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35.»%. Rather than attempting to characterize a relation of confirmation’ between evidence and
theory, %__mﬂnao_o@ might better consider whick methods of forming conjectures from evidence, or
of altering beliefs in the light of evidence, are most reliable for getting to the truth. A logical
framewark for such a study was constructed in the early 1960s by E. Mark Goid and m_mmé Putnam.
This essay describes some of the results that have been obtaiced in that framework and their
mﬁnanmuna for philosophy of science, artificial intelligence, and for normative m?ﬁmﬁ&Omw when

truth is relative.
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Philosophy before and after mid-century is united in a rejection of a central goal
of traditional epistemology from Plato to Boole: a theory of discovery. Plato and
Aristotle thought the goal of philosophy, among other goals, was to provide
methods for coming to have knowledge. This same conception utterly dominated
ﬁEuomovrw in the 17th century. It was Descartes’ claim to have found such a
method, and the disputes between him and his critics were in part over what it is
to be a method of discovery at all. Leibniz not only advanced the conception of
method, but provided a thesis about it that guided logical investigations into the
20tk century. In my view, the central 18th century dispute in philosaphy, between
Hume and Kant, was fundamentally about whether we can have methods. of
inquiry that can be known to be reliable. The latter part of the century provided
in Richard Price’s interpretation of Bayes’ muao_um_ummma yet another proposal for a
universal method of discovery. English-speaking philosophers of the succeeding
century .were equally absorbed with discovery: John Stuart Mill popularized a
method plagarized from Bacon and, in aid of a method for discovering causal
relations from probabilities, George Boole made the largest advance in logical
theory since Aristotle.

But after 1925 or thereabouts, there was in philosephy m”Ecmﬂ nothing more of
methods of discovery. A tradition that joined together much of the classical
philosophical literature simply vanished. From about 1930 to about 1960
philosophy of science was in fashion, and cerfain questions of epistemology — the
existence of sense-data, for example, and the role of stipulations in our systems of
belief — won the attention of even the most eminent philosophers. These were not
the sorts. of epistemological questions, however, that were the principal focus of
epistemology for major philosophical writers before our century. And since the
middle of the 1960s scarcely any major philosopher has thought even these
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epistemological questions worth much bother, let alone questions as to the
method of making discoveries or the limits of the discoverable. The Eq
questions. are now commonly thought to be absurd and to make false and 4%
presuppositions of one kind or another. As late as the 1980s a @Emomomuw
reporter could truly announce that most philosophers hold that there is an,
be “no systematic useful study of theory construction or discovery.” (Insc:
they gave any heed to the question at all, the same might well have been s
most scientific practitioners: of statisticians, social scientists, economists, ph
cists.) The pre-eminent view among philosophers nowadays is that oﬁmﬁ ¢
knowledge, or to the possession of normative standards for methods of acquir, e
knowledge, are so much rhetoric, so much politics; truth, insofar as it is a u
notion at all, is relative to the conditions of the believer, and there are no maf
of fact independent of the inquirer and the community.

In contrast, traditional epistemological questions were at the very heart o
century’s revolutionary developments in logic and computation theory. Froni!
mathematical logic of Hilbert, Gédel and others, from the theory of computatjs
created by Church, Post and Turing, and from the theory of recursion .the
developed in the last twenty five years a beautiful mathematical theory
methods of discovery and of the limits of knowledge, a theory that &3 i
addresses the central epistemological concerns of the great philosophical :m&.n.
before this century. It is a theory about &mooﬂﬂ.w that is nice in itself, of u
serious scientific concerns, and even applies to the concerns of the effete
contains epistemological nmorms for those who hold that truth is relativ
conceptual scheme. The subject has lain almost completely hidden from the s
of philosophers and practitioners. I did not come upon it until ten years ago, af
I had written a book on epistemology that concluded by calling for the creatiol

a theory whose fundamentals had already existed for fifteen years. My aim i
tell you something about the development of this subject, and to discuss SOME
its applications.

The Platonic-Positivist Epistemic Hierarchy ‘

Plato’s Meno presents a view about inquiry and discovery that has had
enduring appeal. In that dialogue the Socratic task is to learn truths of a speci
kind. From a logical point of view, what is to be learned, for example about. thel
nature of virtue, is a universal biconditional sentence without disjunction that
serve as ap appropriate definition, e.g. of “is virtuous.” The learning is’
-example and counterexample. Socrates presents examples of virtuous things an
their features, and examples of things that are not virtuous and their features; t
correctness of the data of the examples and counterexamples is never in dou
What is it that Plato requires in order for someone to have discovered in this
the answer to the question, “What is virtue?”” To know the answer, one must
upon the correct definition of virtue, and know that one has done so. One m
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o the kind of certainty that amounts to a dogmatism, and reserves no right to

w:aamao! opinion can change, knowledge canmot. How such knowledge is

assile is the point of Meno’s challenge to Socrates: How will Socrates ‘recognize
E@.@E when he comes upon it? Plato’s answer appeals to an internal oracle that
hehow guarantees the correctness of certain definitions.®> Without the oracle,
ﬁmnm is firm save the examples and the countersxamples.
In the 1930s, philosophical conceptions of discovery were essentially Plato’s but
thout the oracle. It was supposed that there arc some matters that are simply
ﬁmu_,. and either permanently or contextually fixed. They are the “‘sense data™ or
hservation statements” or “‘protocol sentences.” They met the Platonic criter-
for the discoverable: once accepted in the context of some inquiry, one could
‘sure that they would not be abandoned. Only two other kinds of discoveries
_ met that criterion: mathematical truths, and sentences verified by the data. With
“only: a little logical knowledge, philosophers in this period understood the
“verifiable and the refutable to have special logical forms, namely as existential and
__“E?mam_ sentences respectively. There was, implicitly, a positivist hierarchy (see
‘mmmﬁm 1). Positivists such as Schlick confined science and meaning to singular
" data and verifiable sentences; “anti-positivists,” notably Popper, confined science
- 8 the singular data and falsifiable sentences. In both cases, what could be known
. m%..uﬁn@ﬂm@ consisted of the singular data and verifiable sentences, although
there is a hint of something else in Popper’s view. In Popper’s conception of
..Wu.m:E consists of conjecturing falsifiable sentences and attempting to falsify
‘them; Popper in effect agreed with Plato that knowledge requires a kind of
,&&“nﬂmcmm? but unlike Plato he did not think that the process of science obtains
.wumﬁa@ma. Popper and the positivists agreed that there could not, in any case, be
an algorithm for carrying out scientific inquiry. Why not?
‘,,,.__A.w._ the Platonic conception, an algorithm for scientific discovery must be a
procedure_that examines data and, after a finite time, announces the truth.
Whenever the procedure results in such an announcement, it must be correct.
There must be no possibility of revision. The Platonic conception of an algorithm
for discovery was also the philosophers’ conception in the 20th century, but the
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Fig. 1. The positivist hierarchy.
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philosophers did not hold with oracles. They rightly believed that no
algorithm is possible for the claims of science. There are algorithms of this
that will reliably conclude when universally quantified formulas are false;:jg
none that will conelude when they are true, and science is filled with what app
to be universal claims. That is one reason for denying that there is an algor
for scientific discovery. Another is the changes ip physics that had taken Emo_w
the three decades before 1930, and that were familiar to many philosopheri
there were an algorithm for discovery, one could -only think that the practi
science embodied a social version of it. And if there were such an algorj
embodied in scientific practice, then most certainly by the latter half of the:{
century that algorithm had agnounced the truth of Newtonian physics.
Tindall, for example, announced in popular lectures that the framewor]
physics was fixed forever; all that remained to do was to find the various f
laws. The years between 1905 and 1926 utterly demolished Tindall’s claimy
further reason for thinking that empirical discovery could be subject to algoriij
was the authority of Albert Einstein, who with charming inconsistency claim
both determinism in human affairs and that scientific theories are ,ﬁ..
creations.” For Popper - who quite confused a psychological question with
mathematical issue — it sufficed to quote Einstein to disprove the possibility G
discovery algorithm; for Carnap it sufficed to quote Popper quoting Einsteiy)

The Entscheidungsproblem and Algorithms for Mathematical Discoverys

Frege’s remarkable logical achievement was a theory of proof; a proof theory
what is now known as first-order Jogic is explicit in the Begriffschrift. Ty
questions naturally arose for which Frege provided no answer: Is.the syste
proof complete? Is there an algorithmic procedure that will, for any formil
decide whether or not it is provable? The importance of these questions i
course, episternological. Hilbert and others suggested that a positive answer to
two questions would show that it is in a sense in principle possible to carry g
Leibniz’s vision. If Hilbert and Ackermann’s proof theory, for example,
complete and admitted a decision procedure, then there would exist a metho
discover the consequences of any first order axiomatization. _

Not long after the questions had been clearly formulated, Godel answered
first question affirmatively, and gave reason to think the answer to the seco
question is negative. Church and Turing settled the question altogether. Insof
"the philosophical community tock note of the epistemological significance of
resillts, they cemented the conviction that there can be no such. thin
algorithms for empirical discovery, and no interesting theory about them. And’
from a logical point of view, because of Gddel’s completeness theorem,
_undecidability of the validity of first order formulas did not quite kill the idea
an algorithm for mathematical discovery. Rather, it throws into clear relie
epistemological idea about what it is to come to know something, an idea th
quite different from the Platonic and the Positivist conception.
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' consider trying to discover whether or not a certain first-order formula & is
+1 Since Hilbert and Ackermann’s system is complete, if @ is valid there is a

. qalid. : " . X
: .H,..o% of it. Since there is a decision procedure that decides whether or not a finite
wmwum:nn of formulas is a proof, and since the collection of all finite sequences of

" gell-formed formulas can be effectively enumerated, we can imagine a procedure
,_m.h,mﬁ examines each finite sequence of formulas in such an enumeration in turn,
and checks to see whether or not it is a proof of ¢, and stops when a proof is
' found. Call this procedure P. The procedure P will eventually find a proof if in
fact @ is valid. Otherwise the procedure will continue on forever. Suppose now
that we adopt the following rule for formulating hypotheses as to whether or not

& is valid:
m.._ﬁ stage 1, P does not say that a proof of ® has been found, conjecture that @ is
not valid. ‘ .

_Ts this an algorithm for acquiring knowledge about logical truth? Clearly not, if
woa_a conception of what it is to-know is Plato’s. Using this algorithm, if @ is not
valid, there is no time at which you can be certain of that fact, no time at which
you can rock back and say, “No further evidence is needed.” But the rule for
formulating conjectures has a property that suggests a different concéption of
what it is to know: Using this rule, there is some finite stage after which your
conjectures as to whether or not @ is valid will always be correct. Eventually you
will be right forever after, although if & is not valid you will never know when
that stage has arrived, and you will never be able to dispense with further
evidence. Perhaps that is all knowledge requires. Perhaps you know the truth
about the validity of @ if you are disposed to conjecture by a rule that has this
convergence property and you have in fact reached a stage after which conjec-
tures made according to that disposition are always correct. Call this sort of
relation knowledge in the limit.

I doubt that there is one true account of what it is to know, but certainly this is
an interesting knowledge relation, and one we can have even when we can’t have
the sort of knowledge Plato required, When. can we have knowledge in the limit,
.and when not? We have just seen that we can have it for the validity of any first
order sentence. When can we have it for empirical issues? There’s a good
question,

| Hn...mumw Putnam and Gold

The epistemological idea about knowledge in the limit is implicit in many contexts
in the 20th century. Abraham Robinson remarked that something like it is to be
.moEa in Godel’s proof of the completeness theorem. But the articulation of the
ldea came almost simultancously in the 1960s from two independent sources,
Hilary Putnam and E. Mark Gold. It seems likely that Putnam took the idea from
Hans Reichenbach and combined it with reflections on Turing’s conventions for
the Output of a computing machine. In Putnam’s words:
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we know what sets are “decidable” — namely, the recursive sets (according to Church’s Hrnm_& s
what happens if we modify the notion of a decision procedere by (1) allowing the Procedyrgy
“change its mind” any finite number of times (in terms of Turing machines: we visualize the
as being given an integer {or an n-tuple of integers) as input. The machine then “prints out” 5
sequence of “yesses” and “nos.” The lzst “yes” or “no™ is always to be the correct answer.); ind
we give up the requirement that it be possible ta tell (effectively) if the computation has termis,
I.e., if the machine has most recently printed “yes” then we know that the integer put in as input
be in the set unless the machine is going to change its mind; but we have no procedure for teljid
whether the machine will change its mind or not. :
The sets for which there exist procedures in this widened sense are decidable by "empit
means — for, if we always “posit” that the most recently generated answer is correct, we will ma)25
finite number of mistakes, but we will eventually get the corvect answer. (Note however, that nwcnp\

we have gotten to the correct answer (the end of the finite sequence) we are never sure that vwe il
the correct answer. . . A
Instead of requiring that the sequence of “yesses™ and “nos™-be finite and non-empty, we m
requice that it should always be infinite, but that it should consist entirely of “yesses” (or entir B
“nes™) from a certain point on; the class of predicates obtained. . .is easily seen to be unchang :

mvnrm
.

Gold called such sets “limiting recursive”, Putnam called them the extengjg :
of “trial and error predicates.” Gold’s terminology has stuck. Gold and Puin ._ﬂm
each proved the same main theorem: A set is limiting recursive if and only if i
in A, in the arithmetic hierarchy. Gold proved a similar result for recurs
functionals. Putnam’s proof is easy and instructive. _

Recall that the A, sets in the arithmetical hierarchy are the following: A set § is X, if there is a foy
Jx¥yR(xyz) such that R is a recursive predicate of triples of numbers and § is the set of all numhez
satisfying the formula. A set is I, if its negation is £,. If you drive the negation through the quantifizsy
in a %, formula you get a formula that is universal existential with a recursive predicate. ‘A set
provided that it is both X, and I1,. In other words, a set is A, provided that there is a fo
AxVyR(xyz) such that R is a recursive predicate of triples of aumbers and 5 is the set of all numl
satisfying the formula, and also there is a formula 3xVyP(xyz) such that P is a recursive predicay
triples of numbers and the complemerit of 5 ts the set of all numbers satisfying that formmla.
Suppose that S is an arbitrary set of numbers, and there is a Turing machine T that for ¢
number n coverages in the limit to “yes” if n is in § and converges to *no™ i

if n is in the compleme

limit to “no”* car each be formalized in number theory, e.g. Am¥n > m— T(x, n) = 1 and ImY
n>m— T(x, n)=0, where ‘T(x, n)" denotes a total recursive function. So they are each in Mp..m.mw_m%..
by assumption T must for any input converge to “yes” or “ne’” and cannot forever vacillate, ‘Tiof
input x converges to 1' is satisfied by a value of x if and only if for every stage y of computation
that T(x, ¥} is not 1, there is some later stage z for which T(x, z) = 1. So ‘T on input x converg
the limit to “yes” is also equivalent to ¥y3z{T(x, 3} #1—> (2> y) & T(x, 2} = 1)}. 80 the predicaich
also I1,. Hence S is a A, set. : ;

Suppose, conversely, that §is a A, set, Then J is a set of numbers that satisfy IxVyR(xyz) for somi]
recursive R and the complement of § is the set of numbers that satisfy 3xVyP(xyz} for some recursiel
F. Let T1 be a Turing machine that computes (in the usual way) R{xyz) and let 70 be a Tunn]
machine that compites (in the usual way) P(xyz). Given input z, the set of all triples xyz can b
effectively enumerated. Let {n,m, 2}, denote the ith triple in some such enumeration. For ca
using T'1 & machine T11 can check effectively whether or not 3xVYyR(xyz) is true in the set o
triples (n, m, z}, for £= k. Let the output of T11 be 1 for the ith set of teiples if TxVyR{xyz) is ¢
satisfied and 0 otherwise. Similarly, using 70  machine 700 can check effectively whether or ify
AxYyP(xyz) is true in the set of all triples {», m, 2}, for i = k. Let the output of T00 for the ith triplf
be 1 if 3x¥yPlxyz) is thus satisfied and 0 otherwise. Now let 7{z, n) be the machine that on inputf]
gives an infinite string of outputs whose ath, T{z, ), is 1 if 711(r) is I and is preceeded by a longy
uninterrupted string of 1s than is T00(»), and let T(z, #) be 0 otherwise. T(z, n) is the machine
computes § in the limit.
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f&ogm& tied to computation, the idea behind Putnam’s proof has a more
.ral epistemological significance. Suppose given any triple of objects (u, v, w)
have some way of determining whether or not they satisfy R(xyz). Never
m. about computers, just some way. Suppose, over some domain you can
estigate each triple of objects making the determination as you go. Then if
RS%A‘QNV is true, you can know in the limit that it is: just keep guessing “yes”
the formula is satisfied for ali triples (with z) you have seen so far, and “no”
cherwise. If the formula is true after a finite time you will find a value of x that in
it stands in the relation WOQNV. for all values of y, and you will be correct in
your guess ever after; if the formula is false, you will either converge to “'no” or
_.W.,&wnmn from “ves” to “no” or back again infinitely often. And if it is the case that
. j formula F is true you can know it in the limit, and also that if — F is true you
an know it in the limit, then by running the two inquiries jointly you can know in
' fhie limit whether or not F (and likewise whether or not —F) is true. It looks as
~though what you can know in the limit is characterized by existential and
" gpiversal quantification over what you can know in the Platonic way.

moumaamnaa Relations and Languages

'How does one get from the characterization of the limiting recursive sets of
numbers to an understanding of empirical questions for which discovery methods
do and do not exist? There was a direct route, which was not taken. Hilary
Putnam seems to have come to the idea through two prior papers about
limitations on the reliability of Carnapian confirmation functions.” His arguments
assumed in effect that there is a collection of possible relational structures, and
the learning procedure is given, singular fact by singular fact, the diagram of some
structure in the collection. At each stage the learner must either guess a
hypothesis or alter the probabilities it assigns to the hypotheses in light of the
evidence. The question is whether the machine can eventually output the truth, or
eventually always give the true hypothesis: a probability {or degree of confirma-
tion) greatér than 1/2. These papers are wonderfully prescient in seeing that

- confirmation theories are cogs in possible learning algorithms and in struggling to
form a framework in which to evaluate such algorithms. They were unfortunately
wrong in their optimism. Writing in 1963, Putnam saw that there was a rich
structure to investigate and assumed that logicians and philosophers of science
would turn to uncovering it. By and large save for his own work and Gold’s that
didn’t happen, and by the time Putnam’s vision was realized, confirmation theory
n0 longer interested philosophers.

Gold applied the idea of limiting recursion to issues motivated by Chomsky’s
work rather than by Carnap’s: the problems of language learning. The application
is quite natural. Chomsky was concerned with Universal Grammar — the gram-
matical features shared by all possible human natural languages - and a principal
tonstraint on that hypothetical grammar was that, whatever the set of possible
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human natural languages might be, it must be possible for a human to le
parse any language in that collection. What collections of languages mee
condition? o
Gold reformulated the question this way. Give the well-formed senience
:Emcwm@\ Godel numbers, Then, syntactically, a language L can be represerit,
a recursive set of numbers. One way to view a parser for the Hmmmsmmo is then' g
Turing machine or other program that decides for any number whether or not
the number of a grammatical string in the language. We can effectively enumer;
the Turing machines, giving each program a number or index. Learning to pay
language implies that one has identified, at least implicitly, the index of a prg
for deciding the set of well-formed strings of that language. Suppose that
would-be learner receives the well-formed strings of the language in some ords
and never receives (or ignores) strings that are not in the language. Every string
the language eventually occurs, and a string may occur any number of times
infinitely often. Suppose after each string is received the learner guess
program (or an index for a program) that he conjectures will parse exactl wH
unknown language. For what collections of languages does there exist a lea 7
who, no matter which language is the correct one and no matter in what ord
data are received, will obtain limiting knowledge of the index of a ?qum
parse the language?
Gold showed that there are simple collections of languages that canno
learned in the limit by any possible learner, not even by one free of computati
constraints. A famous and simple example is the collection consisting of all f
subsets of V together with N, _
Gold’s paper was followed in the next twenty years by a great deal of wor
language learning. The assumptions about data and comvergence criteria wereg
altered in various ways, notions of approximation introduced, relations among
paradigms were studied extensively, the effects of methodological stricture:
the capacities of learners were studied, and ever more psychologically ‘realisf
learning constraints were investigated. Many of these results are presente
Oslerson, Stob and Weinstein’s Systems That Learn. One of the fundame
results of this literature was obtained by Dana Anghuin, who provided a cha
terization of necessary and sufficient conditions for any subset of the collectio
recursively enumerable languages to admit a learner that could identify
language in the collection in the limit no matter the order in which the strings’
the language were presented as data. Of course these collections & alternati
languages were necessarily countable.

Learning Theories

Despite the interesting methodological structure of the studies of languagt
learning in the limit, it was not evident just how to make it apply to the questid
with which we began concerning methods of empirical discovery. The movemen



MATHEMATICS OF DISCOVERY 83

atnan’s original concerns began with Anghain’s student, Ehud Shapiro.®
: ,wmnm:,oﬁ discussion of the problem of deciding validity, and the existence of
: _..a, sdures that will decide validity in the limit. In the same way, there are
edures that will decide entailment in the limit. This suggests a sort of
porian approach to discovery: moH..EEmﬁo a Eﬁomﬂomwm“ gather evidence in the
‘of singular sentences and see if, in the limit, all of the evidence can be
educed from the hypothesis and no denial of any evidence sentence can be so
; %mmnma. Somehow order the possible hypotheses so that their testing, gathering
?mm,ﬁ evidence, changing conjectures appropriately, etc., can be dovetailed.
“Shapiro described algorithms of this sort that find a true finite axiomatization of
of the atomic sentences true in a structure when such an axiomatization exists.
mﬁnn&omﬁnm occurring in the hypotheses must be the same as those occurring in
¢ evidence. , .
Suppose Wwe consider a collection of relational structures for a language.
“Jmagine that one of the structures, we know not which, characterizes our actual
- greumstances. Whichever world is actual, we will receive from it a sequence of
ingular facts characterizing the diagram of the structure. The order of the
*sequence of data is not subject to our control. Generally we want something other
'ihan a true finite axiomatization that entails all of the true atomic sentences. What
“.giight that be? _
It might be that we want to know which theory within a certain class of
" alternative theories is correct. Suppose so. We could learn 4 theory in the limit in
“.Mwm least two different senses. In one sense, called EA or uniform learning, we
‘learn a theory by converging in the limit to a conjecture for that theory (or if the
" theory is not finitely axiomatizable and we insist that the outputs of our
" conjecturing process be finite objects, to a program for computing a set of axioms
- for the theory). So there exists a point after which all of our conjectures about the
‘{dentity of the true theory are correct. In another sense, called AE or non-
_ uniform learning, we could learn a theory by converging in the limit piece by
piece. That is, for every theorem of the theory there exists a point after which
- every theory conjectured entails that theorem, and for every sentence that is not a
theorem of the theory there exists a point after which no theory conjectured
entails that sentence. Kevin Kelly and I characterized by syntactic classes the
cases for first order theories in which the true alternative can (and cannot) be
identified in the EA or AE sense, cither by Turing computable learners or by
learners that embody arbitrary functions - learners who have powers that trans-
cend the computable. Later work extended the classification for AE theory
learning to cases in A.mmnw quantified sentences occur in the data.”

Another thing we might want in empirical inquiry is the answer to a specific
question. We might consider discovery problems set up closer to those Putnam
envisaged, in which a question is posed by a first order sentence whose truth value
is to be determined, data is obtained from an unknown structure in a collection of
alternative structures, and conjectures are made as to the truth or falsity of the

A
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sentence in the unknown structure. This case was investigated by Dan Oshey,
and Scott Weinstein,' who distinguished a number of alternative senses!
convergence to the truth: the learner can converge to the correct truth valye’ mom.
if @ is true but possibly fail to converge otherwise; converge to the correct
value for @ if € is true but possibly fail to converge otherwise; converge i
correct truth value if @ is false; or do both. They showed that for learners
“free will” AE theory learning is possible if .and only if there is a learner who
converge to the truth for any sentence in the language of the theory. Impo
methods from the investigation of language learning, they showed that varj
Eaﬁomowo%o& principles, such as consistency and conservatism, Rﬁnﬂ
scope of the reliability of any Turing-computable learner. And, by the
means, they characterized the conditions for which it is possible to o
knowledge in the limit about the truth of a sentence, provided the ::Sao
alternative relational structures is countable and the learner is required to syuc
on all possible orderings of the complete data true in a structure.
This work on learning theories had two obvious points of weakness, shar
principle by the work on language learning. First, the collections of mxmn_m
structures or theories over-which discovery is possible may be uncountable. Thi;
are, for example, uncountably many distinct purely universal theories, but the
a learner (in fact a Turing computable learner) that will learn (AE) any pir
universal theory. But the characterizations of necessary and sufficient condit
for knowledge in the limit, whether of languages or of the truth or falsit
first-order formulas, were restricted to cases in which the number of alternaf
structures is countable. Second, all of the investigations considered, whethe
language learning or theory learning, assumed that every possible ordering of {
data could occur. The learner is never permitted to have prior knowled;
restricting the order in which the data arrive. In fact that is quite implausible
for language learning and for theory learning. To fully understand knowledg
the limit, these two artificial restrictions needed to be removed. Recent wor
Keily has removed them by returning to the original ideas in Gold’s and Putn
papers.

The Hierarchies

Suppose that the facts that may occur as data, whether the strings in a languag
‘singular or quantified formulas satisfied in a structure, are encoded as number

datum that occurs there, Now consider the set B of all such sequences. Extensiol
ally, any property of data sequences is a subset of B. For example, if the data
from languages, then for any language there is a subset of B corresponding to
set of all infinite sequences of strings from the language; if the data are fro
- relational structure, then for any structure Q..Q.o is a subset of B corresponding]
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of all infinite sequences of singular data. This suggests that the way to
¢ limitation of previous investigations to circumstances in which the data
anguage Or structure can occur in any order is to investigate which
" oerties of data sequences can be Known in the limit. That is, instead of
mm%ﬁum in terms of identifying languages or identifying relational structures or
3 Wmawum theories, let us ask the more general question: when can we know in the
“ e data sequence we are investigating has a specific property? If we

- _nE_w that th
gow the answer to that question, the answers to other questions will follow as

_‘ : gpecial cases.
-, Gold’s and Putnam’s papers suggest the following idea: what you can know to

pe. truie in the limit is what you can get by quantifying existentially-universally
over what you can know Platenically. Some analogies transform this suggestion
_ipto guides for investigating the possibility of knowing properties of data se-
: %mu.nmw in the limit: What you can know Platonically is just the initial segments of
data sequences. Quantifying existentially is analogous to-taking infinite disjunc-
tions, which is analogous to taking infinite unions. Quantifying universally is
“unalogous' to taking infinite conjunctions, which is analogous to taking infinite
intersections. We can describe a hierarchy of collections of subsets of B using an
analogy. Consider any subset S of B for which there is a set of initial segments
such that all and only data sequences in B having those initial segments are in S.
a1l the collection of such subsets $1. Consider the collection of subsets of B each
member of which is the complement of some set in 1. Call this collection I11.
Let Al be the intersection of 1 and I11. Now consider the collection of all
subsets of B that are {countable) unions of sets in II1. Call this collection X2.
Consider the collection of all subsets of B that are (countable) intersections of sets
in 51. Call this collection I12. Let A2 be the intersection of X2 and T12. Continue
in this way forever and ever again. The result is a hierarchy that is closed
upwards, the Borel hierarchy. .

The sets in 31 correspond to those properties such that if a sequence has such a
property some computationally unbounded learner can eventually have Platonic
knowledge that it does. (Just wait until one of the initial segments characteristic of
the set appears.) The sets in Il correspond to the properties such that if a
sequence fails to have the property, some computationally unbounded learner can
eventually have Platonic knowledge that it fails to have the property, i.e., that it
has' the complementary property. The properties such that some unbounded
learner can have Platonic knowledge of whether or not the data sequence under
investigation has that property are given extensionally by sets in Al

We might suspect that the knowledge in the limit available to a computationally
unbounded learner corresponds to sets in A2 in the Borel hierarchy. That is what
Kelly proved. In fact he proved something stronger. We can think of “‘background
,_Eos._namo: as given by a subset K of B. Starting not with the sets of data
sequences that share an initial segment but instead with intersections of such sets
with K, we can build a relativized Borel hierarchy. Kelly has shown that if P is
any subset of B, a computationally bounded learner with background knowledge
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K can know in the limit whether or not a data sequence is in PN X if and onl
P K is in A2 in the hierarchy relativized to K.

And what if discovery must be done by computationally bounded agents? Tg 5
key to the solution to that question lies in Gold’s use of the recursive functioy
Consider a Turing machine learner at work on a sequence from B. Ther
actually some @ sequence the learner is receiving as data, and at each stage 4]
learner outputs either 1 or 0. So the learner can be thought of as a part;
recursive functional Tz, n] where ¢ is the infinite sequence, and hence reajj :
function from  to w, and » is the stage of data presentation. A Turing machiy !
interpretation of such-a functional is as 2 machine that can, for any ¢ and
receive the first # values of 7 before producing an output. We are asking, in effa
not which sets of numbers are noavwﬁmcmn in the limit, but which sets of funct
from the natural numbers to the natural numbers are computable in the limj

Now just as there is a recursion theoretic (arithmetic) hierarchy for sets
numbers, there is a recursion theoretic (arithmetic) hierarchy for sets of funct
als. A functional of type (X, f), is just a finite sequence of k functions from P
o and j numbers. A relation is a set of functionals all of the same type: We éage
think of relations of type (1,0} as subsets of B. The recursion theoretic hierarc
can be constructed analogously to the Borel hierarchy, but using quantifiers rathip;
than unions and intersections. In the same way, starting with background
knowledge K, one can construct a relativized hierarchy. Kelly proved that/is
Turing computable learner with background knowledge X can know in the |
whether or not a relation obtains if and only if the relfation is A2 in this hierarchy
The same result is implicit in Gold’s Theorem 4. o

Together these results yield general characterizations for Turing computabi
and for computationally unbounded learners both of language learning in the limit4
and of detecting the truth or falsity of a first order formula in the limit. Thésd
characterizations are not limited to cases in which the number of alternative
structures or languages is countable, and they do not require that one assume th
every ordering of the data is possible.

Kelly’s results don’t close the subject; they open it up for application and
investigation. For example, Kelly derives a characterization of conditions und
which the truth or falsity of a given first order hypothesis can be known in thé
limit; one of the surprising consequences is that if any such problem can be solv
by a computationally unbounded learner, it can also be solved by a Turin
computable learner. So far as deciding in the limit the truth or falsity of a given
first-order sentence, the Turing computability of the learner is no handicap. Buit
that is not so when we consider the AE learning of theories. We have only limite
knowledge of when theories cdn be learned AE by a Turing computable learner;
We will come across a number of other open questions in what follows.

i

5]

Relativism

Whenever something is a lot of work folks are bound to Iook for reasons why it}
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% worth the effort. There are lots of complaints about limiting analyses of
rping that seem mere excuses. For example, that no one cares what happens in
The reply is twofold: first, that short-run results are much to be

gesired but require strong background knowledge that we often fail to have, and,
 second, if you can’t know the truth in .Eo fong Tun, you can’t know it in the short
qn either. Another is that the results and techniques can’t be applied to
«rpal” — meaning other people’s — problems. We'll see that they can be indeed.
_ her excuses appeal to some relevant factor of inquiry that is not explicitly

i)
v lea
. fhe long Tun-

still ot ) . h _
ﬁ%_.ommsﬁom in the formal representations —~ experimentation, for ‘example. The
response s that it is in principle straightforward to include experimentation in the

framework, and work to that end is already under way.

But there is a further objection that is more fundamental and that is surprising-
Iy interesting. Suppose one denies, EE,H many prominent contemporary
wE_omoE.ﬁau that there is any one common world of inquiry. Suppose one denies
that there are any facts of experience to serve as data that are independent of the
inquirer. Instead one holds that, depending on what one believes, on one’s
pistory, on the community to which one belongs, or other factors, there will be
different data. Even suppose that depending on such factors the very character of
logic may change. Then all of the results I have so far described are otiose; they
do not apply, they are “inoperative.” _

These are the suppositions that dominate contemporary philosophical discus-
sion. Their champions conclude that there are no such things as epistemological
norms, because there are no such things as intelligible epistemological goals. I
sind these views enormously distasteful. Each time I read or hear some plump and
comfortable academic saying such things I am overcome by images from Darkness
at Noon. But that is no reason not to think about the epistemology of relative
truth. It turns out to have an astonishing and intricate structure, altogether
unseen and unexplored either by its advocates or its critics.

Suppose that the world of experience is a function of some feature of the
inquirer. Even the most radical critics of science rarely hold that what one
experiences depends on what one believes or does and on nothing else. So the
world of experience is a function of features of the inquirer and of features, we
know not what, that are not subject to the inquirer’s power. For brevity let us call
the first set of factor’s the “conceptual scheme” of the inquirer and the second set.
of factors the “world in itself.” Then the world of experience is a function of-
conceptual scheme, which is subject to the inquirer’s choice and decision, and of
the world in itself, which is not. We can think of the world in itself abstractly as
simply a function that for each possible conceptual scheme determines a world of
experience (see Figure 2). "

Now if truth is relative and cannot be formed entirely by your will, then one
traditional epistemological goal becomes impossible: evidence cannot be expected
10 produce agreement among different inquirers. But the notion of invariant truth
unites agreement with another goal, getting to the truth, and when the possibility
of getting to agreement is eliminated, the possibility of getting to the truth, even




88 CLARK GLYMOUR

Investigator's States

1

.

m Worlds of
: Inquiry

s@ @ O ||
@

@ Olelolln

@ Q| D &

Worlds-in-themselves

@|o|eleln

Fig. 2.

the relative truth, remains. A perfectly intelligible epistemological goal is to f
the relative truth for you about some question. Since we do not wan
presuppose anything about logic, let a question be given simply by some §
string § over some finite set of elements. Each pair consisting of a world in j
and a conceptual scheme determines a status for the string: it is meaningful 3
true, meaningful and false, or meaningless. As the inquirer changes concepty
schemes the status of § changes,

A whole range of questions suddenly appears. We can think of a disco
problem as given by a set of possible worlds in themselves and a set of possit
conceptual schemes, with each member of their Cartesian product determinis
world of experience. Suppose the inquirer receives data from any worl
experience, just as in non-relativist discovery problems, but when he changi
conceptual schemes, the world of experience from which he thereafter rece
data also changes, depending on which world in itself is the actual one. Can
inquirer know the truth value of S in the limit? That might mean: can he fi
conceptual scheme in which § has a truth value and stay in that concep
scheme forever and converge to the correct truth value for §? Or it might m
can he reach a point after which his changes of conceptual schemes have no eff
on the truth value of § and after which his conjectures about that truth value,
correct? Or it might mean: is there a point after which § always has a truth v
and the inquirer always guesses the correct truth value for §, even thoug
(because the inquirer changes conceptual schemes) the truth value of §
change? A

It is easy to construct simple examples of relativistic learning problems in whi
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oae of these kinds of knowledge can be obtained. Moreover, these different
nses Of knowledge in the limit are strictly inequivalent; there are problems that
_ ‘..m_mu,mo?mc_o in the last sense buf not in the second, and problems solvable in the
_ EMoua sense but not in the first. One can show that restrictions on conceptual
; ..mn:q_ﬂwm restrict the capacity for knowledge in the limit in each of these three
% ases. For example, there are problems involving an infinity of possible con-
M@EE schemes that cannot be solved by any learner who is limited to a finite
qumber of alternative conceptual schemes.
" For the case in which the number of alternative conceptual schemes is finite,
Kelly and I characterized the relativist discovery problems that are sclvable in
each of these three senses of “knowledge in the limit.”” For each conception of
convergence there is a universal leamer that will solve any problem solvable by
gny learner. In order to guarantee success, some fairly intricate strategies must be
tollowed in deciding when to gather further evidence using a particular conceptual
scheme and when to change conceptual schemes. If you believe yourself to be in a
relativist systeml and your goal is to get to the relative truth for you, then the
features of such strategies are epistemological norms.
" Relativists might complain that they don’t know which relativist system they are
in, so they can’t apply the norms, and a norm that cannot be mm%:o.m is no norm at
all. Can they learn which relativistic system they are in? Perhaps they think that
which relativistic system one is in is relative to his conceptual scheme. Can one
then learn the relative truth value of strings interpreted as claims about which
relativistic system one is in? It would seem so in some cases if one follows the
norms. But to follow the norms one must know which meta-relativistic system one
is in. We can continue this way forever, just as with the Tarski language
hierarchies. Unless a relativist thinks he can get out of the game, there is an
epistemic norm for him.
These results only begin to touch the interestirig questions about the epistem-
- ology of relative truth. Consider that much else could be relative to the inquirer’s
conceptual scheme, including the very history of the imquirer’s conjectures.
Consider the troubles that can result for those who attempt to learn theories AE
in a relativistic system, when the truth is a function of the theory one conjectures.

Applications

One person’s application is another person’s theory. What potential applications
are there of these epistemological ideas to other enterprises?

THE HISTORY OF PHILOSOPHY

The epistemological ideas about discovery that emerged from logic and the theory
of computation are closely tied to history of philosophy, and they can be used to
look back upon that history. The effect is to illuminate very different aspects than




known in the limit.

Just where the costs lie remains to be investigated.
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ane finds in the histories of professional historians of philosophy. The convep
for example, is that Plato’s Meno paradox is a paradox about teference. It g7
Bacon's Novum Organum is essentially a concept learning procedure, wy
reliability can be described and compared with contemporary procedures, Kz
antimonies of reason are for the most part valid arguments about what cann;

PHILOSOPHY OF SCIENCE -

What remains of general Bﬁroaogm_omw discussions in philosophy of sci
consists largely either of arguments over “rational” réelations between Emoé
evidence or historicist recomendations for assessing scientific traditions
research programs. If the principal point of inquiry is to get to the truth, or
to certain kinds of truths, then these discussions typically establish nothing alg
the connections between the methodological notions that .are advocated an
goal of inquiry. Considerations of when knowledge 1s and is not possible i
limit, and by which inferential mﬁmﬁmm_mm keep the connection. Consider jusg
few examples.
Philosophers of science dispute when evidence is “relevant” to a hypothe
There are probabilistic accounts that follow a subjectivist framework and
evidence as relevant for someone if. it changes his degree of belief in.:
hypothesis; there are logical accounts, such as hypothetico-deductivism an
own “bootstrap” account of evidential relevance. Each of these accounts 1o
like so much logical or probabilistic sociology, and the disputes.among them o
look like equivocations. Consider whether a class of possible evidence senten
“relevant.” If the goal is knowledge in the limit, and someone is #Eosﬂ.
particular strategy, a particular rule for conjecturing, then evidence in the
can be relevant for him for a particular discovery problem provided th
limiting behavior would be different if evidence from that class were deleted fn
each possible data sequence. In a more robust sense, a class of evidenc:
relevant to a discovery problem provided that the problem can be solved W]
that class of evidence is included in the data sequences, but when the ?ogo
altered by removing evidence of that class for each sequence, knowledge i in
limit can no longer be obtained. These features of evidential relevance turn out!
be purely logical matters.
Methodologists dispute whether theories should always be consistent with
data and with background knowledge; whether the process of theory formaiy
and alteration should be conservative and not make changes unless, the curt
theory is contradicted by the evidence; whether theories should be simple in 0
or another sense, Each of these Bm"woao_om_nm_ principles will entail a cost
computationally bounded learners: there will be knowledge that can be obtail
in the limit but not by any learner who abides by the methodological restricti
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The extant results about knowledge in the limit connect directly with the
erns i ﬁEHomOﬁE of science that originally motivated Putnam’s investiga-
e putnam, recall, proved that for any “Carnapian” confirmation function for
; nmm&g% rich language there is a possible true sentence that never receives
9 ce of confirmation as farge as 1/2, no matter how much positive evidence of
m_hmma w%o&nam is presented. We can now see the same sort of thing much more
aw nerally. Suppose a probabilistic learner who changes probability distribution by
| dgitionalizing on the evidence (or by any other means) converges to probability
mnwmﬂnn than 1/2 for a sentence S if and only if that sentence is true. Then an
. mw vious corollary of Kelly’s characterization is that the miamwno sequences
,mm,mmqmmm § must be 22 in the appropriate .Ewamanrw. For example, if the evidence
mm.mmm.mc_mu and the set of structures consists of all countable structures mow the -
_ Emwﬁmm. then the sentence. must be logically equivalent to a sentence with a
* geries of existential quantifiers followed by a series of universal quantifiers. So it is
m.m& to give sentences and on__mnmosm of possible structures such that no prob-
abilistic learner can converge to probability greater than 1/2 in just the structures

in which the sentence is true.

© ARTIFICIAL INTELLIGENCE

_Thinking about limiting knowledge can somstimes be useful in understanding

* what a machine learning program does and doesn’t do. One example will suffice.
~ Patrick Winston developed a well-known automated system for learning rela-
" tional nouoovw from examples. The program will, for example, learn the concept
of an arch from examples of facts about systems of blocks that are and are not
-arches (see Figure 3). In terms of non-logical predicates “x is a block,” “x
wawonm y,” “x touches y,” “z is a part of u,” we could define arch by

YudxdyJzVw[Arch(u)<>xisapart of uand yis a partof uand zis a
part of u and x supports z and y supports > and x does not touch y and if
w is a part of u then w is identical with x or w is identical with y or w is-
identical with z]. .

Consider whether any system could know in the limit whether or not this formula
is true in a structure from data consisting of singular facts. Since the sentence is
not X2, we know that is impossible. How then does Winston’s program manage to
learn the concept? The answer is that the data the program is given is not
confined to singular facts, but includes universal data. The program is told, for
example, that a certain list of parts is all of the parts of an object. The hypothesis
is 1M relative to universally quantified data. _

" 'The enterprises of “‘circumscription,” “closed world assumptions” and so forth
that has occupied so much effort in' artificial intelligence appear to be simply a
. variety of methods for restricting the connection between data and hypotheses so
Em: finite singular data will tacitly contain universal information. There is nothing
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Fig. 3.

objectionable in giving a machine (or a person)} universally quantified data or d
otherwise quantified, and one may for reasons of application be intereste
finding one or another set of axioms that permit such information to be give
indirectly through apparently singular data. But there is no reason to obscure’
very simple epistemological structure at stake.

COGNITIVE SCIENCE

Mathematical cognitive psychology contains a number of “impossibil
theorems that assert the indistinguishability of certain hypotheses from evidé
of certain kinds. Features of short term memory phenomena, for example,
provably be accounted for either by serial or by parallel processes. The literati
on response times contains a number of such results.” Results of this sort'd
valvable in sorting out which of our allegiances are “‘working hypotheses”
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@Emmam_ background” for which we cannot hope to get empirical evidence
ain kind. They teach us that we must either be tolerant even as we pursue
nviction, or else we must look to other forms of evidence to establish our

of the first applications of limiting analyses was of this sort. Gold
dered a “black box” containing an unknown Turing machine. You can put

Jitferent inputs, forever. Suppose after each trial you attempt to conjecture the
future behavior of the machine. Is it possible to be right in the limit? Is there a
srategy for conjecturing such that there will be some time after which the
. Sm_mwoﬁﬁam_m@oﬁ the future behavior of the machine are correct. Gold proved
Cthere is not. If we have the computational power of Turing machines, then
" pehavioral evidence cannot reliably predict behavior even in the limit. If,
figwever, it is known that the black box can contain only some (unknown) fipite
iiiomaton, then its behavior can be predicted. -

- A consequence of Kelly’s characterization is a refiection that is almost intuitive- |
q obvious but so far as I know otherwise unremarked: It is impossible to
:“determine from input output behavior whether or not a system is computationally

- ‘bounded at all. That is, from data consisting of initial segments of the graph of an

. n.nwbcﬁw function, one cannot reliably determine in the limit whether or not the

” function is computable.

'COGNITIVE NEUROPSYCHOLOGY

Go.mma,.d neuropsychology aims to discover something about the functional
architecture of human cognition principally from data about normal human
“capacities and abnormal incapacities. Schematicaily, the theories neuropsychoto-
%mm produce are directed graphs with input vertices and output vertices. A
capacity is a list of inputs and an output such that there is a path from each of the
“inputs to the output. Different capacities can overlap in their set of inputs, and
- different capacities can have the same output. The internal vertices of a hypo-
: Eamn& graph represent “‘functional modules” where cognitive processing is -
-supposed to take place. )
- There are currently hot debates among neuropsychologists over the structure of
inference and the relevance of evidence in neuropsychology. Some argue that the
-structure of testing is hypothetico-deductive, some that it is a matter of boatstrap-
ping. Some argue that studies of statistical relations of incapacities in groups of
subjects are relevant data, and some argue that they are not. Some argue that
dissociations — the . occurrence of an incapacity and a capacity together in an
‘abnormal subject ~ are the most important data, others that double dissociations —
{the occurrence of an incapacity and a capacity in one subject and the reverse in
another subject — are the crucial evidence, Some argne that associations — the fact
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that certain incapacities or capacities always occur together — are just as importss
as dissociations.

There is a natural structure in these issues.that might usefully be clarifie
thinking through the issues in terms of what can be known in the limit.
neuropsychologists’ problems are about knowledge in the limit, rather than 5
Platonic knowledge, because they do not at any point know that the arr
observed combinations of capacities and incapacities exhausts the possibily
Misfortune might ‘at any time present a new subject with a new combing
Depending on background assumptions, observed combinations can be us
exclude various architectures, and strategies that take advantage of our kg
edge of learning in the limit may offer the possibility of increased reliabilit
the very least, the learning theoretic framework should move the focus, w
arguments over methods of argument to the fundamental question of the 3__
ty of inference and data acquisition strategies.

ECONOMICS

One place in which a kind of relativism does obtain is the social sphere. What
does or says can have an effect on the truth value of what one claims. Co
only stock market prognosticators. Games have a similar feature, in which
player's expectations for an opponent’s behavior depend on what the first pla ¥e
decides to do. Results about learning in the limit are a kind of a game in W
the inquirer plays against a demon: the demon tries to deceive the learner i
limit, the learner tries not to be deceived. If there is a strategy for the lear
such that the demon cannot succeed .if the strategy is followed, we say,;
discovery problem is solvable; if there is a strategy the demon can follow such t
no matter what strategy the learner follows he will be wrong in the limit, w
the discovery probem is unsolvable. In the relativist setting the relations betwee
the inquirer and the demon are more nearly symmetrical. A completely symn
cal version of leaming in the limit would be a setting for the investigati
infinite games, with and without noaﬁﬁmmoamu% bounded players.

Conclusion

There is a-great deal more to- be discovered about discovery, much o
undoubtedly not about knowledge in the limit. We should by all means see
discover what can be known in the short run with sufficiently strong backgro
knowledge and to understand how to measure the complexity of discovery and,
interaction of probabilistic ideas with computation and complexity. But we o
not for a moment to take seriously the claim that there is no systematic, rigor
informative theory of discovery. There is a very handsome, simple theory, ail
has an excellent pedigree.
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