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Recent research in cognitive and developmental psy-

chology on acquiring and using causal knowledge uses

the causal Bayes net formalism, which simultaneously

represents hypotheses about causal relations, probability

relations, and effects of interventions. The formalism

provides new normative standards for reinterpreting

experiments on human judgment, offers a precise inter-

pretation of mechanisms, and allows generalizations of

existing theories of causal learning. Combined with

hypotheses about learning algorithms, the formalism

makes predictions about inferences in many experi-

mental designs beyond the classical, Pavlovian cue !

effect design.

Understanding the causal structure of the world is a
fundamental human capacity that allows human beings to
control and predict their physical and social environments.
Both theoretical and experimental work on causal judg-
ment have chiefly relied on conceptions first formulated in
the 19th and early 20th centuries: Boole [1] and Frege’s [2]
construal of causal claims as logical conditionals, Pavlov’s
[3] classical conditioning, and Piaget’s [4] account of
developmental stages. With the exception of studies of
perceptual clues for causal judgments, [5–7], late 20th
century cognitive psychology chiefly added some compu-
tational mechanisms: hybrid computational models for the
logical conception [8], and analogies with linear neural net
learners for classical conditioning, [9,10]), while develop-
mental psychology has had occasional recourse to associ-
ationist mechanism related to classical conditioning [11]. A
Pavlovian cue ! effect design remained common in experi-
mental studies of adult causal judgment: ‘cues’ or potential
causes preceded effects, and as, or after, subjects observed
sequences of cases of cues and effects (or their absences),
their judgments of the causal strengths or efficacies of the
various cues were elicited.

Causal complexities

Causal relations can be structurally and epistemically
more complex than the Pavlovian cue ! effect design
allows. Alternatives include chains of causes, multiple
causes influencing one another; interactive causes, unob-
served factors influencing both effects and observed
potential causes, absence of prior knowledge or time
order separating cause and effect, deterministic and
probabilistic dependences, interventions that vary some
factors while holding others constant, and uses of evidence
involving both passive observation and interventions.

Until very recently few of these complexities were allowed
in experimental investigations of causal judgment.

All that has begun to change. Psychological studies of
how causal understanding develops and is exercised are
currently undergoing a revision that cuts across develop-
mental and cognitive psychology, and has undeveloped
implications for social psychology and the study of human
factors. The common framework of these innovations is
the theory of ‘causal Bayes nets’ that has emerged since
1980 from converging work in statistics, philosophy and
artificial intelligence [12–16].

Causal bayes nets

Representation of causal and probability relations

Causal Bayes nets represent causal hypotheses as directed
graphs. The Bayes net formalism provides a general
connection between causal structure and probability, the
Markov assumption, which says that a variable A in a
causal graph is independent of all other variables that are
not its effects, conditional on its direct causes in the graph
– the variables with edges directed into A (see Box 1).

Representation of interventions

The Bayes net formalism represents the effects of interven-
tions on a variable B in a system by introducing a new
variable, I. This variable represents the intervention and
has a directed edge into the directly manipulated variable,
B. When the intervention variable has the value off, the
system has the original structure and probabilities. How-
ever, other values of the intervention variable fix a value (or
new probability distribution) for B, break the other edges
directed into B, but leave the original probability distri-
bution (conditional on the fixed value of B) intact (Box 2).

Learning algorithms for causal bayes nets

A variety of learning algorithms have been proposed for
learning causal Bayes nets from observations and inter-
ventions, with or without relevant background knowledge,
and they have found many scientific applications, [16–18]).
They include algorithms that approximate Bayesian learn-
ing, [19], as well as algorithms that identify conditional
independence relations and use them to construct a set of
possible causal explanations [14] and many combinations
and variations of these approaches. Algorithms have
also been developed for estimating when the effect of an
intervention can be computed from partial causal
knowledge, and for computing it (Box 3).

Overview of implications for psychology

The causal Bayes net formalism corrects normative
misinterpretations of some experiments with cue ! effectCorresponding author: Clark Glymour (cg09@andrew.cmu.edu).
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designs, provides generalizations of proposed theories,
makes precise notions of mechanism sometimes used in
psychological accounts of causal reasoning [20,21] and
suggests experiments to distinguish among alternative
theories. Supplemented with hypotheses about learning
mechanisms, the formalism provides predictions about a
range of experiments outside cue ! effect designs. In what
follows I will describe some of this new work, omitting
important work on categorization [22,23] which is beyond
the scope of this article.

Causal bayes nets and cue ! effect experimental

designs

Normative judgments in ‘overshadowing’

Baker et al. [24] presented subjects with a video set-up in
which a tank moved through a minefield toward safety.
Subjects could camouflage the tank by pushing a joy-
stick. A plane would sometimes appear in the midst of
the tank’s traverse. Contingencies were arranged to that
the tank reached safety when and only when the plane
appeared, and ,65% of the time when the tank was
camouflaged. Subjects’ judgments of the ‘efficacy’ of
camouflage and of the plane in causing the tank to
reach safety were elicited before any trials, after 20
trials and after 40 trials on a 2100 to þ100 scale.
Initially, subjects judged the camouflage to be more
effective than the plane, but after 40 trials they typically
judged the camouflage to have essentially no efficacy and
the plane to be very effective. Appealing to Allan’s [25]
claim that normatively, the efficacy of A to produce B
should be judged to be Pr(BlA) 2 Pr(Bl , A), Baker et al.
claimed their subjects judgments were non-normative,

but did accord with simulations of the Rescorla–Wagner
model of classical conditioning (Box 4).

But the contingencies and cover story allow a quite
different conclusion using the Bayes net framework [26]:
the experimental set-up made the appearance of the
plane statistically dependent on using the joystick to
camouflage the tank, and made reaching safety indepen-
dent of camouflage conditional on the plane’s appearance.
Normatively, subjects could have had the causal model
shown in Fig. 1, and their judgments after 40 trials accord
with it.

Cheng models

Cheng [27] reported a range of experiments on adult
subjects using a cue ! effect design. She found, for
example, that in experiments in which subjects think

Box 1. Bayes nets, the Markov assumption and conditional

independence

Smoking (S)

Yellow teeth (Y) Lung cancer (L)

TRENDS in Cognitive Sciences 

The graph above represents the claim that smoking is a cause of

yellowed teeth and lung cancer, but that lung cancer does not cause

yellowed teeth and yellowed teeth do not cause lung cancer. It also

represents claims about the conditional probability relations among

the three variables: for all values of Y, S and L (for example, all

combinations of present or absent)

PrðY;S; LÞ ¼ PrðYlL;SÞ·PrðLlSÞ·PrðSÞ ¼ PrðYlSÞ·PrðLlSÞ·PrðSÞ

where Pr(Y ¼ presentlL ¼ absent, S ¼ present), for example, rep-

resents the probability of yellowed teeth among smokers without

lung cancer. The first equality is necessarily true, but the second is an

assumption, the Markov factorization, which says that the joint

distribution of all variables is equal to a product of the conditional

distributions of each variable on its parents in the graph. The Markov

factorization is equivalent, in this example, to the claim that

Pr(YlS,L) ¼ Pr(YlS).

Box 2. Graphical representations of interventions

Starting with the causal system represented by the directed

structure:

Smoking (S)

Yellow teeth (Y) Lung cancer (L)

TRENDS in Cognitive Sciences 

with the joint probability distribution Pr(Y,S,L) ¼ Pr(YlS)·Pr(LlS)·Pr(S),

we imagine an intervention that forces everyone to brush their teeth

daily with stain removing paste. We reconceive the system above

with an expanded structure:

Smoking (S)

Yellow teeth (Y) Lung cancer (L)

TRENDS in Cognitive Sciences 

Intervention (I)

and probability distribution Pr(Y,S,L,I) ¼ Pr(YlS,I)·Pr(LlS)·Pr(S)

with the understanding that Pr(Y,S,L,I ¼ no intervention) ¼

Pr(YlS)·Pr(LlS)·Pr(S), the original distribution, and Pr(Y,S,L,I ¼

intervention) ¼ Pr(YlI ¼ intervention)·Pr(LlS)·Pr(S) ¼ 0 unless

Y ¼ present, and equals Pr(LlS)·Pr(S) otherwise. The act of

intervention fixes the value of Y to present, and thus makes Y

independent of S. The system after the intervention can be more

simply represented by the graph:

Smoking

Yellow teeth = absent Lung cancer

TRENDS in Cognitive Sciences 

Intervention = yes
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there may be unobserved causes of the effect, as well as
observed causes, they prefer to suspend judgment about
the efficacy of potential observed generative causes when
the effect occurs on all trials, and, when the effect never
occurs, they prefer to suspend judgment about the efficacy
of potential preventive causes. The quantity, Pr(C causes
E when C occurs) is the generative causal power of
E. She showed that, assuming various independencies, the

generative causal power of an observed cause can be
estimated from observed frequencies. A similar result is
shown for preventive causal powers. Such estimates
require that the subject select a set of cases – focal sets
– in which the occurrence of the cause whose power is to be
estimated is judged to be independent of the occurrences of
other potential causes. Cheng and Novick [28] have
generalized the theory for interactive causes (Box 5).

Cheng’s models are known in the Bayes net literature
as noisy-or gates (generative) and noisy-and gates (pre-
ventive). Cheng’s causal powers are probabilities of para-
meters that specify the occurrence of the effect given

Box 3. Comparing Bayesian learning and constraint-based

learning of Bayes nets

TRENDS in Cognitive Sciences 

True unknown structure

X

Y

Z W

Bayesian learning

(1) Prior probability distribution Pr(G; u) over all directed acyclic

graphs G and probability distributions u on the variables

(vertices in G), with a Markov factorization for G.

(2) Likelihood function L(D; G, u) giving the probability of the

observations D conditional on the truth of G, u.

(3) Compute the probability of any graph G conditional on the data

by using Bayes Theorem and integrating over u

PrðGlDÞ ¼

Ð
PrðG; uÞLðD; G; uÞdu

PrðDÞ

(4) Find the graphs G such that for all other graphs Gp, Pr(GlD) $

Pr(GplD)

Constraint-based learning

(1) Form the complete undirected graph, U

(2) Estimate from the data which pairs of variables are indepen-

dent and remove the corresponding edges to form U1.

(3) Estimate from the data which pairs of variables in U1 are

independent conditional on one of their adjacent neighbors

and remove their edges, forming U2; continue to form U3,

U4,… until no more edges are removed.

(4) Orient X – Z – Y as X ! Z ˆ Y if Z was not conditioned on when

removing the X – Y edge.

(5) Orient remaining undirected edges so as to avoid creating

colliders: ! V ˆ

Box 4. Rescorla–Wagner learning

The Rescorla–Wagner procedure estimates that the associative strength of potential cause Ci with the effect, E, after trial t þ 1 is Vi ¼ Vi þ DVi;

where DVi is given by:

DV t
i ¼

0 ; if the cause;Ci does not appear in case t;

aib1 l2
X

Cause Cj appears in case t

Vj

0
@

1
A; if both Ci and E appear in case t;

aib2 0 2
X

Cause Cj appears in case t

Vj

0
@

1
A; if Ci appears and E does not in case t :

8
>>>>>>>>><
>>>>>>>>>:

Fig. 1. Normative casual model in making judgments (see text for details).
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Box 5. From noisy-or gates to Cheng models

In a noisy-or gate an effect E is assumed to be a Boolean function of its

potential causes A, U, and parameters:

E ¼ qa A%qu U ð1Þ

where qa, qu, E and U all take values {0,1}, and % is Boolean sum (¼1

if and only if either argument is 1). So, letting A, etc., stand for A ¼ 1,

etc., and ,A, etc., stand for A ¼ 0, etc., (1) implies:

PrðEÞ ¼ pr ðqa A%qu UÞ

¼ Prðqa·AÞ þ Prðqu·UÞ2 Prðqa·AÞ·Prðqu·UÞ ð2Þ

Therefore Pr(ElA, , U) ¼ Pr(qa), Cheng’s causal power of A to

generate E.

If A, U, qa and qu are all independent in probability, (2) becomes:

PrðEÞ ¼ PrðqaÞ·PrðAÞ þ PrðquÞ·PrðUÞ2 PrðqaÞ·PrðAÞ·PrðquÞ·PrðUÞ ð3Þ

and (3) implies, with some algebra:

PrðqaÞ ¼ ½PrðElA;, UÞ2 PrðEl , A;, UÞ�=½1 2 PrðEl , AÞ� ð4Þ

which is Cheng’s formula for estimating the generative causal power

of A when U is thought to be independent of A.
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values (occurrence or non-occurrence) of its causes. When
chained together, so that there are sequences of causes,
such models automatically satisfy the Markov assump-
tion, and her theory naturally yields a general parameter-
ization of any directed acyclic graph, which in turn suggests
a variety of as yet untested hypotheses [26]. For example,
the generative causal power of C to produce E can
sometimes be estimated when it is known that there is
an unobserved common cause U of C and E, as in Fig. 2,
although there is no focal set.

Using Bayesian learning procedures for networks,
Tenenbaum and Griffiths [29] gave an alternative expla-
nation of Cheng’s and other data on causal learning
in cue ! effect designs. Waldmann and colleagues, [30],
suggested that the Bayes net formalism may be used to
represent causal prior knowledge and that such knowl-
edge influences new causal judgments, a phenomenon
demonstrated in an intricate set of experiments by Cheng
and Lien [31] for prediction of ambiguous cases of
subordinate categories from learned causal relations
involving superordinate categories.

Beyond the cue ! effect design: hidden common causes,

causal chains, no prior separation of cause and effect,

and interventions

Hidden common causes

With a suitable cover story, Danks and Mackenzie had
subjects observe values of variables from two causal Bayes
nets: C2 ˆ C1 ! E and C1 ! C2 ˆ U ! E. Subjects were
not informed about U and U was unobserved. Subjects
were asked to judge if C1 is a cause of E and if C2 is a cause
of E. A second experiment replaced data from the first
structure with data from C1 ! E ˆ C2 and a distinct cover
story. Danks [32] showed that for the probabilities used in
these experiments the Rescorla–Wagner dynamical model
yields equilibrium values of associative strength (i.e.
values for which the expected change in association on
further trials is zero) of a potential cause C1, for example,
equal to conditional DP, that is, Pr(ElC1, , C2) 2 Pr(El ,
C1, , C2). There is no Cheng focal set for this problem.
Subjects observed cases until they were prepared to judge
whether each observed potential cause was an actual
cause of E. There are 256 distinct possible patterns of
response. Rescorla–Wagner answers are (yes, no), (yes,
yes), (yes, yes), (yes, yes). The Bayes net answers to the four
questions are (yes, no), (no, no), (yes, yes), and (no, no). A
plurality of subjects identified no causes, and arguably
should have been excluded by a pre-test. Of the remainder,
33% of subjects, in the first experiment and 20% of subjects

in the second experiment gave the correct (Bayes net)
responses. Only 2 of these 114 subjects gave the conditional
DP responses.

Causal chains

Lagnado and Sloman [33] gave subjects data on two
potential causes of an effect, generated from a Bayes net
with structure A ! B ! E, and required subjects to
determine the causal relations among the three variables.
Subjects were poor at detecting the correct causal chain,
but the design was possibly flawed by a deterministic
dependence of B on one value of A and by a bias created by
the content of the cover story.

No prior separation of cause and effect

Streyvers and his collaborators gave subjects repeated
blocks of 8 trials. All data within a block were determined
by one of two alternative structures, A ! B ˆ C or
A ˆ B ! C, and subjects were given a forced choice,
with feedback after each block. Using a Bayesian model
of inference, they found groups of subjects that guessed at
random, groups that made appropriate Bayesian infer-
ences based only on the last trial in each block, and groups
that learned appropriately from the trials within each
block. In combination with the results of the Danks–
Mackenzie experiments, this work suggests wide individual
differences in sophistication of learning strategies.

Interventions

Streyvers and his collaborators also gave adult subjects 18
possible causal graphs on 3 variables, and asked them to
choose a best hypothesis from data. Once a hypothesis was
chosen, subjects were asked to choose an experimental
intervention to test or modify their hypothesis. Subjects
showed a bias for manipulating variables hypothesized
to be causal sources rather than intermediate variables.
Subjects were good at distinguishing common effect
structures from others (in agreement with Danks’ and
Mackenzie’s results described above), but were poor at
distinguishing chain or common cause structures differing
in the middle variable. The accuracy of estimates of
structure given by a majority of subjects improved after
they acquired data on interventions; a small fraction of
subjects made worse estimates.

Markov principles and interventions in developmental

psychology

A series of experiments by Gopnik and her collaborators,
[34,35], have found that young children (3–4 years) make
causal judgments in simple observational cases in accord
with the Markov assumption, use co-occurrence infor-
mation to override spatial contiguity; use causal judg-
ments obtained from observation of co-occurrences to
intervene correctly to stop a causal process, and correctly
infer causal relations from relatively complex combi-
nations of observed co-occurrences and interventions,
distinguishing common effects, common causes and causal
chains. For example, observing puppets in correlated
motion and a cover story that implies that one of the
puppets causes the other, but not which, and an inter-
vention with correlated stopping of puppet A but not of

Fig. 2. Graph of an (extended) Cheng model for which the generative causal power

of C can be estimated from observations of A, C and E without a focal set.
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puppet B, the majority of 4-year-olds correctly infer that
the motion of B causes the motion of A. Children of that age
also infer the existence of a common cause of correlated
motions when separate interventions on each puppet alone
do not stop the motion of the other puppet. That very young
children are capable of such inferences suggests that
causal learning mechanisms may be fundamental to
human cognition.

Dynamic learning

Unlike data-mining programs, human learners forget
most of the particular data they receive and must revise
their beliefs in light of previous beliefs and new, small
samples, and they may have limited processing time.
Recent algorithmic work has begun to develop dynamics
and low processing requirement for causal learning of
Bayes net structures. Spirtes [36] showed that a well-
known constraint based learning algorithm [14] can be
stopped at any point and yield correct, but less complete,
information. Danks [37] has shown that with a single cue,
there is a dynamical learning algorithm, analogous to
Rescorla–Wagner’s, whose equilibria are Cheng’s causal
powers. Bayesian Bayes nets learners are naturally suited
for ‘one-step’ updating without memory of past data [37].

Alternatives

Kalish and Anh [20] have argued that people make causal
judgments based on cognitively available mechanisms
connecting putative cause and effect, and have argued that
this conception is fundamentally inconsistent with learn-
ing from observations, whether passively observed or from
interventions. Glymour and Cheng [21] have pointed out
that mechanisms are naturally viewed as variables that
either intervene between cause and effect, or as other
factors that regulate the influence of a cause on an effect,
and so have straightforward network representations.
They also emphasized the compatibility with inferences
based on knowledge of mechanisms with learning from
passive observations and from associations resulting from
interventions, arguing that unless knowledge of mechan-
isms is innate it must ultimately be acquired from such
data. One must suspect complex cognitive processes in
which learned causal relations are generalized and used to
provide mechanisms in other, less general, cases. Lien and
Cheng’s work suggests one such process.

Goldvarg and Johnson-Laird have argued that in adult
human understanding causal claims are logical material
conditionals, elaborations of the form suggested by Boole
and Frege. Traditional objections to this view of content
have to do with the monotonicity of logical conditionals and
the non-monotonicity of causal claims, and with counter-
factuals. ‘Striking a match causes a flame’ is true, whereas
‘Striking a match when there is no oxygen causes a flame’ is
false, but the material conditional ‘If A then B’ entails ‘If A
and C, then B’ for any declarative propositions, A, B, and
C. Sloman and Lagnado [38] have shown that adult sub-
jects give different responses to ‘counterfactual undoing’ of
premises or conclusions when told that A causes B and,
respectively, when told that if A then B, and then asked
whether A would obtain in the absence of B, or B would
obtain in the absence of A.

Conclusion

The recent work on causal judgment surveyed here opens a
raft of experimental and theoretical issues that deserve
the attention of cognitive, developmental and mathemat-
ical psychologists. Many of the experiments reported here
need to be repeated with varied conditions, materials, and
methods of subject selection. The individual variation
found in several experiments needs to be better explored.
The Danks–Mackenzie experiment suggests that a sig-
nificant subset of subjects can identify causal relations in
the absence of a focal set of data in which a potential cause
is independent of other causes of the effect, but whether
the same phenomena occur in more complex designs, as in
Fig. 2, is unknown. Tenenbaum and his collaborators have
argued forcefully that in causal learning humans use
Bayesian learning procedures, but learning algorithms in
causal judgment need further investigation. How particu-
lar causal relations, once learned, are generalized and
used in subsequent causal inference and in the elaboration
of mechanisms – for example, the role of analogy in this
process – needs further investigation, continuing the work
of Waldmann and of Lien and Cheng. Further algorithmic
work suggesting realistic but reliable learning heuristics
and procedures is much to be desired. In the longer run, we
may hope that this research influences work, and appli-
cations, on human factors, where causal judgments have
an evident importance. In social psychology, provably cor-
rect Bayes net model discovery procedures from statistics
and computer science have, as yet, made few inroads
against dominant methodologies in which causal models
tend to be specified a priori, often as regression models
or linear structural equation models, and tested by
LISREL and similar procedures, without serious explora-
tion of alternative causal models. We may hope that too,
changes [39].
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