for fmod F, s, b.
Proof. Parallel to the proof of Theorem 4.1. B

COROLLARY to Theorem 4.2, The left-to-right direction of Theo-
rem 4.2, holds for arbitrary relativistic systems.

4.3. Scheme-Stable Truth Detectability Characterized

4.3.1. Definitions, This time we make the notion of agreement zone
relative to conceptual scheme. Hence, the appropriate agreement zone
for scheme-stable detectability is either empty, or contains exactly one
conceptual scheme.

{}ifIDVIl € i < netvix, fi{c)) = b
& otherwise

az, ((fiv o D) = {

The notion of safe revolution tree is modified in light of this change
just as in the case of truth-stable identifiability. Just as before, we
make completeness relative to f.

4.3.2. Characiterization theorem for scheme-stable detectability

THEOREM 4.3. Suppose F, C are countable. Then
s is truth-stably detectable over F <=
¥fe F AT de s.t. T is a safe, revolution tree complete for f mod
F s, c
Proof. Parallel to the proof of Theorem 4.1. a
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The restrictive notion of agreement zone for scheme-stable detectabii-
ity means that the paths in a revolution trees may have length no
greater than 1. Because of this restriction, much of the apparatus
required for the characterization of detectability simpliciter and truth-
stable detectability collapses. This collapse is reflected in the following
corollary.

COROLLARY 4.3.1. If F, C, are both countable then

s is scheme-stably detectable over F <

{(A) Vfe F dc e C A clue D s.t.

{{>, KL f, D>y} is a safe revolution tree mod F, s, ¢. <=

(B) Vfe F dce C dclue D s.t.

D is sound for [ and

¥f e Fif

tv(s, f(c)) # tv(s, f'(c)) and
D is sound for f”
then ev(f(e) — ev(f(e) # &

Proof. The equivalence of (A) with the characterization condition
of Theorem 3 is immediate from the fact that {¢ 3, {(Jf, DM} is
complete for f mod F, s, ¢ because no path can have length greater
than 1, The equivalence of (A) and (B) is straightforward, by the
definitions of completeness and safety. ]

5. SEPARATION RESULTS

in this section, we show that the apparently weaker notions of truth-
detection really are weaker. In more contentious language, we show
that conceptual revolutions can make a method more reliable at get-
ting to the truth, We take the opportunity to illustrate our charac-
terization theorems in the following proofs, although direct proofs are
sometimes easier to provide.

THEOREM 5.

scheme-stable detectability =
truth-stable detectability =
detectability simpliciter

and none of the converses is true
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LEMMA 5.1. Truth-stable detectability = detectability
but not conversely.

Proof. The implication is trivial. To see that the converse fails, con-
sider the following problem,

1 2
T/F

g9 N-{0L/N-{0
F T

f1 K {0
F /T

f2 -{o] /N

s is not truth-stably detectable over G, as we will show by an appli-
cation of Theorem 2. Suppose 3T, b such that T is a safe revolution
tree that is complete for g mod F, s, b. Since T is complete for g,
AD<{g, D> € . So long as D is sound for g, D is also sound for f;
and for f,. So if b = T then f, witnesses the violation of safety for T,
G, s, b. And if b = F then f) wiinesses the violation of safety for T,
G, 5, b. Finally, if & = U then either f, or f, witnesses the violation of
safety for I, G, s, b, since az, U(g) = .

It is possible to truth-detect 5 in G, however. We apply Theorem 1.
Set T = {{D, g, @, (N1, {{L, 03}, {fo {€2, 03})}. It is easy to

verify by cases that T is complete, safe revolution tree mod G, s. @

An obvious solution to the above problem is to waftle back and forth
over schemes 1 and 2 making guesses correct for g until a 0 is seen in
the data. If 0 occurs under 1 then you know you are in £;, and you
start producing arbitrary conjectures sound for f,. If the 0 occurs
under f,, then you know you are in f, and you start making guesses
sound for f;.

Now consider what method & in the proofl of theorem 1 would do
when given tree . In this tree, g is paired at the root level with the
empty clue, which is always found in all data. Hence, § goes down
branch {g, ¢f> immediately, and stays on this branch, switching back
and forth between schemes 1 and 2 until a 0 is seen. In that case, the
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path (g, & is dropped and the next path taken depends upon where
the 0 is seen. So § duplicates the performance of the obviouns method
in this case.

LEMMA 5.2. Scheme-stable detectability = truth-stable detectability
but not conversely.
Define problem G* as follows:

T T

| N-{oL/'N-{0
F F

f1 K -{0
F/F

f2 o] N

S is not scheme-stably detectable over G, as we shall show by Cor-

ollary 3.1.B. For let D be any clue sound for g, and let ¢ = 1. Then
J, disagrees with g about s under scheme 1, but there is no data true
in (1) but false in g(1). Let ¢ = 2. Then the same can be said of f,.
So by Corollary 3.1.B, s is not scheme-stably detectable over G,

By Theorem 2, we show that s is truth-stably detectable over G.
Define Set Tg = {(), (&, @} Set Tf; = {(3, <A, {<1, 00})). Set
T, = {0, {1 {2, 00}>}. It is readily verified that Tg is complete
for g mod G, s, T, and Tf| is complete for f; mod G’, 5, F, and If; is
complete for f; mod G, s, F. The result follows by Theorem 2. |

It is useful to consider what the truth-stable version of § does on this
example. Suppose g is actual. Then & succeeds immediately, since &
considers path (g, (J» on the basis of the empty clue. No data
unsound for g will ever be read, and & produces only conjectures
correct for g forever alter. Suppose f; is actual. Then & again con-
siders {g, J» and produces conjectures out of an infinitely repetitive
enumeration of {{1, T'>, <2, T'>} until a 0 is read somewherc. The
crucial point here is that g assigns the same truth value to 5 under
both conceptual schemes, so that both schemes are in the agreement
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zone for path {g, (J>. When the 0 is seen & drops path {g, &>. if the
0 is read under scheme 1, then the clue {{I, 0>} has been seen for
path {f'1, {<1, 0>}>, and & converges to conjectures correct for f.
The case when f, is actual is parallel.

6, CONCLUSION

In this paper we have presented a precise framework for thinking
about convergence to the truth when truth, syntax and observability
may depend upon what the investigator does. Within this framework,
we characterized solvability according to three distinct concepts of
convergence to the relative truth. To prove these results, we con-
structed methods that get to the relative truth by directing conceptual
revolutions in which truth, syntax and observability may change. Our
techniques for constructing such methods were shown to be complete,
in the following sense: if a problem is solvable, then the technique
generates a method that solves it. We illustrated the limitations of
these results, and proved that the three notions of convergence to the
relative truth are indeed distinct.

Several philosophical morals may be drawn from this work, First,
we have seen that relativistic systems can model both experimenter
effects and conceptual change through “scientific revolutions™. In the
first case, the dependency is causal, while in the second it is linguistic,
Whether or not a system is relativistic depends upon what we aspire
to say about it. If we want to discover all the ways in which the SYS-
tem responds te our acts, then we are not involved in a relativistic
inquiry, for what we are trying to discover (i.c. the dependency itself)
does not depend upon what we do. If, on the other hand, we intend
to discover only the laws of a particular state of a system that
responds to our actions, then our study is relativistic, for the laws we
seek will change as the state of the system changes. So for example, a
conceptual historian, who looks at past scientific episodes and tells us
when and how conceptual changes occurred is not involved in a
relativistic inquiry (at least insofar as these conceptual changes are
concerned). On the other hand, ‘scientists at the time of the conceptual
change who were using the concepts that changed were, indeed,
involved in a relativistic inquiry.
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Second, we have seen that relativism is a more general thesis than
is radical subjectivism. Relativism says only that truth depends in
some way or other on the acts of the scientist; perhaps in a way that
the scientist does not know a priori. Radical subjectivism says that
whatever the scientist chooses to believe is true. Inductive inquiry is
trivial in subjectivist sysiems, but it need not be trivial (and may,
indeed, be impossible} in highly relativistic systems,

Third, Rorty, Kuhn, Feyerabend, and myriad others are in error
when they argue from relativism to the impossibility of general meth-
odological norms that hold across conceptual revolutions. The meth-
ods constructed in the proofs of our characterization theorems are
demonstrably complete, and as in deductive logic, this property would
seem to carry at least some normative weight.

Fourth, our analysis refutes the popular assumption that math-
ematical work in methodology must somehow fail to take relativism
into account. Some philosophers and anti-philosophers identify atl
precise methodological work with logical positivism, and reject it for
the same reasons. But logical positivism involves semantic theses that
our framework is in no way committed to. These include the existence
of meaning postulates, analyic truth, and analytic reduction relations
between theory and evidence. The positivists did not propose scientific
methods that work across conceptual revolutions, and we do. In
short, we hope to have shown that relativism is no excuse for obscur-
antism in matters methodological. In fact, our results show that get-
ting to the {ruth takes on a much richer mathematical structure when
truth is relative.

This paper is just a small first step into the logic of relativistic
inquiry. Many important questions remain open about the present
system. For example, we would like to obtain a characterization
theorem for truth detectability when C is countably infinite and F is
uncountable. We would also like to obtain some general results con-
cerning the scope of computationally bounded, relativistic truth detec-
tors. Results in standard learning theory provide a blue-print for such
a project.

Imagine the process of building up a compiete, true theory of the
world by adding new truths and deleting falsehoods, so that each
truth is eventually added and each falsehood is eventually withdrawn
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forever. In realist settings, the existence of a truth detector for each
hypothesis is equivalent to the existence of a theory discovery device
in the sense just given [15, Proposition 80]. But in relativistic systems,
this equivalence fails, because the truth detectors need not agree
about conceptual scheme, so the truth values they return cannot be
relied upon jointly, The situation becomes still more complicated
when truth depends upon the theory currently conjectured.

There are many sorts of relativism that the framework of this paper
does not address. For example the world of inquiry may depend upon
the conjectured truth value as well as the chosen conceptual scheme.,
This kind of relativism can be handled by a slight modification of our
techniques.

It is more difficult to handle cases in which the world of inquiry
depends upon the whole history of inquiry, rather than simply upon
some contemporary choice of conceptual scheme on the part of the
scientist. This is the sort of view suggested by Marxists who insist
upon “‘taking history seriously”. The formal effect of this proposal is
to make it structurally difficult for a scientist to visit a world of
inquiry at will, since his past history may prevent him from relurning
to it.

A third possihility is to relativize the history of inguiry as well as
the subject matter under investigation, Tn our results, this history is
held to be objective. No matter what conceptual scheme a scientist
chooses, the truth about the conceptual schemes visited and data
strings recetved i the past remains fixed. But if this history also
changes with changes in conceptual scheme, the scientist’s conver-
gence to the relative truth is itself relative. A philosophically interest-
ing proposal is to combine relativity of history with truth dependence
on history. In this system, the current history detemines the world of
inquiry from which the next datum is received. The conceptual
scheme chosen on the basis of adding the next datum to the current
history may then radically alter the current history. The subsequent
datum is chosen with respect to the altered history. Hence there is no
vicious circularity, but there is a much more free-wheeling form of
relativism than the sort studied in this paper.

It would be a mistake to infer that these added sources of relativ-
ism re-open a Pandora’s box of obscurity in methodology. Now that
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it has been shown how to study convergence to the truth in a simple
sort of relativistic framework, it becomes clear that similar, albeit
more sophisticated techniques will suffice in the study of additional
sources of relativism.
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APPENDIX

PROOF of Lemma 3.1. Let § detect 5 in f. Now let v be sound for £,
Suppose that no ¢ such that y < ¢ is locking for 4, f, 5. So we have
(*)¥o
ifv < ¢ and
g is sound for 4, f, s and
tv(s, £(8(s, 0),)) = s, o), then
Jt & SEQ such that
(a) v < 7 and
(b) 1 is sound for &, f, s and
(c) &(s, 1)y # tv(s, f(3(s, T),))

We construct a data presentation ¢ complete and sound for £, 4, on
which § makes infinitely many mistakes, which is a contradiction. We
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construct ¢ in alternating stages. In even-numbered, or “fooling”
stages, we add a t of the sort guaranteed by (*) above to force & to
make a mistake. Tn odd-numbered, or “data completion” stages, we
add a new datum, if possible, to cach conceptual scheme visited by &
when we added the previous 7 and in the previous odd stage. We
ensure soundness for f, § by adding only chunks of data that are
sound for /, 6. We ensure completeness for f, § because any concep-
tual scheme visited infinitely often by & will have complete data
presented during odd-numbered stages. Now we make the construc-
tion precise;

Stage 1: {1} = {, where

(i) ¢ is sound for 4, f, s and

(i) vy € {and

(iii) 8(s, 0 = tvls, F(3(s, ).
There is such a {, for let ¢ be a data presentation sound and complete
for 8, fsuch that y < ¢. If  never produces a correct response on ¢
after seeing y, then ¢ fails to detect s in f, which is a contradiction, So
eventually, Im 8(s, f{m]), = tv(s, f{d(s, fm]),)) and y = #[m]. Let
{ = fm].
Stage 2n (fooling stage):
If

(1) #{2n — 1} is sound for &, fand

(2) y = f{2n — 1} and

(3) 8(s, o), = tvls, f(d(s, o))
then we are free to choose 1 according to (*) with the following
properties;

(a) 1{2n — 1} = 7 and

{b) 7 is sound for &, f, s and

() &(s, 1)y # tv(s, f((s, T)).
Otherwise let T = some arbitrary default.
Define 1{2n} = 1.

Stage 2n + 1 (data completion stage). Define
Juer = {ce C: e such that ({20 — 2} < x = {20}
and d(s, x); = c}.
Think of J,,,, as the set of all conceptual schemes visited by 3 during
the previous cycle of fooling and completion, J,,,  is finite. Let
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m = |Jp, | Choose some fixed enumeration ¢, ¢5, ¢y, . . ., ¢, of
Jaai 1, and some fixed, non-redundant, cnumeration e,, e,, . . . , €,
.. of ev( fle,)), for each ¢;. Set A{0} = ({2n}. Vist. 0 < i < m,

define A{7 + 1} to be some choice of ¢ such that
() A} < eand
(il & is sound for J and f and
(i} (s, decr(e)) = ¢;, and
(iv) the last entry in ¢ is the first e € ev(f(c;)) — rng(decr(s)
[8, ¢;, s]) if there is one, and is some arbitrary e € ev(f(¢,)
otherwise.
if there is such an ¢, and A{i + 1} = A{i} otherwise.

Now find some finite data £ sound for 8, £, s such that A{m} = & and
3(s, &), = tv(s, 8(s, £),). There must be one. For extend A{m} to a
presentation ¢ for §, f, s. There is a first time ¢ at which é(s, 7)), =
tv(s, 8(s, '[r)), clse & fails to detect s on some presentation 7 for f,
which contradicts the Lemma’s assumption. Let & =¢Tr].

Define {2n + 1} = &.

all schemes

visited in past two
stages are visited again
and a new datum is seen
for each, if there is one.

t{2n+1}

t{2n+2}

H{2n+31§

etc.

By a straightforward induclive argument, we have that

(A) Vau 2 0, t{2n + 1} satisfies conditions
(1) 1{2n + 1} is sound for &, fand
() y = t{2n + 1} and
() (s, fOCs, 20 + 1)) = 8z, {20 + 1});.
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It follows from (A) and from the construction that

(B) ¥n 2 1, {{2n} satisfies conditions
(b) #{2n} is sound for &, £, s and
(© 8Cx, H{2n)), # (s, 8Gs, {2n}))

Now define 7 = the unique data presentation such that for each

n, t{n} < 1. (A) and (B) show that 7 is sound for §, f, s and § makes
infinitely many errors on ¢ (because é makes an error after reading
each even stage of ).

It remains only to show that ¢ is complete for 8, £, 5. That is, we
need to show that if there are infinitely many j such that &, #[j]), =
e, then ev(f(c)) = mg(#[3d, ¢, s)).

Accordingly, suppose that there are infinitely many j such that
d(s, t[i]) = c. Suppose farther that e & ev( /(c)). Choose k so that
d(s, t[k]), = c. There is an n such that t{n — 1} = k] < t{n}.

Let t{m} be the first odd (““data completion™) stage extending t{n},
Let ¢ = ¢ in the enumeration of J,,. Now consider the formation of
Ali] during stage m. Recall, there are infinitely many j such that

o(s, 1] = ¢ So F'3e’ € ev( f(c) such that &(s, ([j]D' = ¢, and
tLiT*e’ = Ai] < t{m}, by the definition of A[i]. If e & ¢[;'I5, ¢, s]
then we are done. So assume that e ¢ ([j'][8, c, 5s]. Then e ¢ 1] /]

[, ¢, 5], by the definition of Aff].

We can repeat this argument until we reach an odd stage m’ such
that each e” prior to e in ev{f(c)) is in rng(¢{m’'}[5, ¢, s]). Either
e & mg(t{m’}[, c, s]) already or e € rng(t{m’ + 2}[3, ¢, s]). A

PROOF of Lemma A: By induction on length of p.
Suppose the length of p is 0. Then (1) az (worlds(p)) = C so
cs(D) = Cand (2) D = lock({ ), f) is sound for /.

Suppose the lemma for cach path of length m or shorter. Suppose
P =D ooy {fuets Dury Y is a path of fength m + 1 and
p*{f, Dy € X[nl. For each position i in p, D, = clues(lock(pli — 1],
S Let o, = lock(p[i — 1}, /7). Applying the induction hypothesis,
0,4+ is sound for each f; € worlds(p), since D, , = clue;(a,,. ).
Hence, é(s, o,,,,) is a conjecture correct for each f; in p, by the defi-
nition of locking sequence and the fact that for cach position i in p, o,
is locking for f;. But d(s, 6,,,:) can be correct for each £, € worlds( p)
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only if 8(s, o,,,,), € az,(p), by the definition of agreement zZone.
Hence, (*) until § sees data unsound for some f, e worlds( p), &
produces conjectures involving only conceptual schemes in

az, (worlds{ p)).

Since p*( f, D) € T[n], f may extend p mod F, s (by the definition
of Ifx]). By clause (2) of the definition of “may extend”, Ve &
az,(worlds(p)), ev(f(c)) = ev(lastworld( p)c)). Indeed, since this
relation is maintained throughout the construction of p, we have by
transivity of set inclusion that (**) for each f; € worlds( P Vee
az,(worlds(p)), ev(f(c)) = ev(f{c)). Hence, data unsound for some
Jfi € worlds( p) cannot be read from f under schemes in az, (worlds( p)).
S0 by (*), & never examines conceptual schemes outside of
az,(worlds(p)) after reading o,,, . Since lock( p. f) exists by the lock-
ing sequence lemma and the fact that & detects 5 over F, since d can
only examine schemes in az (worlds{ p)) after reading o,, ,, we have
that (1) cs(clue;(fock(p, 1)) < az (worlds(p)). By (1) and (**) we
have (2) clue;(lock(p, /) is sound for each e worlds(p). ::

PROOF of Lemma B: Let S e F. Let t be a complete, sound data
presentation for 8, f.

Say that path {f}, D\>, ..., {[,, D,) extends path o, Hyd, L
Ew H,) M T e nzmand V1 < i< m, f; = g, and D, = H,.

LEMMA 1. ¥V path p e T, ¥fe F,
if

(I) clues(p) is sound for f and

(2) VD e Clue, p*{f, D> ¢ T,
then either

(a) Jc € az,(worlds(p)) s.t. ev(f(c)) — ev(lastworld( pe)) # &
or

(b) az(worlds(p)) — az(worlds(p), /) = .

Proof. Let p e T. Suppose YD € Clue, p*( f, D) ¢ T. Then since T
is complete, we have that f may not extend p mod F, 5. So we have
that either

(i) clues(p} is not sound for f or

(i) He e az(world(p)) s.t. ev(f(c)) — ev(lastworld(p)(¢)) # ¢ or

(1ii) az,(worlds(p)) — az,(worlds(p), /) = &f or

(iv) az,(worlds(p), f) = &

L)
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(i) contradicts assumption (1}. (i) is just (a). (iii) is just (b). Suppose
for reductio that (ii) and (iii) are false. Then since (i} is false by
assumption, we may deduce (iv). But by (i), (i), (1) and {iv),
f bears witness that T is not safe, which contradicts the theorem’s
hypothesis. &

LEMMA 2. V path p ¢ T, ¥f € F, either
() V path p’ extending p in X either
(1} clues(p’) is not sound for for
(2) 3k length(p) < k < length(p”)
3¢ € az (worlds( pTk])) such that
ev( f{e)) — ev(lastworld(p[k](c)) # &.
or
(8) 3 path p’ extending p in T such that
(1) clues(p’) is sound for f and
(2) ¥k s.t. length(p) < k < length(p"),
Ve e az,(p'Tk]),
ev( f(e)} — ev(lastworld(pTk](c)) = & and
(3) Ye & az,(worlds( ), tv(s, f(c}) = tv(s, lastworld(p"){(c)).
Proof. Suppose —i(x). So 3 path p” extending p in T such that
clues(p’) is sound for f and Vk s.t. length(p) < k < length(p’),
Ye € az (worlds( p'[k])), ev(f(¢)) — ev{lastworld(p)(c}) = .

Case (i): Suppose that D3k s.t. length(p) < k < length(p’) s.t.
Pk S, DY is a path in . Path p'[k]*{ f, D) witnesses the truth of
condition (B. 1), since clues( p’[k]) is sound for f, and since D is sound
for f by condition (3) of the definition of revolution tree, together
with the fact that p[k]*(f, D) € T and T is a revolution tree. Path
pTk1*¢ f, DY also witnesses the truth of condition (f1.2), since p'[k] has
property (8. 2) and adding {f, D) to this path cannot violate prop-
erty (. 2). Finally, the path p'Tk]*{f, D) trivially witnesses the truth

of (. 3).

Case (ii): Suppose that YD Vk, if length(p) < k < length(p’) then
plE]*< f, D) is not a path in T. So by Lemma 1 and the fact that
clues(p) is sound for f, we may conclude that (a) dc € az,(worlds(p’))
s.t. ev(f () — ev(lastworld(p")(c)) # & or (b) Yc € az(worlds(p'))
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tvix, f(c)) = tv(s, lastworld(p'}e)). But by —1(a), (a) is false. Hence
{b) obtains, which establishes (8. 3) for path p’. Path p’ satisfies (£.2)
by the assumption of ~1(x). And p” satisfies (. 1) because clues(p’)
are sound for f. -

LEMMA 3. Let path p e T, and let fe F.

I Ve e az(worlds(p)), tv(s, f(c)) = tv(s, lastworld( p)(c))
then for any extention p” of p in I, Ve € az (worlds(p")),
tv(s, f(c)) = tv(s, lastworld( p")(e)).
(L.e. the property of agreement with f over the agreement zone of
one’s ancestors is closed downward in X).

Proof. Let p’ extend p in T. Then az,(worlds(p’)) < az (worlds(p))
and Ve € az (worlds(p), tv(s, lastworld(p)}¢)) = tv(s, lastworld
(p"¥(c), by the definition of agreement zone. So by the lemma’s
hypothesis, Ye € az,(worlds(p)), tv(s, f(c)} = tv(s, lastworld( p")(c)).

|
Say that & considers path {(f{, D,>, ..., {f,, D, at stage m <
{fis ooy fup Is an initial segment of Qm] and <Dy, ..., D, ) is an
initial segment of E[m).

Say that d considers exactly path {(f;, D>, ..., <{/,, D,> at stage
me={f, oo, fy = Qmland <Dy, ..., D> = E[m)

LEMMA 4. If data unsound for lastworld(p) is read in ¢, then p is
never again considered by ¢ on presentation ¢.

Proof. Suppose that data unsound for lastworld( p) is read by 4.
Then by clause (b. iii} of the definition of 8, § never again considers
any path p” such that lastworld(p’) = lastworld( p). [ |

LEMMA 5. Let t € PRES(/, 4, 5). Then
Y pathpe X, Vfe F,
if
(@) ¥V path p’ extending pin I
(1) clues(p’) is not sound for for
(2) dk s.t. length(p) < &k < length(p")
de € az ( p’[k]) such that
ev(f(c)) — ev(lastworld(p)()) # & and
(y) dm s.t. & considers p at some stage m
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then

(1) there is data unsound for lastworld(p) in data presentation ¢ with
respect to 4 and

(2) after this data is read by &, § never again considers p on presen-
tation ¢,

Proof. Assume the Lemma’s antecedent. By Lemma 4, it suffices to
establish (1). Define the extension difference of a path ¢ in T to be the
difference in length between ¢ and the longest extension of ¢ in .
The extension difference is well-defined, since no path in T is longer
than {C|. We establish (1) by induction on the extension difference
of p.

Base case: If the extension difference of p in I is 0, then there is no
extension of p in T. So once Jd considers path p, condition (b) of the
definition of § will never again be satisfied until data unsound for
lastworld( p) w.r.t. & is read from ¢ (i.e. until condition (a} of the defi-
nition of & occurs). So once & considers p then § sticks with conjec-
tures in cr{p) = {{c, b): c € az,(worlds(p)} and b = tv(s, last-
world(p)(e))} until data unsound for lastworld(p) is read. Since p is
considered by & at some stage (by (y) of the Lemma’s antecedent), we
know that clues(p) is sound for f, else condition (b) of the definition
of § would never be satisfied as § reads ¢, and p would never be con-
sidered, contrary to assumption. Since p is an extension of itself, we
may use the fact that clues(p) is sound for f, together with condition
(o) of the lemma’s antecedent, to infer that Ic € az, (worlds(p)) s.t.
ev( f(c)) — ev(lastworld(p){c)} # &. This data will be found by d as
pointer x,{n] is incremented forever in u(p) of cr(p).

Induction: Now suppose the lemma for each path p in T whose exten-
sion difference is < n. Suppose also that the extension difference of
path ¢ in T is n + 1, and ¢ satisfies conditions (&} and (y) of the
lemma’s antecedent. Consider an arbitrary unit extension ¢’ =

q¥*(g, H>, of g in T. Path ¢’ has extension difference n in T. Con-
dition (&) of the antecedent of the induction hypothesis is satisfied by
¢, because the paths extending ¢’ in T are a subset of the paths
extending g in T. So the antecedent of the induction hypothesis
applies to each unit extension ¢’ of g that is eventually considered by
4 {(and hence that also satisfies condition (y)). So we may apply the
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induction hypothesis to conclude that for each such extension
¢ = gq*{g, H ) of g considered by &, & eventually sees data unsound
for g.

Suppose for reductio that infinitely many distinct unit extensions
¢ = ¢*{g, H) of g are eventually considercd by §. Then all the data
for lastworld(g) over the schemes az (worlds(g)) is seen because by the
definition of &, each time # a unit extension ¢’ of ¢ is refuted, pointer
n,[n] is incremented by one and & conjectures the pair in position
=, [n] of fixed, infinitely repetitive enumeration u(q) of cr(g) = {{c, b):
¢ € az,(worlds(g)), b = tv(s, lastworld(g)(c))} (see the diagram).

extension

difference

n+1 extension
difference
n

pathq

unit extensionsgy
ofq

each of
these points
is considered
and rejected

as each poirt Is rejected, more data
from the agreement zone of q is read.

The complete data for f over schemes in az (worlds(g)) includes data
unsound for lastworld(g), by the same argument given in the base
case. But once data refuting lastworld(g) is read, we have by Lemma
4 that no path involving lastworld(g) is ever again considered. Hence,
only finitely many distinct unit ¢xtensions ¢° of ¢ are considered by 4,
which is a contradiction. So we may conclude that only finitely many
distinct unit extensions ¢’ of ¢ are considered by & in reading ¢
Eventually all these finitely many considered extensions are refuted
and & considers exactly path ¢ thereafter, until data unsound for last-
world(g) is seen. That data unsound for lastworld(g) will appear in ¢
under conceptual schemes in az,(g) is guaraniced by condition (1) of
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the lemma’s antecedent and the fact that each path is an extension of
itself. So data unsound for lastworld(g) is eventually seen, and g is
never again considered after this point, in accordance with the defi-
nition of . B

LEMMA 6. Let 1 € PRES(4, f, 5).
if 4 a path p in T such that,
{a) J considers p all but finitely often on presentation ¢ for f and
{b) p satisfies condition (ff) of Lemma 2
then either
(1) Ve e az (worlds( p)), tv(s, f{c)) = tv(s, lastworld( p)()) or
(2) 3 unit extension p*{g, H) of p in T that satisfies property ()
of Lemma 2 and that is considered all but finitely often by & on ¢.
Proof. First we must show

LEMMA 6.1. If p satisfies (), (b) and —(1), then 1D such that
p*{f, D> extends pin I,

Suppose p satisties (a), (b) and —1(1). Since T is complete mod F, s,
if f may extend p mod F, s, then 3D p*{f, D> € T. So it suffices to
show that f may extend p mod F, 5. First, (1) clues(p) is sound for f,
else p is never considered by § on ¢ for f (by clause (b) in the defi-
nition of §). Second, we have that ¥e¢ e az (worlds(p)), ev( f{c)) =
ev(lastworld( p)(c)) by condition (#. 2) of Lemma 2 and by the fact
that p is an extension of itself. Finally, we have by assumption —1(1)
that (3) az,(worlds(p)) — az(worlds(p), f) # . B

LEMMA 6.2. J considers path p infinitely often on 1 <
& considers p all but finitely often

Proof <= Trivial. = In the definition of §, a path p is dropped
from consideration by § only if data unsound for lastworld(p), §
is read (condition (a)). But a path p is considered only if no data
unsound for lastworld( p) has been read (condition (b)). So once p is
considered and dropped from consideration, it is never considered

again. |

Proof of Lemma 6 continued: Suppose there is a path p in T such that
(a) & considers p all but finitely often on presentation ¢ for £, 8, 5, and
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(b) p satisfies (f) of Lemma 2. Suppose further that p does not satisfy
condition (1). We will establish that p satisfies (2).

Suppose for reductio that no unit extension p*{g, H) of p is con-
sidered infinitely often on 7. Then either at most finitely many unit
extensions of p are considered and rejected by & on ¢, s, or infinitely
many unit extensions of p are eveniually considered and rejected by p
on f, . in the second case, path p (and no proper extension of p) is
visited each time one of the infinitely many considered unit extensions
is dropped from consideration. In the first case, path p (and no
proper extension of p) is considered all but finitely often since after
some time no more extensions are considered. Either way, exactly
path p is considered infinitely often by é on ¢, 5. So & produces con-
jectures that visit each conceptual scheme in az (worlds(p)}) infinitely
often (by the definition of 8,  produces the next conjecture in an
infinitely repetitive enumeration u{ p) of the conjectures correct for
lastworld(p) involving conceplual schemes in az{worlds( p}) each time
exactly path p is considered).

But by Lemma 6.1, 3D such that p*{ f, D) extends p in T. Hence,
cs(D) < az,(worlds(p)), by condition (2) in the definition of revol-
ution tree. Hence, by some time n, D is contained in t[#] mod &, s.
Since there are at most finitely many unit extensions of p preceding
p*{ f, D> in I, and since all of these are eventually rejected by §
according to our case hypothesis, it follows that eventually p*{f, D)
is considered by J on ¢, 5. But p*{f, D) cannot be rejected by & on f, s,
for p is never rejected (by hypothesis) and no data unsound for f can

occur in t with respect to &, s, because ¢ € PRES(S, 8, 5). Contradiction.

So some unit extension p*{g, H) of p is considered infinitely often
by & on ¢, s. Then p*{g, H» does not satisfy (¢) of Lemma 2, by
Lemma 5. Hence, by Lemma 2, p*{g, H ) satisfies () of Lemma 2.
By Lemma 6.2, p*{g, H) is considered all but finitely often by é on
i, 5. B

Note that the unit extension p*<{g, H ) considered all but finitely
often does not have to be p*{ f, D). It may be some unit extension
p*lg, H), where g differs from f both in evidence and in its truth
assignments to s. Indeed, & may make many errors with respect to f
while considering p*{g, H ). But since p*<{g, H ) satisfies condition
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(8) of Lemma 2, we know that & can continue to extend p*{g, H>,
and thus to narrow the agreement zone until conjectures correct for g
are also correct for f. That this in fact happens is the point of the
next lemma,

LEMMA 7. 3 a path p € T such that

(a) d considers p all but finitely often on presentation ¢ for f and

(b) Ye € az,(world(p)), tv(s, f(c)) =tv(s, lastworld( p)(c))

Proof. We construct p inductively, in stages.

Stage 0: Tirst ) satisfies property (#) of Lemma 2, since ¢ is
extended by some path {(f, D> (by completeness of T and the fact
that /' may extend { > mod F, s5). Second, { ) is always considered by
a. Set p[0] = (.

Stage n + I Now suppose that p[n] that has property (8) and is
considered all but finitely often by . By Lemma 6, either (1)

Ve e az (p[n]) tv(s, f(c)) = tv(s, lastworld(p[n]) or (2} 3 extension
plr*<g, H) of pln] in T that satisfies property (#) and that is con-
sidered all but finitely often by 3 on ¢. In case (1), we are done and
pln] is the desired path. In case 2, set p[n + 1] = p[r]*(g, H>, which
satisfies (8} and is considered all but finitely often by § on ¢, as prom-
ised by case (2).

We continue to build up p until at some stage n, case (2) is no
longer satisfied. There is such an n, for T is uniformiy bounded in
depth by |C|. By Lemma 6, we know that (1) must be satisfied by
stage n. Then p[n] is the desired path. ]

Lemma B is an immediate consequence of Lemma 7 and Lemma 3.
Lemma 7 says that & considers a path p leading to conjectures correct
for f all but finitely often on ¢, s. Lemma 3 says that it doesn’t matter
what extensions of p are considered by 4, since they also lead to con-
jectures correct for f. :: |

NOTES

! From the examples, it is clear that whether or not inquiry is relativistic is itself rela-
tive to the aspirations of inguiry. For example, Einstein did not aspire merely to pro-
vide a kinematics true of some reference {frame or other, He aspired, rather, to provide
4 full theory of the dependency itself. One way to dodge the issue of relativistic inquiry
is to insist that science a/ways aim for a complete theory of the dependency. Thus, the

INDUCTIVE INFERENCE FROM THEORY LADEN DATA 443

anthropologists would be enjoined to aim at a theory of how tribal socicties respond to
Western anthropelogists, rather than merely at descriptions of lincage, sccial organiz-
ation and so forth. And if the philosophers are right about meaning change, then all
scientists would have to append comprehensive theories of reference to their current
hypotheses in physics, chemistry, and biology.

? The fashionable doctrines of holism and incommensurability fit nicely with the view
that the scientist does not know & priori how his acts wiil affect meaning, truth and
observability.

} Traditionally, the conceptual scheme has been the “subjective” component of truth
and the world-in-itsell has been the “objective” or “rind-independent” component.
But when the subjective component of truth cannot be manipulated at will (by a scien-
tist following a method) then from a methodological perspective this subjective com-
ponent raises no new questions for learning theory. Thus, a philosopher like Kant, who
held that the mind’s contribution to truth is invariznt for our species is a naive realist
so far as the logic of inquiry is concerned, since truth is fixed one for all for any given
scientist.

* System F may be thought of as a relativized, 3-dimensiona] generalization of problem
(&) of Exercise 2.C in [15]. F was instrumental in our isolation of the characterization
condition for truth detectability.
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