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Abstract
The rationality of human causal judgments has been the focus of a great deal of
recent research. We argue against two major trends in this research, and for a quite
different way of thinking about causal mechanisms and probabilistic data. Our
position rejects a false dichotomy between "mechanistic" and "probabilistic" analyses
of causal inference -- a dichotomy that both overlooks the nature of the evidence
that supports the induction of mechanisms and misses some important probabilistic
implications of mechanisms. This dichotomy has obscured an alternative conception
of causal learning: for discrete events, a central adaptive task is to induce causal
mechanisms in the environment from probabilistic data and prior knowledge.
Viewed from this perspective, it is apparent that the probabilistic norms assumed in
the human causal judgment literature often do not map onto the mechanisms
generating the probabilities. Our alternative conception of causal judgment is more
congruent with both scientific uses of the notion of causation and observed causal
judgments of untutored reasoners. We illustrate some of the relevant variables
under this conception, using a framework for causal representation now widely
adopted in computer science and, increasingly, in statistics. We also review the
formulation and evidence for a theory of human causal induction (Cheng, 1997) that

adopts this alternative conception.
1. The Old Mechanism Approach

A long and still popular tradition in the study of human causal reasoning

insists on a dramatic bifurcation between "mechanistic" conceptions of causal
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inference and "probabilistic" or "covariational" conceptions of this process (e.g., Ahn
& Bailenson, 1996; Ahn, Kalish, Medin & Gelman, 1995; Baumrind, 1983 [Clark,
please supply reference|; Harré & Madden, 1975; Turner, 1987; Schultz, 1982;
White, 1989, 1995). What is meant by "mechanism" is rarely specified in this

literature, but the examples given make it relatively clear that to specify a
"mechanism" for a covariation is simply to specify either a sequence of causes that
intervene between the candidate cause and effect, or causes that tend to bring about
both the candidate cause and effect, where the causal connections posited in the
"mechanism" are of a kind that are already familiar and acknowledged. Baumrind

(1983) gives the following illustration:

The number of never-married persons in certain British villages is highly
inversely correlated with the number of field mice in the surrounding meadows.
[Marriage] was considered an established cause of field mice by the village elders
until the mechanisms of transmission were finally surmised: Never-married

persons bring with them a disproportionate number of cats.

Similar examples are offered by Ahn et al. (1995) and others. Mechanisms of this
kind can be represented by a causal diagram or directed graph (i.e., a graph with

nodes and arrows pointing from causes to effects), for example

. % .
# unmarried persons # cats —  # mice

Those who frame issues in term of this dichotomy are themselves proponents of the
mechanistic approach. Although these researchers do not explicitly state that theirs
1s the more normative approach, such appears to be their tacit assumption (as should
be clear from Baumrind’s example).

There are probabilistic consequences to this sort of mechanism. In Baumrind's
example, the number of unmarried persons is independent of the number of mice
conditional on the number of cats. More generally, remote nodes in a causal chain

are independent conditional on any set of values of the intervening causes (Pearl,
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1988; Spirtes, Glymour, & Scheines, 1993). And by almost any measure of
covariation, the (negative) covariation between unmarried persons and mice should
be weaker than the (negative) covariation between cats and mice. Or consider the
mechanism that generates the covariation between past occurrences of yellow
fingers and the later occurrences of lung cancer among people of the age of the first
author, who grew up in the days of unfiltered cigarettes. The mechanism behind the
covariation is a common cause: smoking caused yellowed fingers and it also caused

lung cancer:

yellowed fingers ~<——— smoking ——> lung cancer

Here again, there is a probabilistic implication of the explanation: yellowed fingers
and lung cancer are independent conditional on smoking. More generally, the
effects of a common cause are independent conditional on a value of the common
cause (e.g., Simon, 1957; Pearl, 1988; Waldmann, Holyoak, & Fratianne, 1995).

As these examples illustrate, there are intricate connections between

mechanisms and probabilistic patterns, and a fruitful mechanistic approach to
understanding human judgment about causation might try to understand those
patterns and investigate the ways humans use them, or can learn to use them, to

infer causal mechanismsin-learning-and-planning. But, a disconnection between

mechanisms, on the one hand, and probabilistic patterns, on the other, puts

everything on a false footing.

Those who contrast mechanistic and probabilistic analyses of causation are
not concerned with understanding these intricate connections between probability
relations and mechanisms. We will take Ahn et al. (1995) as an example, although
many others are roughly equivalent. Our aim is not to examine their paper in any
detail, but instead to present general arguments not specific to their paper, that show
why their results do not tell against a probabilistic approach.

The substance of their views seems to have several components:
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1. People are more likely to judge a covariational relation to be causal when they

can know, or can plausibly conjecture, a “mechanism.”

2. When asked for an explanation of how a cause produces an effect, people are

likely to propose a “mechanism.”
3. When free to seek information in order to decide whether a relation is causal,
people ask for information about the “mechanism” rather than for probabilistic

information about covariations.

4. Information on covariation is generally not necessary for learning causal

relations. With rare exceptions, people do not learn causal relations from

covariations but from applying prior knowledge of “mechanisms.”

Given that “mechanisms” necessarily reflect prior-knowledge about causal
connections, theses 1 and 2 are consistent with almost any sensible theory of human
judgment of causation. When the question is whether a covariation between
candidate cause ¢ and effect e is due to the influence of ¢ on e (as against, for
example, chance, or a common cause of both, or sample selection bias), it is only
rational to give greater weight to answers that are coherent with otherprior
knowledge. And what could an explication of a causal connection be except the

specification of intervening or confounding causes? [Clark, I don’t understand why

you want to include confounding causes when the question is how a cause produces

an effect (#2 above) rather than whether a regularity is causal.] These two theses

make sense as refutations of the probabilistic approach, as proponents of the
dichotomy apparently intend, only if one assumes that researchers who adopt the

probabilistic approach -- whose goal is to study how causal beliefs emerge from

probabilistic information -- deny that people have a conception of causality. We are

not aware of any psychologist or philosopher who denies this evident fact.

Establishing the third mechanistic thesis is one the chief aims of the

experiments reported by Ahn et al. (1995). This thesis is irrelevant to the
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probabilistic approach, however, because this approach does not aim at addressing
the issue of how frequently people conjecture that the causal knowledge relevant to
a novel situation is familiar to them. Instead, the probabilistic approach is concerned
with the origin of such knowledge whenever it is acquired. If a reasoner has already
acquired a considerable amount of causal knowledge, it is eminently plausible that he
or she might check whether some of this knowledge applies in a novel situation,
rather than acquiring that knowledge afresh from probabilistic information on each

new encounter. Causal induction would not be of much use if the induced causal

knowledge cannot be apphed subsequently %@n&m;y%@%&&pp&;@;%m@ﬂ%#&&@ni@r

assume complete forgetting, seeking information about “mechanisms’ rather than

probabilistic information is consistent with such models, although irrelevant to their

evaluation.

The fourth mechanistic thesis leads to either a theoretical vacuum or the

conclusion that all causal knowledge is innate.is-theoretically problematic with-regard
to-the-origin-of causal knowledge. Consider the links that must be interpolated

between candidate cause and effect according to the mechanistic account. Each is a

piece of causal knowledge, which often the reasoner cannot subdivide into still
further links. The mechanism view cannot possibly require that causal relations
always have sub-mechanisms known to the reasoner, in infinite regress. Consistently,
it can only require that causal relations have intervening links that reduce eventually
to some basis set known to the reasoner. How, on the mechanistic account of the
human understanding of causation, are these fundamental causal relations known?
Either, it seems, they must be known a priori--innately--or they must be learned. If
learned, they must be learned without imposing on them the requirement of further
mechanistic explanation, and thus by procedures that the mechanistic conception

does not illuminate. By rejecting the thesis that causal relations are ultimately learned

through the use of observable information such as probabilities, the mechanistic

account advocates a vacuum as the answer to the question of causal learning. If a
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priori, then the mechanistic account must then embrace the view that all possible
causal relations are known a priori, at least implicitly, and must hold that people
learn only two things about causation: the consequences of what they already know,
and which relations are instantiated where in the world. Cognitive psychology
becomes fully Platonic, and the model for developmental psychology becomes the

Meno.

_____The most serious objection to the fourth thesis, however, is that it overlooks
the likely possibility that people can and do learn new causal relations by giving a
causal interpretion to frequency information under constraints provided by prior
knowledge. Theoretical and experimental explorations of that possibility require an
understanding of how such inferences are possible in principle. That is the subject of

the rest of this paper.

2. Evaluating the Normativeness of Contingency by Causal Mechanisms

The most common “normative” standard used in psychology for evaluating
the influence of a candidate cause ¢ on an effect e (Allan, 1980; Baker, Mercier,
Vallée-Tourangeau, Frank, & Pan, 1993; Chapman & Robbins, 1990; Price & Yates,
1993; Rescorla, 1968; Shanks, 1991) is the "contingency" of e on c:

AP =P(elc) - P(e | ~c),

where P(e | ¢) is the probability of e occurring given the presence of ¢ and P(e | ~c)
is the probability of e occurring given the absence of ¢c. R is a measure of
deviation from independence: e and ¢ are independent in probability when and only
when AP = 0. However, there are contexts in which AP is clearly an inappropriate
estimator. These contexts have to do with the mechanism, or causal process, by
which the covariation between ¢ and e comes about. For example, consider again

the past occurrences of yellowed fingers and the later occurrences of lung cancer.
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Smoking caused yellowed fingers and it also caused lung cancer. The probability of
lung cancer given yellowed fingers was greater than the probability of lung cancer
given not-yellowed fingers, and not equal to the probability of lung cancer averaged
over those with and without yellowed fingers. But the probability of lung cancer if
everyone had been required--and so acted--to wear gloves throughout the waking
day, thus having not-yellowed fingers, would have been the same as the probability
of lung cancer originally, because acting to prevent smoking from discoloring
fingers, without acting to prevent smoking, would have no effect on the likelihood
of lung cancer. Notice that from the perspective of the unlikely actuary, who has
information about the distribution of yellowed fingers in the population, and is

interested only in predicting who will and will not die,

AP = P(lung cancer | yellowed fingers) — P(lung cancer | not-yellowed fingers)

is an informative quantity. But, from the perspective of the Surgeon General, who is
interested in what causes lung cancer, and in the changes in the probability of lung
cancer that various interventions would bring about, AP is irrelevant. Quantities
more relevant to these causal questions are the probabilities of lung cancer
conditional on yellowed fingers and smoking, and conditional on non-yellowed

fingers and smoking, and the conditional contingencies,

AP

yellowed fingers, smoking)

smoking = P(lung cancer | yellowed fingers, smoking) — P(lung cancer | not-

AP

yellowed fingers, not smoking)

Notsmoking = Plung cancer | yellowed fingers, not-smoking) — P(lung cancer | not-

both of which are zero. If the surgeon general wanted to predict the effects on lung
cancer of altering the probability of yellowed fingers without changing the

probability of smoking, these are relevant quantities, because (as we explain later)
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the zero conditional APs reveal that the association is produced by a common cause
of yellowed fingers and lung cancers, and not by any direct influence of one on the

other.

In the example just given, AP is irrelevant to assessing the influence of
yellowed fingers on lung cancer because a third variable, smoking, is a common
cause of both. But, depending on context, AP can also be irrelevant when the third
variable is an effect rather than a common cause. A textbook case (Freedman, Pisani
& Purves, 1978) involves the admission of women to graduate school at the
Universtiy of California, Berkeley. It was found that the rejection rate for women
was much higher than that for men, suggesting a systematic bias against women in
admission policies. Further investigation showed, however, that women applied
more often than men to programs that had lower than average acceptance rates
regardless of the gender of the applicants. Conditional on program applied to,
gender and rejection were nearly independent. In judging the influence of sexism on
admission decisions in this context, AP is clearly the wrong quantity. Arguably the
conditional AP of rejection rate on gender, controlling for graduate department,
would be more relevant.

Notice that the conditional contingencies are only relevant to predicting the
effects of an intervention in these cases because they happen to reflect the particular
mechanism involved. In still other cases both the contingency and the conditional
AP might be irrelevant. Suppose that parents’ intelligence influences child's
intelligence and both variables influence the years of education the child receives.
Then the conditional AP between parental and child intelligence, controlling for
child's education, would be the wrong quantity altogether to use to estimate the
influence of parents’ intelligence on child’s intelligence. Conditionalizing on a
common effect yields a probabilistic dependency between alternative causes of the

effect even when no causal connection exists between these causes.
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Some psychologists have assumed that AP is the optimal probabilistic model
of causal induction and tested it as a model of human causal inference (Baker, et al.,
1993; Chapman, 1991; Chapman & Robbins, 1990; Price & Yates, 1993; Shanks,
1991). They concluded that observed causal judgments deviate systematically from
AP. The findings in these experiments, which involve situations with multiple
varying candidate causes, can be and indeed have been reinterpreted in terms of
conditional AP along the same lines as our yellowed fingers and graduate admissions
examples (see Melz, Cheng, Holyoak, & Waldmann, 1993; Shanks, 1995; Spellman,
1996a). These and other studies (Fratianne & Cheng, 1995; Park & Cheng, under
review; Spellman, 1996a; Yarlas, Cheng, & Holyoak, 1995) show that untutored
reasoners prefer to judge the causal influence of ¢ on e conditional on the absence of
other potential causes of e that are correlated with c. This finding has led some
psychologists to suggest that AP conditional on alternative causes describes human
causal judgments (e.g., Cheng & Holyoak, 1995; Melz, Cheng, Holyoak, &
Waldmann, 1993; Spellman, 1996a & b; Waldmann & Holyoak, 1992). It turns out
that AP conditional on alternative causes is exactly what is computed asymptotically
by the Rescorla-Wagner model (1972) for many experimental designs to which the
model has been applied (see Cheng, 1997, for a proof of the conditions under which
this model computes conditional APs). The Rescorla-Wagner model incorporates a
version of the popular “delta rule” in connectionist models and is the most

prominent associationist model of Pavlovian conditioning and of causal induction.

The type of deviation from AP just discussed is only one among a diverse set
of such deviations. Even in situations in which alternative causes (that are not along
a candidate causal pathway) are controlled, robust deviations from conditional AP

have been observed in many psychological experiments:

e When P(e | ¢) =P(e | ~c) = 1, people do not judge that ¢ does not produce e;
rather, they tend to withhold causal judgment altogether (Fratianne & Cheng, 1995;
Waldmann & Holyoak, 1992; Wu & Cheng, 1997).
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e When P(e | ¢c) = P(e | ~c) = 0, people do not judge that ¢ does not prevent e;
rather, they tend to withhold causal judgment altogether (Wu & Cheng, 1997,
Yarlas et al., 1995).

eIfPlelc)- P(el~c)=P(elc')- Plel~c")>0,and P(e | ~c) > P(e | ~c"), people
tend to judge that ¢ has greater power than c¢' to produce e (Buehner & Cheng,
1997; Vallée-Tourangeau, Murphy, & Baker, 1996).

e In contrast, if P(el¢c) - P(el~c)=P(elc')-P(el~c') <0, and P(e | ~¢) >
P(e | ¢'), then people tend to judge that ¢' has more power than c to prevent e
(Buéhner & Cheng, 1997; Vallee-Tourangeau et al., 1996).

* People tend to weigh frequencies of events that estimate P(e | ¢) more than those
that estimate P(e | ~c) (e.g., Anderson & Sheu, 1995; Baron, 1994; Dickinson &
Shanks, 1986; Schustack & Sternberg, 1981; Wasserman et al., 1993).

Why are there these deviations? And are they normative?

3. An Alternative Causal Mechanism Approach

We have argued that information about causal mechanisms and probabilities
are not mutually exclusive. Instead, patterns of probabilities are manifestations of the
operations of causal mechanisms. In our alternative conception of the connection
between causal mechanisms and patterns of probabilities, all of the above deviations
can be normative. This conception is congruent with scientific uses of the notion of
causation, and has been adopted by researchers in philosophy, computer science,
statistics, and psychology (e.g., Cheng, 1997; Pearl, 1988; Spirtes et al., 1993; other
references). Under this conception, a central goal of causal inference is to make
accurate predictions about the consequences of actions in novel as well as familiar
situations. The achievement of this goal requires the estimation of relational
properties that are as independent of context as available information allows. It also
requires the acknowledgement of some constraints. First, it is important to

understand how causal inference can start from observations alone, or from

10
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observations and very limited constraints such as time order. Second, because-there

probabilistic-dependence-and-independence,—causal inference from patterns of

probabilities requires the assumption that the influence of a cause on an effect can be

represented as a probability;fundamental to-experimental-design,-that-probabilistic
independencereflects-causalirrelevance. [Clark, I haven’t thought through whether

we need an additional assumption: in the absence of known causes, the absence of

an effect in question reflects the absence of all causes.] Third, other things equal,

causal inference requires a preference for simpler causal explanations over more
complex explanations that equally account for observed associations. And fourth,

ordinarily causal inference uses prior knowledge.

Under this conception, there are statistics that are more informative than
either AP or conditional AP. Consider the assessment of the consequences of
smoking cigarettes. Suppose some tobacco company announces that it has found a
human population in which smokers and nonsmokers are impeccably matched on all
relevant variables, such as genetic disposition to lung cancer and asbestos level in the
environment. This population therefore allows a more direct assessment of the
power of smoking to produce lung cancer in humans than ever before possible.
Now, in this population, P(lung cancer | smoking) — P(lung cancer | no smoking),
controlling for alternative causes, is fairly small, say .05. However, the asbestos level
in this population is uniformly high, so that P(lung cancer | smoking)=0.95 and
P(lung cancer | no smoking) =0.90. If conditional AP were a normative criterion for
causal inference, one would conclude that smoking poses a relatively small risk for
lung cancer. Many smokers might then feel that the benefit of smoking warrants the
risk.

In contrast, under our alternative framework, the same information from this
population leads to the assessment that smoking has the power to produce lung
cancer with a probability of .50, ten times higher than the value of conditional AP
suggests. Smoking having a power of .50 to produce lung cancer in humans means

that, when other causes of lung cancer are absent, conditional on an intervention

11
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that results in smoking (e.g., being assigned to smoke), lung cancer occurs in
humans with a probability of .50. In the example, it is obviously infeasible to
measure this power by conducting an experiment. We will return to explain how
such powers are estimated under our approach. Unlike conditional AP, which is
only relevant to the particular population with high asbestos level, the causal power
of smoking to produce lung cancer is generalizable to other human populations.
For example, in an environment in which there are no causes of lung cancer other
than smoking, one would estimate that smoking raises the probability of lung cancer
from O to 0.5. In an environment in which all causes of lung cancer other than
smoking jointly produce lung cancer with a probability of .2, if smoking can be
assumed to produce lung cancer independently of other causes, then it is estimated
to raise the probability of lung cancer by .4 (from .2 to .6). This estimate follows
because among those in this population who would not have contracted lung cancer

from the other causes, smoking would be estimated to produce lung cancer in half

of them (.8 X .5 = .4).

Some informative variables under this framework are:

L. the probability of e conditional on an action to produce ¢ and on the absence
of all other causes of e (the power variable illustrated in the smoking
example).

II. the probability that e does not occur conditional on (1) an action to produce a
cause c that prevents e, (2) the nonexistence of all other preventive causes of
e, and (3) e occurring with certainty (due to the influence of some generative
cause or causes) if not for c. Quantities I and II apply to direct causes.

II1. the probability of e conditional on an action to produce ¢ and on the absence
of all other causes of e that are not effects of c.

IV. the probability that e does not occur given an action to produce an inhibiting
cause ¢, and given that all positive causes of e that are not influenced by ¢
occur. Quantities III and IV are more general than I and II in that they apply

to multi-layered causal networks, causal structures in which there is at least

172
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one causal chain that contains two or more causal arrows pointing in the
same direction.

V. the probability of e conditional on an action to produce c.

V1. the probability of e conditional on an action to produce ¢, minus the

probability of e conditional on an action to produce the absence of c.

A formula for computing quantity I in a parametric class of mechanisms, when
unobserved causes are independent of the cause to be assessed, is given by Cheng
(1997). She also gives a formula for estimating quantity II in a related class of
systems, when the cause at issue prevents, rather than generates, the effect.
Quantities I and II have been shown to be psychologically relevant. A theory
proposed by Cheng (1997) explains a range of psychological phenomena by
postulating that people estimate ordinal properties of quantities I and II in situations
in which they are willing to assume that a candidate cause and a composite of all
causes alternative to it influence e independently. These phenomena include all the
deviations from AP and conditional AP mentioned earlier. Cheng's formula for
estimating I, the power of a direct generative cause, is generalized to any multi-
layered mechanism of the same parametric class, under the same independence
assumption, by Glymour (1997), illustrating how to calculate III for a class of
parametrizations. No one has yet investigated IV, so far as we know. An algorithm
for computing V (or VI) in many problems is given by Spirtes et al. (1993), and
rules for its calculation are developed in Pearl (1995).

The model of an emergency medical system depicted in Figure 1 (taken from
Beinlich et al., 1989) is an example of a causal mechanism that a computer
algorithm based on this framework (see Spirtes et al., 1993) is able to infer from

probabilistic data, without the use of any prior causal information.

13
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Figure 1. The ALARM belief network

KEY:

1 - central venous pressure

2 - pulmonary capillary wedge pressure

3 - history of left ventricular failure

4 - total peripheral resistance

5 - blood pressure

6 - cardiac output

7 - heart rate obtained from blood pressure
monitor

8 - heart rate obtained from electrocardiogram

9 - heart rate obtained from oximeter

10 - pulmonary artery pressure

11 - arterial-blood oxygen saturation

12 - fraction of oxygen in inspired gas

13 - ventilation pressure

14 - carbon-dioxide content of expired gas
15 - minute volume, measured

16 - minute volume, calculated

14

20 - insufficient anesthesia or analgesia
21 - pulmonary embolus

22 - intubation status

23 - kinked ventilation tube

24 - disconnected ventilation tube

25 - left-ventricular end-diastolic volume

26 - stroke volume

27 - catecholamine level

28 - error in heart rate reading due to
low cardiac output

29 - true heart rate

30 - error in heart rate reading due to

electrocautery device

31 - shunt
32 - pulmonary-artery oxygen saturation
33 - arterial carbon-dioxide content

34 - alveolar ventilation
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17 - hypovolemia 35 - pulmonary ventilation

18 - left-ventricular failure 36 - ventilation measured at endotracheal
tube

19 - anaphylaxis 37 - minute ventilation measured at the
ventilator

Clark, say what role the quantities play in the algorithms that infer networks such
as the above.

4. Computing Quantities I and II.

Let e be an event, or event type, and a, 1 be events, or event types, that may
cause e, and let them be all of the possible causes of e, so that if neither a nor i
occurs, € does not occur. We can for formal convenience replace e, a, 1 by binary
variables taking the value 1 if the corresponding event occurs and the value 0
otherwise (for example, e = 1 if e occurs and e = 0 otherwise). There will then be
cases in which i, for example, occurs but does not cause e, and cases in which i
occurs and does cause e. We can distinguish between those cases by introducing
additional parameters, for example by introducing a binary variable g, which
indicates when the occurrence of 1 will produce e. The probability that g, = 1 then

gives the probability that, given that i occurs, that occurence causes e. Thus,

(1) e = f(iq; aq,)

where the functional form f is yet to be specified. A simple example common in

computer science is the “noisy or gate” given by the equation

(2) €= lql @ aqa

where e, 1, a, q; , and g, are binary variables and the ® is Boolean addition. (It will

become clear in a later section how the @ notation is useful for simplying the

algebra.) Assume {i, a, q;, q,} to be jointly independent. Then for the noisy or gate,

15
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(3) P(e=1) = P(ig,® aq=1) = P(i=1)P(g=1) + P(a=1)P(q,=1)
P(a=1)P(q,=1)P(i=1)P(q=1).

The parameter P(q=1), for example, can be estimated by
4)P(g=1)=P(e=11i=1,a=0).
That is, the parameter is quantity I of section 2.

The noisy or gate can be represented graphically as:

a i
N\ A
€

The q parameters are associated with their respective arrows.

Cheng (1997) shows that P(q=1) can be estimated without observing a by

S)P(q;=1)=[P(e=11i=1) - P(e=111=0)]/ [1 - P(e=1 11 =0)].

Recall that {i, a, q;, q,} are jointly independent. Because P(q=1) is estimated

without confounding by alternative causes, it corresponds to the relevant probability

of e conditional on an intervention to produce i.

In her psychological theory, the noisy or gate illustrated in the diagram is a

psychological construct in which i represents the candidate cause in question and a

represents a composite of all causes alternative to i. This construct is a filter through

which the reasoner can view any causal structure with arbitrarily many layers and

any topology, as long as all “ancestors” of e can be divided into two parts,

corresponding respectively to i and its ancestors on one hand and a on the other,

16
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and 1 and a produce e independently. Ancestors of a node are direct or remote
causes of the node. It is crucial that to infer the power of i, the theory does not
require knowledge of the power of a. In most cases (including those in which causal
learning does occur), it is not possible to have an exhaustive list of all alternative
causes, not to say their causal powers.

Formula 5 is derived from explaining each of the two conditional probabilities
in AP by this or-gate construct. Thus, P(e | 1) is the probability of the union of two
events: (1) e produced by i and (2) e produced by a when 1 is present, and P(e | ~1)
is the probability of e produced by a alone when i is absent. Formula 5 follows
from this explanation of AP in the special case in which a occurs independently of i.
A variant of (5) applies even ifi and a are confounded by some observed common
cause b. One need only also condition on b =0 in every term on the right hand side

in (5). The conditionalizing recreates the independence assumption.

These requirement that the candidate cause

independent of all unobserved causes of e is sufficient but not necessary. For many
mechanisms, parameters such as P(q; = 1) can be estimated from frequencies even
when there are confounding unobserved causes. For example, representing the
mechanism again by a diagram in the form of a directed acyclic graph, consider the

structure:

Db biA >

®

where the variables in circles are unobserved. A convention adopted in the

representation of directed graphs is that the absence of a common cause node

17
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implies that there 1s no such common cause. The problem is to estimate P(q,, = 1) =
P(e=111i=1, u=0). Note that i and u are not independent but are independent
conditional on any value of b. More generally, as a consequence of structures such
as a noisy or gate, in which the value of a node is determined by the values of the
parameters of arrows and nodes leading into it, an effect is independent of its remote
causes conditional on a more direct cause. In this case, the parameter P(q,, = 1) can

be estimated by conditioning on b = 1 in Cheng's formula, that is:

P(@.=1)=[Pe=1li=1,b=1)-Pe=11i=0,b=1)]/[I -Pe=11i=0,b
=DI.

In general, to estimate the influence of i1 on e it suffices to condition on a measured
variable on each path from each confounder, such as u, to 1. More generally, still, if
there are a set of measured variables conditional on which a direct cause i1 of e is
independent of all other causes of e (save ancestors of 1), P(q=1) can be estimated.

These measured variables allow the selection of cases from the data to allow an

estimation of causal power. Algorithms for calculating the independencies implied

by a mechanism have been published in several places (Lauritzen, 1997 [Clark,

supply reference]; Pearl, 1988; Spirtes et al., 1993); implementations are available in
commercial software programs, and are accessible for free on the web.

Because the variables i and a in the noisy or gate both potentially produce e,
the noisy or gate implies that P(e=111=1) = P(e = 1 | 1 = 0). It follows that only
nonnegative APs can be interpreted in terms of a noisy or gate, a construct that
allows the evaluation of whether a candidate cause generates or produces an effect.
Cheng (1997) introduces a noisy and gate for interpreting nonpositive APs to
evaluate whether a candidate cause prevents an effect. For candidate preventive

cause, i, when a generative cause a is also present,

(6) e = aq,(1 - iqy)
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The noisy and gate can be represented by the same diagram as a noisy or gate, but
g; has a quite different meaning. Using the noisy and gate in (6) to explain AP, just

as she did using the noisy or gate, Cheng derived that

(7)Ple=11i=1)=P@=11i=1)P(q=1)1 - P(q=1)).

In this case,
8 Pe=0la=1,q,=1,i=1)=P(q;=1),

so that for a noisy and gate, P(q, = 1) is quantity II of section 2, where P(q= 1) now
measures the power of i to prevent e from occurring. When a and i are independent

Cheng shows that P(q; = 1) can be estimated without observing a because

9)P(q=1)=-[Pe=11i=1)- Ple=11i=0)]/Pe=11i=0).

We now return to explain the deviations from AP and conditional AP
mentioned in Section 2. Recall that Formula 5 follows from the noisy or gate
explanation of AP in the special case in which a occurs independently of 1. In other

cases (see Cheng, 1997), this explanation implies that

(10) P(q, =1) = [AP - P(q,=1) P(a=1 | i=1) + P(q,=1) P(a=1 | i=0)] / [1 - P(q,=1)
P(a=1 li=1) .

Formula 10 shows why covariation does not in general imply causation. The
denominator on the right-hand-side has both a negative term and a positive term in
addition to the AP term. It can be shown that AP can either overestimate

P(q; =1) or underestimate it. Thus, AP does not provide an interpretable estimate of
P(q; =1) when a does not occur independently of 1, but AP does estimate

P(q; =1) according to Formula 5 otherwise. A formula analogous to 10 follows

from the noisy-and-gate explanation of AP. For a reasoner whose goal is to
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estimate P(q; =1), it would therefore be rational to prefer to judge the causal
influence of ¢ on e conditional on the absence of other potential causes of e that are
correlated with ¢, as our yellowed fingers example and the results of many

psychological experiments indicate.

Formulae 5 and 9 explain the rest of the findings mentioned. According to
Formula 5, for judgments regarding the generative power of ¢, P(q; =1) is undefined
when P(e =111 = 0) = 1, leading to the prediction that the reasoner should
withhold causal judgment in this situation. Likewise, according to this formula, if
Pelc)- P(el~c)=P(elc')- P(el~c")and P(e | ~c) > P(e | ~c'), then P(q, =1)
> P(q. =1). According to Formula 9, however, for judgments regarding the
preventive power of ¢, P(q; =1) is undefined when P(e = 1 | i = 0) = 0, leading to
the opposite prediction about when the reasoner should withhold causal judgment.
Moreover, according to this formula, if P(elc) - P(e | ~c) =P(el c') - P(el ~c')
and P(e | ~c) > P(e | ~c'), then P(q, =1) < P(q. =1).

The well-known finding that people tend to weigh frequencies of events that
estimate P(e | ¢c) more heavily than those that estimate P(e | ~c) also follows directly
from Formulae 5 and 9 (see Cheng, 1997, for the derivation).  These formulae
predict an exception to this tendency: for changes in AP between a zero and a
non-zero value, these kinds of frequencies should be weighed equally. We do not

know of empirical tests of this predicted exception.

As should be clear, some of the deviations from AP observed in experiments
conducted on untutored reasoners correspond to standard principles of experimental
design. Cheng’s (1997) theory therefore provides an explanation of scientific as well

as everyday uses of the notion of causation.

5. Calculating Quantity III.
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We have considered the noisy or gate theory as a mental construct that consists of
direct causes. This theory can be generalized to any mechanism, with arbitrarily
many levels and any topology, so long as there are no cycles in the corresponding
directed graph (Glymour, 1997). Cheng's formula for evaluating the generative
power of ¢ on e generalizes as follows. For any directed graph representing the
mechanism involving ¢ and e, consider each directed path (each causal pathway)
from c to e. Form the product of the q coefficients associated with the links on each
path, then take the Boolean sum of these products over all paths from c to e. The
probability of that Boolean sum is the parameter whose value is the probability of ¢
given e and given that all other causes of e, that are not themselves effects of c, are
absent. To illustrate, consider the structure in the next figure, in which the variables

in circles are assumed to be unobserved.

The causes of e that are not effects of c are f, h and g. According to the theorem

just given,

Ple=11lc=1,f=0,g=0,h=0)=P(q.,9y. D 9.qqe.=1)
=[Pe=11lc=1,h=0)-Ple=11c=0,h=0)]/[1-Ple=11c=0,h=0)].

The RHS of this equation is conditionalized on h = 0 because h is a confounder of
the influence of ¢ on e. Recall that by the convention used in directed graphs, f and

g are independent of c.
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We will illustrate the rather tedious algebra for this case:
e=(,g®qb®qd

=(q,2 ® q,(qef @ q,¢) @ quqh D qq g€

= (9,2 @ q,9:;f ® q49,h) @ (9,9 D 949c0)
Whenc=1,and h=0:

e =(q,g ® q,q;f) ® (99, @ qiqca)
Whenc=0and h=0:

e =q,g8 D quqf
Ap=Ple=11lc=1,h=0)-Ple=11c=0,h=0)
= P(qy9.» @ 949.0) — P(q,8 @ q,q50) * P(q,9. @ 9u.0)
=P(q,9., @ q..q9y) [1 = P(e=11c=0,h=0)].

Note that a single-layered noisy or gate filter superimposed over a multi-
layered causal mechanism and the decomposition of this filter into a multi-layered
structure yield internally consistent causal powers. The assumptions underlying the
two analyses are identical except for the grain size of the directed graphs. It
therefore would not make sense to suggest, as does the dichotomy between
mechanisms and probabilities, that "mechanisms" must consist of a multi-layered
causal structure, and are conceptually distinct from causal relations involving a single
link. It is true, however, that multi-layered mechanisms allow inferences not possible
in single-layered mechanisms, as illustrated in some of our examples. For this
reason, multi-layered mechanisms allow tests for internal consistency that do not
apply to a single causal link.

Although there are experimental studies in the psychological literature that
investigate causal judgments in multi-layered structures (e.g., Busemeyer, McDaniel,
& Byun, 1997; Spellman, in press), there seems to be none that investigates
judgments of causal power in such structures. Nor, with one exception (Haseem &
Cooper, 1997), are there studies of human ability to learn the mechanism

represented by a multi-layered directed graph from various combinations of
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observation, intervention and prior causal knowledge. There are a number of
computer algorithms that learn such structures, or features of them, from frequency
data alone (Spirtes et al., 1993).

We have not investigated the analogous generalization of noisy and gates.
6. Computing V and VI.

In contexts in which alternative actions (say, making ¢ =0, or c= 1, or ¢ = 2, where
the values of ¢ are mutually exclusive) may be taken, and the probability of a
resulting event is important (say the probability that e = 1), the quantities of interest
are likely to be P(e = 1 | an action that makes ¢ = i). In general, these quantities, and
algebraic combinations of them, are distinct from P(e = 1 | ¢ =i) (recall the yellow
fingers and gloves example) and also from quantities calculated in previous sections,
e.g., P(e =11 c =1 and all other causes of e are absent), and from algebraic

combinations of these quantities.

Given a mechanism, represented by a directed acyclic graph, for which there
are no unobserved common causes of a causal factor ¢ and a variable e that ¢
influences, and given the conditional probability distribution of each variable
conditional on each set of values of each immediate cause (each parent of the
variable in the graph), the probability distribution for e given an action that forces a
value c' on ¢ can be easily calculated. One simply ignores any influences on ¢, and
uses the probabilities conditional on ¢ = ¢'. For example, if the mechanism is

represented by:
a

Y N\

c —Prc
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then the probability that e = 1 given an intervention to force ¢ =c'is
2 Pe=11c,a)P(a)

where the sum is over all values of a and the probabilities are those that hold before
any intervention. The formula holds no matter how many values e, ¢ and a may
take on. Note that when all variables are binary, the formula is distinct from the
probability that e = 1 given an action to force ¢ = ¢' and given a = 0. P(e) is
summed over all values of a in V but conditional on the absence value of a in L

[Clark, explain why V and VI are better than the quantities we bashed.]

For appropriate mechanisms, the effect on e of an intervention on ¢ can be
predicted even when ¢ and e have unobserved common causes, as in the

mechanisms represented by the diagram

RS
Yo,
Ve

or the diagram

or the diagram
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/I

c —P a —Pppc

Spirtes et al. (1993) give an algorithm for determining for any mechanism whether
the distribution of an effect e results from an intervention to fix a value of another
variable c, and for computing the consequent distribution of e from the probabilities
before the intervention. Pearl (1995) gives rules of calculation. It is not known if the

algorithm or the rules are complete.

7. Conclusion

We have argued that the falsea dichotomy between mechanistic and
probabilistic approaches to causal reasoning obscures a conception of probabilities as
manifestations of causal mechanisms. This alternative conception of the relation
between probabilities and mechanisms supports the estimation of relational
properties in the world that allow the explanation and prediction of the
consequences of actions in novel as well as familiar situations. Such estimates are
not merely normative; there is considerable evidence indicating that some of these
estimates describe untutored human causal induction. In fact, many robust observed
deviations from AP and conditional AP are normative consequences of estimating
quantities under this framework.

To us, proponents of the dichotomy are not addressing the issue of how an
intelligent system discovers causal knowledge, but are instead attempting to
document evidence for the use of prior causal knowledge. There is consensus that
reasoners should find prior causal knowledge useful wherever it is applicable. Our
alternative framework is not only compatible with the use of prior causal
knowledge, itbut also allows explicit formulations of how prior causal knowledge
normatively interacts with novel observations and knowledge of interventions.
Psychological work adopting this framework 1s mostly limited to mental constructs

involving single-layered causal mechanisms. Whether people intuitively make use of
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normative algorithms for inferring multi-layered causal mechanisms and whether
they normatively combine information regarding observations and interventions and
prior causal knowledge remain to be investigated.
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