CLARK GLYMOUR

Indistinguishable Space-Times
and the Fundamental Group

It has recently been noted (Ellis, 1971; Dautcourt, 1971; Ellis and
Sciama, 1972; Glymour, 1972; Trautman, 1965) that in some general rela-
tivistic cosmologies various global features of space-time may necessar-
ily escape determination. In contrast to classical space-time theories, the
fundamental group of space-time may itself be such a feature in a relativis-
tic space-time. A precise account of what it means for two space-times to

be “indistinguishable™ will permit us to prove some elementary prop-
ositions concerning the classification of indistinguishable space-times
which have distinet global topologies.

The equations of familiar space-time theories are local and therefore,
even assuming a complete alfine connection, do not of themselves deter-
mine a unique topology for space or for space-time. The equations of
Newtonian theory (as given, for example, by Trautman, 1965) permit
space-time to have any topology V X R, where R is the reals and V is any
three-dimensional manifold admitting a complete Riemannian connection
of zero curvature. There are exactly eighteen such distinct space-forms.
Many topologically different Newtonian models can be distinguished em-
pirically either by making global journeys through space or by observing
systems which have made such journeys. The possibility of such journeys
results not solely from the fact that Newtonian theory allows arbitrarily
fast causal signals, for even very slow signals can make transits of the
universe, given enough time—and if the affine connection is complete,
there is always enough time.

But let us look at the case of light. If space is not simply connected—if it
is a 3-torus or, let us say, the topological product of a cylinder and the
redls—then there will be points p, g and spatial paths a«, 8 such that light
can leave p and reach q either by « or by 8, and the path a8~ will not be
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homotopic to a constant map. Thus, as long as there are sources, “ghost
images” of the sources will be observable in principle, and the pattern of
such images will be determined by the fundamental group of space. For ex-
ample, suppose space has topology $ X R X R. If an observatory and a star
are located on the same cylinder, then light from the star can reach the
observatory by (1) going in either of two directions from the source to the
observatory, but not spiraling completely around the cylinder, or (2) spi-
raling completely around the cylinder (in either of two directions) any
finite number of times before reaching the observatory. Light that spirals
around n times will be dimmer than light that spirals around m times,
m < n, because it will have traveled farther. Moreover, if m is a large
number, the images from m and m + 1 spiral paths will appear closer
together than will the images of m and m + 1 spiral paths for small m.
‘Thus the images of the star will appear to us roughly as they do in the

necompanying picture,

Topologies with a different fundamental group will produce other dis-
tinclive patterns. Special relativity, too, admits alternative topologies, but
in this case we do not have a classification theorem. If, however, we
vonsider only those product topologies V X R, where R is timelike, then V
must be a three-dimensional Euclidean space form. Now in special rela-
tivity there are not arbitrarily fast causal chains, but still we can, in
principle, always determine something about the global topology of
space-time. Let us write X << Y if there is a future-directed timelike
puth [rom X to Y. Let I7(Y) be {X e M: X << Y} (and similarly, I*(Y) = {X
e M: ¥ << X}). Consider the projection map p: VX R — V given by p(v, 1)

i Then for any ¥ € V X R, p(I(Y)) = V. This means that at any time an
ohserver in a special relativistic cosmology could in principle determine
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his topology in exactly the same way that an observer in a Newtonian
cosmology with the same topology might do.

In Newtonian and special relativistic cosmologies we are not presented
with causally inaccessible regions. In general relativity we often are, even
in the simplest of cases. The Schwarzchild solution already contains a
region of space-time from which, once inside it, nothing can escape. Early
writers on cosmology, Weyl (1922) and Tolman (1934) for example, recog-
nized that the determination of the curvature of space would not of itself
determine the global topology of space. They assumed, however, that
global topology could be determined by the appearance of ghost images
and other phenomena and they did not entertain the possibility that
causal inaccessibility might prevent us from making the global discrimina-
tions possible in classical cosmologies. To investigate the question we
need a precise notion of what it might mean for two general relativistic
cosmologies to be indistinguishable. Clearly they must be locally isomet-
ric; but as Marder (1962) has shown, that is not sufficient. Now the events
of which an observer can have knowledge are exhausted by what happens
at points connected to his world-line by future-directed timelike or null
curves. So an intuitive requirement for indistinguishability is that there
be local isometries which extend over the whole causal past of any world
line. This idea can readily be made more precise.

By a space-time we shall mean a four-dimensional differentiable mani-
fold with a smooth pseudo-Riemannian metric form of Lorentz signature.
Where convenient, we identify a curve with its image on a manifold.

Definition: Two isochronous space-times, M and N, are indistinguishable
if and only if for every maximal curve, o, on M, whose tangent vector field
is everywhere timelike, there is a maximal curve, 7, on N whose tangent
vector field is everywhere timelike and I (o) = U, I (x) is isometric to
I(r) = Uyer I7(y), and likewise with M and N interchanged.

Remark: I(7) is an open set. As long as there are no maximal timelike
curves with a future-most point, we need not explicitly consider points z
connected to a point x by a future-directed null curve because for any
isochronous space-time, if z is connected to x by a future-directed null
curve, and x is connected to y by a future-directed timelike curve, then z
is connected to y by a future-directed timelike curve (see Geroch and
Penrose, 1972). It should be clear that indistinguishability is an equiva-
lence relation.
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With a little strengthening, the usual cosmological assumptions amount
to the requirement that space-time have a product structure, M = VX R,
where V is a complete three-dimensional Riemannian space of constant
curvature, R the reals, and M carries the pseudo-Riemannian metric form
dt @dt — R¥t) dv ®) dv where dt is the obvious 1-form on the reals,
dv ® dv is the Riemannian form on V, and R(¢) is a smooth function of the
real variable t. Such a cosmological model will be called standard. We note
that all standard space-times are assumed complete. The propositions
given subsequently are stated for standard models, but all of them, save
the first, apply as well if we require only that the models be products V X[
(where I is an interval of the reals) and hence not necessarily complete.
Many of the most popular cosmological models, e.g., the Friedman mod-
cls, satisfy this weaker condition.

The following simplification is elementary:

Proposition 1: Two standard space-times, M and N, are indistinguishable
il and only if for every x e M (y e N) there is ay € N (x € M) such that I (x) is
isometric to I7(y).

It is easy to give conditions sufficient for a standard model to have an
imdistinguishable but nonhomeomorphic counterpart.' If M = V X R is
standard and (1) A is a nontrivial group of isometries acting freely and
properly discontinuously on M; (2) for every & € A there is an isometry g
on V such that 8(v, t) = (g(v), t); and (3) for every 8 € A and for every x e M,
il & #1implies that I~ (x) NI ~(8x) is empty, then M is indistinguishable from
he quotient space-time M/A. Such conditions are not, however,
sulliciently informative; we should like, in addition, quasi-local topologi-
cal conditions sufficient to guarantee that a standard model has a covering
from which it is indistinguishable. Ideally such conditions should repre-
sent the kind of information given by ghost images. It is evident that in
peneral no purely topological conditions together with local isometry will
he necessary and sufficient for two standard space-times to be indistin-
)'Jll\l'l”!)l('.

Consider apoint, x, in a standard model M = VXR. Let a: [0-1] = M,
(110, 1] — M be curves such that (1) «(0) = B(0) = x; (2) a(l) = B(1) €
I () and (3) the tangent veetor fields to a and B are timelike. The product
cive aff Vis then a closed Toop through x. Let € be the set of all closed
loops formed from all paivs of curves, o, B, meeting the above conditions,
topether with the constunt map ¢: [0, 1] — {x}. € is understood to contain
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Ba ' if it contains aB~'. Now form the class, S, of all products of loops in
C. Just as in homotopy theory, we proceed to define an equivalence
relation on the curves in § and turn the set of equivalence classes into a
group. We take two curves in S to be equivalent if they are homotopic by
a homotopy every curve of which is itsell in S. That is, curves w, 7€ § are
equivalent if and only if there is a continuous map F: [0, 1] X [0, 1] - M
such that

F(0, 1) = w(t)
F(1,t) = 1(t)
F(t, 0) = x
Fi, 1) =x

and for every u € [0, 1] the curve oy,(t) = F(u, t) is in S. Denote the
equivalence class of o € S by [¢] and define the product [o] - [7] of [o]
and [7] to be [o7], the equivalence class of the product curve o7, and
similarly define [o]™" to be [c™']. The standard treatments of the funda-
mental group readily show that the relation on § given above is an equiva-
lence relation, that the product and inverse operations on the equivalence
classes are well defined, and that the equivalence classes form a group
under the operations. We denote the group thus defined by “r(x).”

Proposition 2: Let M = V X R be a standard model, x e M, p: M — V the
projection map. Then p induces a surjective group homomorphism
P 1) m(pI (), p).

Proof: Since for @, 8 € S, the projection map p generates a homotopy of
pa and pB from a homotopy of @ and B, it is obvious that the map p-
taking the homotopy class of « to the homotopy class of pa is well defined
and a homomorphism. To show that p. is surjective, we argue that any
generator of 7, (pI ~(x), px) contains a curve that is the composition of two
other curves which are the projections of suitable timelike future-
directed curves in I(x).

Since the space-times in question are standard, whether or not a dif-
ferentiable curve a in pI~(x) ending in p(x) is the projection of a timelike
future-directed curve in I~(x) depends only on the length of a. If pI=(x) is
bounded, then there will be a number r > 0 such if & has length < r, then
« is the projection of a timelike curve. In fact, if t,. is the time coordinate

ey
of x, we may set r —f —— . (I I7(x) is not hounded, i.e., pl {x) = V,
_» R(t)
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then p. is obviously surjective.) If U is the universal Riemannian covering
of V, then any arc-component of pI~(x) will be an open r-ball in U. Let
q: U — V be the covering map, and let X C U be an arc-component of
¢ 'pI~(x) and denote by ¥ the pre-image of px in X. If g is a generator in
m{pI~(x), px), then there is a curve a € g such that a is the composition of
(&), g(@) where &,, &, are geodesic segments in X. &, is an arc begin-
ning at i and ending at a point @ € X; @& is an arc beginning at b € X and
ending at %; and g(@) = q(b). The length of &, and of &, is less than r in

cach case, and the same must be true of g(&;) and g(@;). Thus there are
future-directed timelike curves sy, s, in I-(x) that project onto ¢(&,) and
t(@s) respectively, and the element of r(x) containing s, - s,~'is mapped
lo g by p.. It follows that p. is surjective.

The group r(x) could, ideally, be calculated from the information avail-
able from ghost images. In Newtonian cosmology r(x) is necessarily
isomorphic to the fundamental group of space, but in general relativistic
cosmology it need not be. When it is not, the next result gives us a partial
classification of indistinguishable counterparts.

Proposition 3: Let M = V X R be a standard space-time with expansion
lunction R(t). Suppose that for all x € M, i.p.r(x) is a proper subgroup of
(V. px), where i: pI~(x) — V is the inclusion map. Let G be any normal
subgroup of 7 (V, v) such that for all z ¢ M with pz = v, G contains a
comjugate of i.p.r(z). Then there is a standard space-time N = V X R
indistinguishable from M, and (V) is isomorphic to G.
I'roof: Given a subgroup G of m,(V, v), there is a covering (V, ¢}, q: V —
V. of V such that for q(¢) = v, q.m(V, 8) = G* where ¢ is the injective
linmomorphism of the fundamental group induced by . We claim, first,
that if G is a subgroup of m,(V, v) satisfying the hypothesis of the theorem
and (V, ¢) a covering of the kind just mentioned, then for any z € M such
that pz = v, pI~(z) is an admissible set. To show this, it suffices to prove
that ¢, when restricted to any arc-component of pI~(z), has a continuous
HIVEerse,

pl (z) is a connected, locally arc-wise connected, open set. Let A be an
arc-component of g 'pl~(z) and let & € A be such that () = v = pz. Letb,
o ¢ A and suppose that ¢(h) = (@) = b € V. Choose arcs 8, ¥, in A from &
to h and to @ respectively. Then letting 8 = ¢(B) and y = g(¥), ,G}'" is
w loop in pl (2) through pz = ©. The collection of all subgroups g .7 (V. &)
lor v e g ) is exactly a conjugacy class ol subgroups of (V| ©).? By the
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hypothesis of the theorem, i.p.r(z) is conjugate to a subgroup of G =
q.m(V, ©), so by proposition 2, i.m,(pI~(z), pz) is conjugate to a subgroup
of G. Now the homotopy class [8y~'] of By~ is an element of i.7,(pI ~(z).
pz), and therefore there must be some ¥ € V such that [By "] e g.m(V, %).
Since ¢. is injective, the corresponding lift of By~! must be closed in V.
But G is normal, and hence either every lift of By~ is closed or no lift is
closed; therefore every lift of By~ is closed. This proves that b = ¢ and
hence ¢ restricted to any arc-component of ¢~'pl ~(z) is injective. Since ¢
is an open continuous map, the restriction of g to any arc-component of
g~ 'pI~(z) is a homeomorphism.

V is a differentiable manifold, and there is a unique differentiable strue-
ture on V for which g is a differentiable map of maximal rank.? We take V
to be endowed with this structure and, letting u be the metric form on V,
define a Riemannian metric # on V by a(X, Y) = u(q.X, ¢.Y) for all
vectors, X, Y, in the tangent space of any point in V. Then every admissi-
ble set is isometric to any of its arc-components, and V is a Riemannian
space of the same constant curvature as V. The group D of deck transfor-
mations of (V, ¢) are isometries acting freely and properly discontinuously
on V; since pl~(z) is admissible for any z € M, for any arc-component A of
pl=(z), andany d e D, d # I, dA N A is empty.

Now consider the space-time N = V X R with the same expansion
function, R(t). as obtains on M. We claim that N is indistinguishable from
M. The group A of isometries of N of the form &(¢, t) = (d¢, t) for d € D acts
freely and properly discontinuously on N. Thus if ¢: N — M is the map
defined by ¢(&, t) = (g(g), t), (N, ¢) is a pseudo-Riemannian covering
of M and M = N|A, the quotient of N by A. It follows from the property of
the group D established in the preceding paragraph that for every y e N
and 8 = (d. I) € A, if & is not the identity, then I=(y) N I~ (8y) is empty and
I=(y) is an arc-component of an admissible set I=(¢(y)) of M. Thus for each
y € N there is an x € M such that I~(y) is isometric to [ ~(y)., and, conversely,
so by proposition 1 M and N are indistinguishable.

Proposition 4: Let M = V X R be a spatially compact standard space-time;
suppose compact V has zero curvature and for all x € M, r(x) is trivial,
Then for any (topological) space-form § admitting a metric of zero curva-
ture, there is a space-time N = § X R indistinguishable from M.

Sketch of Proof: By proposition 3 we know that because r(v) is trivial for all
x € M, so thatip.r(x) is the identity element and thus a normal subgroap
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ol i m(pI=(x), px), M is indistinguishable from its universal covering U =
I* X R. The idea is that for every Euclidean space-form § there is a
space-time that is topologically $ X R and indistinguishable from U and
lience from M. This will follow if the projection on R? of the chronological
past of every world-line in U is suitably bounded.

Let q: R* — V be a Riemannian covering map. From the proof of
proposition 3 we know that the map ¢: U — M given by ¢(a, t) = (g(a), t) is
i covering taking the chronological past of every world-line on U isometri-
cally onto the chronological past of some world-line in M. For every y on
M. then, I7(y) must be an admissible set for the covering (U, ¢); it follows
that pI=(y) must be an admissible set for the covering (R? ¢) of V, so
pl () must be simply connected.

Lot B(b, r) be an open ball in R? with radius r containing an arc-
component of pI=(y). Then B(b, r) must also contain the projection pI~(o)
lor some world-line o on U. Moreover, since the volume of pI~(x) for v e M
i~ a [unction only of the time coordinate and does not depend on the
location of px in space, the same value of r may be chosen for every
world-line o on M. In fact, r may be taken to be the length of any curve in
apenerator of the fundamental group of V. It follows that for every world-
line er on U, pI~(a) is contained in an open ball of radius r.

Now let 87 be a (topological) Euclidean space-form. §' is homeomorphic
taspace S that is the quotient of R* by some group G of isometries of R%.
lvery such group is described by a finite set of generators and their
relations so that if two sets of generators satisfying these relations gener-
ale groups G, G, then RYG is diffeomorphic to RYG’. For each group,
the generators consist of translations and possibly compositions of transla-
tions and rotations, and there are no restrictions on how large the transla-
tions may be; that is, for any positive n, we can choose translations ¢ in the
pencrtors so that the distance from x to (x) is at least n. Thus we may
chnose generators so that the shortest distance a point is moved by any
penerator (and hence by any element of G other than the identity)? is at
least o I particular, for any space-form ' we may choose G so that § =
1tV with § homeomorphic to §', and the shortest distance any point in
fi ' in moved by any element of G other than the identity is 2r.

e quotient space § = RYCG admits a differentiable and metrie strue-
e sueh that the covering map g: B* — 8 is dilferentiable, of maximal
vanle, andd o loeal isometry, Consider the space-time N = § X R with the
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same expansion function as U. Exactly as in the proof of proposition 3, we
may define a covering of N by U in terms of the covering of § by R?, show
that for all y € N, I(y) is admissible, and thus prove that N and U are
indistinguishable. It follows that N and M are indistinguishable, since U is
indistinguishable from M and indistinguishability is an equivalence rela-
tion.

Propesition 5: Let M = S*X R be standard, and suppose that the length
(in radians) of the projection on §% of every null geodesic on M is less than
or equal to w/n, n > 0. Then M is indistinguishable from a space-time N =
$%Z,, X R, where Z,, is a cyclic group of isometries of orderm = n. If M =
$%Z, X R and r(x) is trivial everywhere, then M is indistinguishable from
N=58%,XR m=sn.

The proof of proposition 5 is omitted, since it involves no new ideas and
is immediate from the structure of the groups of isometries (given in Wolf,
1967, p. 224). It should be noted that certain global assumptions will
reduce or eliminate the variety of indistinguishable space-times. If it is
required that space-times be standard and satisfy the global cosmological
principle—that is, that the group of global isometries of space act
transitively—then any two indistinguishable space-times of constant
negative space curvature are isometric. The possible topologies for
standard space-times of zero curvature are reduced to R" X T? ~™XR,
where m < 3 and T* =~ ™ is the (3 — m)-dimensional torus. Calabi and
Marcus (1962) have shown that if the global perfect cosmological
principle—that the group of space-time isometries act transitively—is
introduced, then the only complete standard space-times of constant posi-
tive curvature are the De Sitter space-times.

We note some examples. The De Sitter model is a hyper-hyperboloid
in five-dimensional Minkowski space, with the metric induced therefrom.
The metric can be given the standard form

ds* = di* — cosh? (1) (dX® + sin® X(d©¥), 0 <X <.

Consider the class of models, (D, n), of this kind given by the family of

expansion functions
cosh? (nt)

where n is a positive integer. The maximum spatial coordinate distanee
traveled by a light beam leaving i point on the equatorial sphere is

it}
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°_dt _ w
A cosh (nt) 2n

Thus the maximum spatial distance traveled in all of time is just #/n. By
proposition 5 we have that the models (D, n) are indistinguishable from
models with topology §%Z,, X R, m < n.

Consider the family of spatially open, Euclidean models, M, with cos-
mological constant A = —8mpg,. The metric form can be written

ds* = dt* — &' (dx,? + dx,® + dr?)
and we have (see Tolman, 1934, p. 403) the differential equation

2
M - Bﬂﬂ e8| é QEN)
dt 3 3

which integrates to
g =12kt +d

P _ 8w A2
ol constant, k = —3‘@1» == The radial velocity of a light ray is therefore

dridt = e~ Vitkt + @

andd hence the coordinate distance traveled in all of time by a light ray
leaving its source at an arbitrary time is finite. So by the argument of
proposition 4, for every time ¢, and for every Euclidean space-form V,
there is a space-time N that is topologically V X R and is indistinguishable
from the space-time M; obtained by deleting from M all points oceurring
at time ¢ or earlier. All of these space-times are incomplete, but since they
are strongly causal it follows from the work of Clarke (1970) that they can
he made null complete by a conformal change in the metric.

Notes

L 1 shall assume that the reader is familiar with the standard terminology and facts about
vovering spaees. See, for example, Wolf (1967), section 1.8.

2 See Woll (1967), p. 39,

A See Wallace (1967), p. 155,

L Wall (1967, p. 41,

A Lomit the argument (for seventeen different cases) that the generators can be so chosen
it 1 n s the shovtest distance 1 peint is moved by any generator in G, then every element
al €2 other than the identity moves every point at least u distance d.
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DAVID MALAMENT

Observationally
Indistinguishable Space-times

In his paper “Indistinguishable Space-times and the Fundamental
Group™! Clark Glymour poses a criterion for the observational indistin-
gruishability of space-time models and presents two sets of examples from
the subclass of Robertson-Walker models. The underlying idea is quite
intuitive.

In some space-time models studied in relativity theory any particular
observer can receive signals from, and hence directly acquire information
about, only a limited region of space-time. This happens, for instance, in a
rapidly expanding universe in which galaxies that might try to signal one
another are actually receding from one another at velocities approaching
that of light. It may turn out in these cases that the information from that
limited region of space-time which any one observer can have access to is
compatible with quite different overall space-time structures. Two space-
times are observationally indistinguishable under Glymour’s criterion if,
for precisely these reasons, no observer in either space-time would have
grounds for deciding which of the two, if either, was his. No observer
would be able to discriminate observationally between the two even if he
did nothing but sit and record signals beamed at him from all directions all
day long, even if the signals themselves coded all the spatio-temporal
information that the sender had to offer, and even if the observer lived
clernally.

Glymour is proposing a reason why the spatio-temporal structure of the
universe might be underdetermined by all observational data that we
could ever, even just in principle, obtain. Some claims of un-
derdetermination in science are of a very general sort, to the effect that no
hody of evidence will ever force a particular scientific hypothesis upon us
novre: Most of the ideas in this paper arose in conversation with Robert Geroch and Clark

Clymour. I have not hesitated to incorporate their many contributions. I am grateful to
huth.
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