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A general principle for good pedagogic strategy is this: other things equal, make the essential principles

of the subject explicit rather than tacit. We think that this principle is routinely violated in conventional

instruction in statistics. Even though most of the early history of probability theory has been driven by causal

considerations, the terms “cause” and “causation” have practically disappeared from statistics textbooks.

Statistics curricula guide students away from the concept of causality, into remembering perhaps the cliche

disclaimer “correlation does not mean causation,” but rarely thinking about what correlation does mean.

The treatment of causality is a serious handicap to later studies of such topics as experimental design, where

often the main goal is to establish (or disprove) causation. Much of the technical vocabulary of the language

used in research design textbooks consists in euphemisms for specific causal relations, e.g, “latent variable,”

“intervening variable,” “confounding factor,” etc. The multiplicity of terms used to refer to causation results

in confusion and, in effect, may hinder understanding of the basic principles of research design.

Defining causality is at least as hard as defining probability; neither idea requires a philosophically strict

definition in order for students to learn how to use the notions well. As with an understanding of probability,

an understanding of causality is best promoted by examples and formal principles in combination.

In this paper, we describe our efforts to reintroduce causation in teaching research design. We show how

causal graphs can be used to explain various elements of empirical research, and we report our classroom

experiences with this approach.

Causal Graphs, Markov Condition, Intervention

Causal graphs are directed acyclic graphs, in which vertices denote variable features of a system and edges

denote direct causal relations between these features. The joint probability distribution over the variables in

a causal graph satisfies causal Markov condition [3], which says, in effect, that a variable X is independent of

any variable it does not affect, conditional on values of the immediate causes of X. For example, given that

the drive shaft of an engine does not turn, the motion of an axle of the same car is independent of whether

or not the spark plugs fire. Two variables A and B in a graph are probabilistically dependent if there is a

directed path from one to the other of if there is a directed path to A and a directed path to B from some

third variable. For example, steering problems are dependent on glass on the road because glass on the road

may cause flat tire and this, in turn, may cause steering problems (Figure 1). Steering problems are also

probabilistically dependent on bumpy feeling and noise, as all three are connected by a common cause, flat

tire. Hearing noise makes flat tire more likely and this, in turn, increases the likelihood of steering problems.

A path, and the resulting dependence, can be made inactive by conditioning on (controlling for) one of the

variables on it.
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Figure 1: Example of a causal graph.

Another useful consequence of the causal Markov condition is conditional dependence of causes given their

effect. For example, glass on the road and thorns on the road, two ordinarily independent causes of a flat

tire become dependent if a flat tire has actually been observed, explaining each other away [1] as possible

causes of the flat tire.

The causal Markov condition also allows one to derive the consequences of external manipulation of variables

in a causal graph. The manipulation theorem due to Spirtes et al. [3] states that given an external intervention

on a variable A in a causal graph, we can derive the posterior probability distribution over the entire graph

by simply modifying the conditional probability distribution of A. If this intervention is strong enough to

set A to a specific value, we can view the intervention as the only cause of A and reflect this by removing

all edges that are coming into A. Nothing else in the graph needs to be modified, as the causal structure of

the system remains unchanged.

The Markov property is tacitly assumed throughout the design of experiments and in much of non-experimental.

We have found that students understand more clearly what is at stake in research design if graphical repre-

sentations are introduced from the beginning. In the remaining sections we briefly give some examples.

Randomization

Most research design textbooks explain randomization as protection from unsuspected sources of bias. With

the insight from causal graphs and especially the manipulation theorem, we can easily see that randomization

serves the purpose of breaking all alternative paths from the independent variable to the dependent variable.

Imagine a randomized controlled study of the effect of tobacco smoking on the incidence of lung cancer

(Figure 2). A flip of a coin determines whether a subject will be in the treatment group (smokers) or the

Figure 2: Smoking/lung cancer experimental design example.

control group (non-smokers). The coin is now the only cause of smoking. All other causes of smoking, such
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as possible genetic predisposition shown in the graph, are made inactive — the edges in the graph coming

into smoking are, according to the manipulation theorem, broken. If the incidence of lung cancer among the

smokers is higher than in non-smokers (i.e., lung cancer is probabilistically dependent on smoking), it can

be attributed to a causal influence of smoking on lung cancer. It is also clear from the graph that additional

variables that impact either the independent variable or the dependent variable alone (such as exposure to

asbestos in Figure 2) although contribute to variability in measurements, do not disturb in drawing causal

conclusions from the experiment.

Selection Bias

Graphical models show what happens when there is no randomization, or when the randomization is not

perfect. If there exists a variable that causes both the independent and the dependent variable (perhaps in

combination with a coin), there is an alternative path between the independent and the dependent variables.

An example of such situation is assigning elementary school students to various reading groups based on

a pretest of their intelligence or on how assertive their parents are in having them assigned to the “best”

group.

As the existence of a common cause between the independent and the dependent variables provides an

alternative path between them, it provides an alternative hypothesis accounting for possible probabilistic de-

pendence between them. The experiment is weaker in demonstrating causality. For example, in the smoking

experiment, if no randomization takes place, possible genetic predisposition influencing both predisposition

to smoke and to get lung cancer, is an alternative explanation for dependence between smoking and lung

cancer.

Subject and Experimenter Effects

The concept of placebo in experimental design has a similarly intuitive explanation. Obtaining a medicine

causes healing in itself and that impacts the dependent variable, resulting in possible dependence between

independent and dependent variables even without a direct link between them (Figure 3 left). Administration

of placebo to the control group makes the causal structure for the placebo path the same for both both groups

and the placebo effect can be easily isolated from the effect of medicine.

Figure 3: Placebo (left graph) and subject-experimenter effects (right graph).

In case of subject-experimenter effects (Figure 3 right), the experimenter knows whether the subject is in

the treatment group or the control group. This knowledge modifies the experimenter’s behavior so that it

impacts the dependent variable. Blinding removes the link from treatment to experimenter effect and assures

that possible dependence is the result of a direct link between the independent and dependent variables.



    

Discussion

We believe that an explicit representation of causal interactions in the design of empirical studies is valuable

for several reasons. The foremost is that a clear model of an experiment aids in comprehending it, under-

standing possible weaknesses in the design, and communicating about it with other researchers. A causal

model explicates the idea that joint probability distribution from which the experimental measurements will

be sampled is shaped by the mechanisms working in the system, and by the uncertainty introduced by exoge-

nous and latent variables. Since it is such mechanisms that experimental designs are trying to discover, this

is consistent with the overall goal of experimentation. This approach allows the student to understand the

scope of experimental design, exemplifies the importance of assumptions, and shows that there is a variety of

methods and inferences by which the structure of the system can be discovered (e.g., causal discovery from

observation [3]).

One of us (Druzdzel) introduced the concept of causal graphs in an introductory graduate research design

course in the Department of Information Science at the University of Pittsburgh. The students had little

previous experience with statistical analysis. We have not measured the impact that it had on our students

and can offer only anecdotal evidence at this time. The students seem to find the causal graphs valuable.

Class discussions of even most difficult topics are lively. Several of the students have spontaneously drawn

causal graphs when explaining their homework exercises, although they were not prompted for doing so. The

homeworks are peer reviewed, and several of the reviewers have spontaneously drawn causal graphs where

they were not provided by the author. Two of the twelve students in class reported using causal graphs

when talking with people outside the class on matters unrelated to the class material.

One of the reasons why causal graphs might be so useful is that they replace long verbose descriptions of

experimental designs with simple and clear pictures. There is overwhelming evidence that causality is deeply

rooted in human reasoning and this is not different for researchers. A clear graph in front of the eyes extends

significantly the capacity of the working memory and allows to reason about matters of increased complexity

[2]. Various ways in which an experiment may be flawed can be read directly from the graph. We believe

that causal graphs can prove also very useful in an introductory class in statistics.

We discovered that it pays off to spend extra time in the beginning of the course to make sure that the

students understand causal graphs and the causal Markov condition well. After some training, students are

proficient with reasoning about probabilistic dependence and independence in graphs.
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