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Twenty years ago, Nancy Cartwright wrote a perceptive essay in which
she clearly distinguished causal relations from associations, introduced
philosophers to Simpson’s paradox, articulated the difficulties for reduct-
ive probabilistic analyses of causation that flow from these observations,
and connected causal relations with strategies of action (Cartwright 1979).
Five years later, without appreciating her essay, I and my (then) students
began to develop formal representations of causal and probabilistic rela-
tions, which, subsequently informed by the work of computer scientists
and statisticians, led eventually to a practical theory of causal inference and
prediction, a theory incorporating some of the sensibilities Cartwright had
voiced (Glymour et al. 1987; Spirtes et al. 1993). That theory, and ideas
related to it, have become a subfield of computer science with contributions
far deeper than mine from many sources, and its inferential and pre-
dictive techniques have been successfully applied in biology, economics,
educational research, geology and space physics.

My timing was bad. Sometime in the interim, Cartwright abandoned
her earlier views. It is only natural that when a philosopher abandons
an opinion, she should criticize the views of those who retain or extend
it, and perhaps for that reason in recent years Cartwright has made the
work of my collaborators and myself the object of repeated lengthy (but
invariably courteous) criticism, first in a chapter of her second book, (most
of which, she wrote, was intended to explain the “philosophical reasons”
why the ideas behind our initial methods could not work), then in several
papers, and soon in a chapter of a forthcoming book. With the exception
of a short comment on one of her examples inNature’s Capacities and
Their Measurement, I have written nothing in response. But a decade of
criticism from a source so eminent eventually demands a considered reply.
I will attend to the book just mentioned, and to a chapter of the manuscript
of her new book, which contains the essential content of the intervening
papers.
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1. DISCOVERING CAUSAL STRUCTURE(1987) VERSUS NATURE’ S

CAPACITIES AND THEIR MEASUREMENT(1989)

An idea almost exactly as old as the twentieth century is that, in some
circumstances, correlations among measured features may be explained by
postulating that each measured variable is a linear function of unobserved
causes that influence two or more measured variables, and of independ-
ently distributed unobserved causes particular to that measured variable.
The joint probability density on all of the variables is determined by the
joint density of the unmeasured variables and by the linear coefficients.
The idea is basic to factor analysis, and is still a common model in psy-
chometrics and elsewhere in social science. Later generalizations allowed
that some of the measured variables might also influence others.

In such theories, neither the joint probability density, nor the causal
relations between variables, nor the coefficients in the linear equations, are
observed. The immediate scientific issue was how aspects of the unob-
served structure might be estimated from observed associations among the
measured variables. Charles Spearman, who introduced the representation,
had the following idea: When four (or more) variables have a common
cause, and there are no other common causes of any two (or more) of the
variables, and the measured variables do not influence one another, then the
model implies three equations among the correlations of the four measured
variables:

rij rkl = rikrjl = rilrjk.
The implication holds no matter what values the linear coefficients may
have, and no matter what the joint distribution of latent variables may be,
so long as the correlations remain defined. One could, Spearman thought,
confirm or disconfirm the causal explanation by testing these “tetrad equa-
tions” (as he called them) on sample data. His tests always assumed that the
measured variables are jointly normally distributed, an assumption whose
reasonableness could be judged by examining the data. Once the causal
structure was established, the linear coefficients could be estimated from
the data.

Spearman allowed only models with a single common cause. To ac-
commodate subsequent empirical findings, his followers allowed models
in which two or more uncorrelated, unobserved, common causes influence
some of the members of the same foursomes of measured variables. The
method died after Thurstone introduced factor analysis, largely because
it was computationally intractable when, as was typical in psychometrics,
a large number of measured variables were involved. In the 1960s, Her-
bert Costner realized that models with other unobserved causal structures
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may similarly imply characteristic sets of tetrad equations. For example, a
model in which two measured variables,i andj , share a common unob-
served cause, and two other measured variables,k and l, share a second
unobserved cause, implies a single tetrad equation:

rikrjl = rilrjk
no matter how the unobserved common causes are causally related to one
another. Costner and Schoenberg used this observation to propose heuristic
methods for modifying initial latent variable models that fail statistical
tests on sample data.

The general methodological point ofDiscovering Causal Structurewas
that social scientific practice is unnecessarily dogmatic, that usually very
few alternative explanations are entertained, and that there are systematic,
algorithmic ways to find, from among a vast logical space of possible
causal models, those alternative explanations that can account for the data.
One major technical contribution provided a feasible general algorithm
for computing the set of tetrad equations implied by any (recursive) linear
model in which unobserved causes (noises, or errors in other terminology)
that directly influence only a single measured variable are distributed inde-
pendently of one another. Despite the long history of efforts by Spearman
and his followers, and the stimulus of Costner’s work and prestige, no
such procedure existed before. Our result was subsequently strengthened
by several writers. The other major technical contribution of the book was
to use these calculations, in combination with a sequence of statistical tests
of the implied tetrad equations, in a data driven heuristic search procedure
for modifying an initial latent variable model.

The heuristic search we proposed was essentially rather simple. It was
easy to prove that adding a new functional dependency – a new causal
connection – to an existing model may reduce the set of tetrad equa-
tions implied, but will never increase them. Starting with an initial latent
variables modelM, compute the set of tetrad equations among measured
variables implied byM. and test them. Let the set of tetrad equations
implied byM be I , and let the set of tetrad equations inI that survive
the testing beH . GenerallyI ⊇ H . Find all of the modelsM ′ that extend
M by adding additional dependencies and that imply only maximal subsets
of H . The theoretical effort in designing this search lay in finding feasible
ways to compute all such extensions of any given modelM. In this, we
were greatly aided by representing the functional dependencies of linear
models by directed graphs.

There was one rather minor further technical contribution. Following
ideas proposed by Herbert Simon, around 1960 Hubert Blalock intro-
duced the idea of searching for linear models by testing the vanishing
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partial correlations each model implies. Blalock’s procedure was similar
to Spearman’s and Costner’s in that it did not depend on the particular
values of the linear coefficients. Blalock carried out his procedure only for
simple models with no more than four variables, and he and subsequent
social statisticians provided no general algorithm. We provided a general
algorithm for computing the first order vanishing partial correlations im-
plied by any recursive linear model without unobserved common causes
and with independent errors, a result that seems pitiful in retrospect. Like
Blalock, we offered no algorithmic procedure for using these constraints
in searching for causal explanations.

The rest ofDiscovering Causal Structurewas devoted to justifying
heuristic search, explaining the procedures and the methodological intu-
itions behind them, illustrating their application on well studied sets of
social data, and giving proofs. In applications, the search procedures were
used to find models with free parameters (the linear coefficients and the
variances of unobserved variables, assuming the normal family of distribu-
tions). The numerical values for the parameters were then estimated, and
the fit models estimated, using a standard statistical package. The illus-
trative applications typically found plausible, better fitting alternatives to
causal models in the social science literature. The single empirically inde-
pendently verified application of the method was to predict, without prior
knowledge, the order in which several questions in a famous sociometric
questionnaire had been asked. Perhaps we were lucky.

Nancy Cartwright devoted sixteen pages ofNature’s Capacities and
Their Measurementto criticizing Discovering Causal Structure.

The first and most important difference between my point of view and that argued in
Discovering Causal Structurehas already been registered. I insist that scientific hypotheses
be tested. Glymour, Schemes, Kelly and Spirtes despair of ever having enough knowledge
to execute a reliable test. (1989, 72)

What Cartwright described as our ill-founded “despair” was our emphasis
on this: the fact that a statistical model passes a significance test at some
alpha left is insufficient for the truth of the model, since many distinct
models may pass the same test, and conventional statistical methodology
had no method of finding the alternatives. That is true, and Cartwright said
nothing to rebut it.

Next, simplicity.

They assume that structures that are simple are more likely to be true than ones that are
complex. I maintain just the opposite. . . have argued that nature is complex through and
through: even at the level of fundamental theory, simplicity is gained only at the cost of
misrepresentation . . . Glymour, Schemes, Kelly and Spirtes believe that simpler models are
better. But I agree with Haavelmo. Simplicity is an artifact of too narrow a focus. (1989,
72–3)
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We used the idea of simplicity exactly as follows: when a set of elabora-
tionsM1 an initial model implies a maximal subset ofH , and elaborating
M1 with further directed edges or functional connections yields a model
M2 that implies the same maximal subset ofH , our procedures reportM1

but notM2. One reason was purely computational. The output of the pro-
cedures would become unreadably large otherwise. But another reason was
our belief that, absent substantive assumptions requiring particular con-
nections, researchers would usually have no interest in such models. They
would typically be unidentifiable, and be viewed as gratuitously complex.

Cartwright is perhaps correct that the whole truth about anything is very
complex; but, quite properly, science is seldom interested in the whole
truth, or aided by insistence upon it. In my view, an inquiry that correctly
found the causes of most of the variation in a social phenomenon and
neglected small causes would be a triumph; in her view it would be a
debacle. In my view, anti-Newtonians who objected that there must also
be magnetic forces on the planets, or that Newtonian theory does not ex-
plain the variations in the colors of planets, or their masses, would have
missed the point; in her view, it seems, they would be making it. Still,
she may have been correct that it would be better if social scientists had to
consider more complex models as well as simple alternative models. There
is no good reason why all parameters in the true, or even any nearly true,
model of social or other phenomena must be identifiable. But it seems
a bit churlish to have made that complaint of an effort that considerably
expanded the ability to find alternative models, while making no comment
on conventional practice.

Cartwright did not advance a more telling objection to our use of sim-
plicity: a more complex model that implies the same tetrad equations as
a simpler model might imply a distinguishing set of higher order, non-
quadratic, constraints on the correlations, and our procedures did not test
for such constraints, because we did not know how to compute them or test
them.

Cartwright mixed her criticism of simplicity with criticism of a related
methodological idea, which we called Spearman’s principle, and which
we put this way: “Other things being equal, prefer those models that, for
all values of their free parameters (the linear coefficients), entail the con-
straints judged to hold in the population” (Glymour et al. 1987). In the
models we considered, the principle is equivalent to ignoring or rejecting
explanations of vanishing correlations, or of tetrad equations or vanishing
partial correlations, that posit multiple causal pathways whose several in-
fluences perfectly cancel one another. She had a number of objections to
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the principle, some of which she illustrated with a discussion of a case we
considered, the Transitional Aid Research Project (TARP).

Separately in Texas and in Georgia, randomly selected groups of newly
released fellows were given monthly payments for six months through the
respective state unemployment commissions. After a year, rearrest rates
for these groups were compared with rearrest rates for felons released at
the same time in the respective states. In Texas there was no difference in
rearrest rates between the two groups, and, likewise, in Georgia there was
no difference in rearrest rates for the two groups. No data were obtained on
the actual employment in this period of either the treatment or the control
groups. The project leaders concluded, nonetheless, that these facts showed
that payments to newly released felons reduce crime. They justified that
odd conclusion in this way: in the experimental set-up, payments through
the unemployment commission reduced the recipients propensity to work
(supposition); unemployment caused the recipients to engage in crime (so-
ciological theory); but since there was no difference in recidivism between
the groups that received payments and the groups that did not (empirical
data), the payments must have caused a compensating tendency not to do
crime (conclusion). The two mechanisms perfectly canceled one another.
The explanation is a straightforward violation of Spearman’s principle.

In protest to these inferences Hans Zeisel, an eminent sociologist, very
publicly resigned from the committee overseeing the experiment. Zeisel
thought the straightforward and obvious explanation of the data was that
payments (at least at the amounts in the experiments) do not influence
recidivism. Our methods agree with Zeisel’s in rejecting the arguments
and the conclusion of the project leaders, and in thinking the experi-
ment is evidence that payments have no influence on recidivism, but we
went on for two pages to dispute Zeisel’s claim that randomized exper-
iments always have univocal interpretations, and that the only possible
interpretation of the outcome of the TARP experiment is that there is no
effect.

Here is Cartwright’s assessment of our discussion:

If unemployment really does cause recidivism, then, given the lack of correlation, cash-in-
pocket must inhibit it; and if unemployment does not cause recidivism, then cash-in-pocket
is irrelevant as well. The statistics cannot be put to work without knowing what the facts
are about the influence of unemployment; and there is no way to know short of looking.
Glymour, Schemes, Kelly, and Spirtes advocate a short cut. For them, it is more likely that
unemployment does not cause recidivism than that it does. That is in part because of their
‘initial bias against causal connections’. But the hypothesis that unemployment does not
cause recidivism is as much an empirical hypothesis as the contrary; and it should not be
accepted, one way or the other, unless it has been reliably tested. Failing such evidence,
how should one answer the question, ‘Does cash-in-hand-inhibit recidivism?’ Glymour,
Scheines, Kelly and Spirtes are willing to claim, ‘Probably not’ (1989).
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Consider then the probabilities of hypotheses. Although our book did not
give a Bayesian analysis, it is straightforward to do so. The probability
density over a model with numerical coefficients (rather than free paramet-
ers) can be factored into a density for the model with free parameters and
a conditional density for the parameter values. The methods we used cor-
respond to constraints on prior probabilities over models with numerical
coefficients (rather than free parameters), priors that put zero probability
on models whose coefficients represent canceling mechanisms. In so far
as the data force the posterior distribution of the linear coefficients (for
the confounded model with free parameters, the model in which payments
cause unemployment which causes recidivism) to be located close to a set
of perfectly canceling parameter values, the posterior of the confounded
model with free parameters approaches zero. With those priors, and the
data of the experiment, “probably not” is the right answer. Put Bayesianly,
Cartwright announced she had different priors, but it is difficult to see how
inquiry could be conducted with them. Inferences from observational stud-
ies would be hopeless, since unobserved. causes can always be postulated
that perfectly cancel observed associations. Potential confounding similar
to the TARP experiment occurs in any randomized controlled experiment
in which there is anything different about the treatment and control groups
other than the intended treatment itself, and in social experiments there
almost always is some difference. On her view of the complexity of things,
we should expect such confounding to be typical, even if we are in ig-
norance of the confounding properties, in which case we will never be
able to conclude from a randomized experiment that the treatment has no
influence on the outcome.

Cartwright had a broader objection to our methods. She said we
introduced a new “theory form”.

Here is how I would describe what they do. To get the new theory form, start with the old
linear equations but replace all the usual continuous valued parameters in the equations
by parameters that take only two values, zero and one. One can think of these new para-
meters as boxes, where the boxes are to be filled in which either a yes or a no; yes if the
corresponding causal connection obtains and no if it does not. A specific theory consists in
a determination of which boxes contain yes and which no (1989, 76).

That is indeed almost the form of the features of theories over which we
search. But it is hardly new; in fact it is standard. Any reading of the
social science literature shows the most common forms of linear models
postulate equationals with linear parameters ranging over real numbers,
not real numbers as linear coefficients, and that any number of possible
linear parameters do not appear at all, because the model specifies that
their values are each zero. (The parameter values are typically estimated
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after the model with free parameters is specified.) With independent errors,
that representation isisomorphicto the directed graphical representation
we use. And, of course, the graphical representation is not new either; it
was sixty years old when we used it and perfectly common, just as we
represented it, in the social science literature in the thirty years preceding
our book.

So what is wrong with our “theory form”?

The upshot of this implementation of Spearman’s Principle is to reduce the information
given in a causal theory from that implied by the full set of equations to just what is avail-
able from the corresponding causal pictures. . . This move from the old theory form to the
new one is total and irreversible in the Glymour, Schemes, Kelly and Spirtes methodology,
since the computer program they designed to rank causal theories chooses only among
causal structures. It never looks at sets of equations, where numerical values need to be
filled in. I think this is a mistake, both for tactical and philosophical reasons (1989, 76).

There is nothing “total and irreversible” about the graphical representation
that severs it from equational representations with free parameters. Four
pages (68–72) ofDiscovering Causal Structureare devoted to describing
how to transform graphical models into statistical models with equationals.
We preferred the graphical framework because formal relationships are
then easier to see, because directed graphs are natural for algorithmic work,
and because no matter how the structures are represented, the proofs of
essential properties are essentially graph theoretic. And there is, therefore,
also no “total and irreversible” disconnection of the graphical representa-
tion from causal models with real coefficients rather than free parameters.
They are what you get when you estimate the parameters in the model
described by a graph. Absent only the explicit graphical representation,
that is how linear models with a causal interpretation have been con-
structed almost everywhere and almost always in the social sciences, and
that is why the theory of point estimation has played so important a role.
Cartwright implies idiosyncrasy where there is nothing more than mathem-
atical explicitness. All that is new is the methods of search, which use only
the statistical features that are captured by the graphical (or equivalently,
the equational structure), and the assumption that exogenous variables and
noises are jointly independent. If you locate rabbits by their ears, you aren’t
implying they don’t have tails.

Cartwright goes on briefly to explain, astonishingly, that correcting this
“mistake” is the main point of most of her book:

The philosophical reasons are the main theme of the remaining chapters of this book. The
decision taken by Glymour, Schemes, Scheines, Kelly and Spirtes commits them to an
unexpected view of causality. It makes sense to look exclusively at causal structures (i.e,
their graphs) only if one assumes that (at least for the most part) any theory that implies the
data from the causal structure alone is more likely to be true than one that uses the numbers
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as well. This makes causal laws fundamentally qualitative: it supposes that in nature only
facts about what causes what are important; facts about strength of influences are set by
nature at best as an afterthought. I take it, by contrast, that the numbers matter, and that they
can be relied on just as much as the presence or absence of the causal relations themselves
(1989, 76–7)

Parallel reasoning to Cartwright’s: It makes sense to try to catch rabbits by
their ears rather than their tails only if they are more likely to have ears than
tails. Our reasons for search over graphical structures rather than systems
of equations had nothing to do with whether the existence of causal rela-
tions is more real than numerical measures of their strength, whatever that
means; the reasons had everything to do with reliability and computational
feasibility of search.

The value of searching over graphical structure can perhaps be illus-
trated by considering the numerically based algorithmic model elaboration
procedures standardly used in 1987 (and even now), whenDiscovering
Causal Structurewas published. Cartwright did not mention them. Their
strategy begins with a linear, latent variable model with free parameters
and tests the model on sample data at some specified alpha level. In 1987,
such tests required a computationally intensive numerical procedure for es-
timating values of the free parameters in the model. Implicitly, such models
also contain many fixed parameters, usually corresponding to linear para-
meters whose values the model claims are zero, representing possible
causal connections whose existence the model denies. If the model fails
the hypothesis test, one of these previously fixed–at–zero parameters is
freed. The parameter selected is whichever results in an elaborated model
that most improves a fitting statistic. If two parameters are tied by this
measure, one is chosen arbitrarily. The procedure iterates until no addi-
tional parameter results in a model against which the previous model is
rejected by a hypothesis test. At each stage the computationally intensive
numerical estimation procedure must be repeated. Because of the computa-
tional requirements, the search never branches: if freeing any one of several
parameters results in equal improvement in search, only one is chosen and
the others ignored at that stage of the search. And for the same reason, the
procedure never has a model stage with more than one parameter free than
in the models of the previous stage, even though such models will some-
times fit better than any model obtained by twice in succession freeing
the best fitting single parameter. The result is a one step look ahead beam
search.

In simplest form, our 1987 procedures began with the graph of the
same initial latent variable model, tested the tetrad equations it implied,
and stored the setI of those implied by the initial model and the subset
H of I of implied tetrad equations that passed the test. For each single
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directed edge that, when added to the initial graph, implied all members of
H and a proper subset ofI , a modelM ′ containing that edge was created,
and its corresponding setI ′ stored. The procedure then branched over all
the elaborated models and repeated the process. A branch of search termin-
ated when no further elaboration could reduce the implied tetrad equations
without reducing the implied tetrad equations inH .

The critical difference in the procedures is that, for computational reas-
ons, the conventional search could not afford to branch, and so had to
make arbitrary choices, whereas our search, which required no numerical
analysis, could and did branch. The difference in search strategies made
a considerable difference in reliability. In an enormous simulation study
using structures typical in social science models, with randomly assigned
parameter values and a variety of sample sizes, the popular beam searches
produced the correct answer in 11 to 13% of cases, depending on sample
size and the particular algorithm used. Graphical search produced a set
of alternative models containing the true model in more than 90% of the
cases. Even if a single one of the alternative models output by our pro-
cedure were chosen at random for comparison with the single output of
the beam search, the graphical search was correct in more than 40% of the
cases.

The essential issue in scientific discovery is the right representation
for reliable, efficient search, not the metaphysical disputes upon which
philosophy of science is fixated. Its Branching, not Being.

Cartwright almost concluded her criticism inNature’s Capacities and
Their Measurementwith a discussion of our treatment of another case, a
study by Timberlake and Williams, purporting to show that, in the 1970s,
foreign investment in “peripheral” nations caused “political exclusion”
within those countries. The entire point of our discussion of the case,
emphasized again and again, was that regression models assume a lot
about causal structure, that if those assumptions are wrong, the regres-
sion coefficients do not measure causal influence, and that our methods
sometimes permit one to find alternative explanations of the data, arguably
sometimes better explanations. Cartwright claimed we used the case to
criticize “methods, like those I have been defending, that try to infer causes
from partial correlation” (1989, 79). The implication, which perhaps she
did not intend, is that Timberlake and Williams used the methods of which
she approved. I won’t hold her to it.

Timberlake and Williams constructed measures of four variables, polit-
ical exclusion (po), foreign investment (fi), energy development (en), and
(absence of) civil liberties (cv), as well as other variables that do not figure
in the argument. (They do not say which 72 nations they used, and we
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could not reconstruct their data from their source. They did not reply to
a request from my collaborator, Richard Scheines, for details on how the
correlations were obtained.) They simultaneously linearly regressed po on
fi, en, and cv, found a positive regression coefficient for fi, and concluded
that they had shown that foreign investment caused political exclusion.

Examining their correlations, we found that political exclusion and for-
eign investment are uncorrelated when energy is controlled for, and that
energy and absence of civil liberties are uncorrelated when political exclu-
sion is controlled for. We said these vanishing partial correlations, which
are very robust, “are the kind of relationship among correlations that can
be explained by causal structure” (1987, 177), we offered some models
that explain them in that way. For example, graphically:

whereT andQ are unobserved causes. We did not claim any of these mod-
els are true, but did claim they are better explanations of the correlations
and time order constraints reported by Timberlake and Williams than is the
regression model in which the causal structure is assumed a priori and the
vanishing partial correlations are accommodated by the numerical values
of the coefficients. Since it involved no automated search, our analysis was
exactly the sort that Hubert Blalock could have given.

The logic of Cartwright’s discussion is difficult to follow. There is a
formal point that may have been what she was after, namely that there exist
(normal) probability distributions that do not satisfy Spearman’s principle
for any directed acyclic graph, with or without latent variables.

I will give her discussion in the sequence she did, changing only nota-
tion to agree with mine. First Cartwright asked the reader to assume,
contrary to fact, that foreign investment and political exclusion are un-
correlated. Then she asked that the reader assume that two causal claims
of the regression model are correct – en is a direct cause of po and cv is
a direct cause of po, although there is nothing but the regression model
to justify these assumptions. Then she asked the reader to assume that the
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following three second order partial correlations do not vanish, although
she made no showing of this assumption from the data:

fi, po controlling for en and cv
en, po, controlling for fi and cv
cv, po controlling for en and fi

Each of their [i.e., our] structures reverses the causal order of (po) and (cv) (from the order
in the TW model) . . . Since the methods described in Chapter 1 (ofNature’s Capacities
and Their Measurement) assume that temporal order between causes and effects is fixed, a
structure in which (fi, cv and en all precede po), as they do in (Timberlake and Williams’
model), will serve better for comparing the two approaches (1989).

Her point is that in our models po causes cv, whereas in Timberlake and
Williams’ regression model the reverse is true. She did not note that they
gave no basis for their assumption.

There follows in her book a new graphical model which, she says, im-
plies that po and fi are uncorrelated and also implies the two vanishing
partial correlations we found from Timberlake and Williams correlation
matrix. The model is:

en po← T → cv← fi

She did not note that, unlike the time order of po and cv about which
Timberlake and Williams provided an assumption but no information, they
did specify that fi is measured at a later time than cv. Unlike our models,
Cartwright’s model really does violate what is known about the time order.

This structure, she wrote, implies the vanishing correlation of fi and
po (which she assumed contrary to fact) and the two vanishing partial
correlations (which we found in Timberlake and Williams’ data) “just
from its causal relations alone, keeps the original time-ordering and builds
in the hypotheses favored by Glymour, Schemes, Kelly and Spirtes that
investment does not produce repression” (1989, 82). That is true. So?

The example is an unfortunate one for Glymour, Schemes, Kelly and Spirtes, however.
For there is no way that this graph can account for the (three non-vanishing second order
partial correlations she assumed) with or without numbers. Nor is it possible with any
other graph, so long as the time precedence of (en, fi and cv over po) is maintained. If the
original time order is not to be violated any model which accounts for (the vanishing first
order partial correlations) on the basis of its structure alone, and is consistent with (the
nonvanishing second order partial correlations) as well, must include the hypothesis that
foreign investment causes (1989, 82).

The obscure point is that in every linear model that implies

ρ fi,po = 0
ρ po,fi.en = 0
ρ cv,en.po = 0
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and does not imply

ρ fi,po.en,cv = 0
ρ en,po.fi,cv = 0
ρ cv,po.en,fi = 0

and does not have po cause fi, en or cv,

ρ fi causes po.

The assumptions are overkill. In any linear model, a structure of the form

implies thatX, Y are correlated controlling forZ. (It does not matter
whether the associations betweenX, Y , andZ are produced byX, Y
causingZ or by a unmeasured common causes, or both.) Hence no linear
model in which cv and en are each correlated with po, and po is not a cause
of either of them, can imply that cv, en.po = 0. But why should it matter to
our proposals that a completely imaginary set of constraints should not be
explicable by any linear model? Presumably it should matter only if such
circumstances are common, and there is some other method for finding
the true structure when they arise. Cartwright did nothing either through
an empirical survey or through mathematical analysis, to show that such
constraints commonly occur. (Six years later we proved that, in the natural
measure on the linear coefficients, such constraints have probability zero.
See below.)

She continued by offering still another model which she claimed in-
cludes our “favoured hypothesis, that foreign investment does not cause
repression, and does account for all the data, though of course not on the
basis of structure alone” (1989, 83). The point seems to be a charitable
effort on her part to formulate a model that saves the data (although it
is not clear which data, real or imaginary, she meant to save), incorporates
our “favored hypothesis” (although we had no stake in the particular causal
claim, only a preference for certain explanatory relations), and corresponds
to a time order which she seems to have thought was independently known.
She presented the model graphically, as on the left below
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and claimed that the data (whichever) cannot distinguish between this
structure and Timberlake and Williams’ model. Her version of Timberlake
and Williams’ model – which is not the real one – is shown on the right
above. Her version leaves out the correlations of fi and cv with en implicit
in the regression model.1 And what follows?

Cartwright might have been trying to show that there are probability
distributions that cannot be explained by any directed, acyclic graphical
model consistent with Spearman’s principle. There are. She might have
been trying to show that there are probability distributions that: cannot
be explained by any graphical model consistent with both Spearman’s
principle and a substantive assumption. There are. The relevance of this
discussion to our methods is mysterious, absent a showing that such
patterns of constraints are typical.

2. CAUSATION, PREDICTION AND SEARCH VERSUS MORE RECENT

CARTWRIGHT

In several places throughout her discussion inNature’s Capacities and
Their Laws, Cartwright objected that we considered only tetrad equations
and vanishing first order partial correlations. Why not higher order partial
correlations, or other constraints besides tetrad equations? Good question.
But, having said that, she argued that using other constraints

. . . is bound to be wrong, since the very fact that makes an nth order partial correlation
the relevant one – that is the fact that there are n other causes operating – also makes the
both higher and lower-order ones irrelevant . . . what qualitative relations are relevant in the
data depends on what causal structure is true; and each causal hypothesis must be judged
against the data that are relevant for the structure they are, in fact, embedded in (1989, 79).

Once more, she was thinking about confirmation rather than search. If a
variableX has exactlyn direct causes among a set of other variables,
hypotheses about vanishing correlations controlling fork < n variables
are extremely relevant: their falsity may tell us thatX has more than
k direct causes. Hypotheses about vanishing correlations controlling for
p > n variables will be irrelevant, but that observation only poses a
problem about structuring a reliable search using tests of vanishing partial
correlations, not an argument that no such search is possible.

In Discovering Causal Structure, I and my collaborators considered
only vanishing first order partial correlations, for the good reason that we
did not have a general algorithm for calculating the higher order partial cor-
relations implied by arbitrary directed graphs representing linear models
with independent errors, or even for acyclic directed graphs representing
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“recursive” linear models with independent errors. Then, in 1989, we read
Judea Pearl’s book,Probabilistic Reasoning in Intelligent Systems, which
had appeared the year before, and the lights came on.

In the early 1980s, a number of statisticians had formalized the relation
between directed acyclic graphs and the vanishing partial correlations they
imply in corresponding linear models with independent errors, and, more
generally, between directed acyclic graphs and conditional independence.
The crux of the connection was called the (local) Markov condition, and
is a generalization of Reichenbach’s notion of screening off. Formally, the
Markov condition is simply a restriction on how directed graphs whose
vertices are variables are to be paired with probability distributions over
the space of possible joint assignments of values to the variables. A pair
〈G, Pr〉,G a directed graph and Pr such a probability distribution, satisfies
the Markov condition if and only if for each variableX represented by a
vertexX in G, conditional on the parents ofX (in G) X is independent of
any set of variables, none of whose members are represented by vertices
that are descendants ofX inG. In linear models with normal distributions,
conditional independence is vanishing partial correlation, and the Markov
condition can also be reformulated for vanishing partial correlations even
in non-normally distributed linear models with independent errors.

Pearl not only reviewed this work, he and his students did something
of great importance: they used it to provide a fast algorithm to decide, for
any directed acyclic graph and any conditional independence statement
involving only variables represented by vertices in that graph, whether the
Markov condition applied to the graph implies the conditional independ-
ence. The algorithm used a graphical property Pearl discovered and called
d-separation, although to add confusion it is now sometimes called the
(global) Markov property. It is straightforward to prove that the Markov
condition is necessarily true of any system of functional dependencies
among variables in which the exogenous variables (those of zero in degree
in the graph) are independently distributed. So, with d-separation, we could
now compute the vanishing partial correlations of any order implied by
any directed acyclic graph, and hence by any linear recursive equational
model with independent errors. (It later (in 1994) became clear that, in one
respect, d-separation is a more generally applicable notion than the (local)
Markov condition. I showed that the local Markov condition fails for non-
recursive linear equational models with independent errors, and, in a much
deeper effort, Peter Spirtes showed that d-separation necessarily holds of
them.)

Pearl’s book also explored further assumptions about the relations
between graphical structure and conditional independence, in particular
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the assumption, which we now call faithfulness, that all conditional inde-
pendence relations in the probability distribution follow from the Markov
condition applied to the graph with which the distribution is paired. For
linear models, faithfulness is a generalization of Spearman’s principle.

In his 1988 book, Pearl explicitly rejected the idea that the graphical
structures he described might be used to describe any model-independent
causal relations. From our work on linear latent variable models, I and
my colleagues had a quite different view, and it proved fruitful. In 1990,
Spirtes, Richard Schemes and I used d-separation and tests of condi-
tional independence (or vanishing partial correlations) in an algorithm for
constructing causal models from data, provided there are no unrecorded
common causes of measured variables, and assuming the Markov con-
dition is true of causal relations and the probabilities of variable values.
We also suggested that related searches could be found for latent variable
models. The search procedure was not really feasible, and faster algorithms
were soon proposed by Pearl and his student, Thomas Verma, and by those
of us at Carnegie Mellon. We were able to prove that, assuming faithful-
ness, our algorithms almost surely converged to the Markov equivalence
class of the true structure, although the convergence, we now know, is
not uniform. And we were able to prove that faithfulness holds almost
surely of distributions on continuous variables satisfying the Markov con-
dition, a result Chris Meek later extended to models whose variables have
only finite sets of values. In 1991, in collaboration with Steve Feinberg,
Chris Meek, and Elizabeth Slate, we introduced procedures for predicting
the results of interventions given a graphical causal model without latent
common causes. Spirtes subsequently generalized this work to predictions
from only partially known models, with latent common causes. Based on
this work, Pearl subsequently published rules for prediction that form a
special case of Spirtes’ results, and Pearl’s work evolved to the elegant
and useful formalism he presents in this issue. In 1992, Spirtes devised a
more general search algorithm that works even when unmeasured common
causes may be present, and proved a similar convergence theorem for it,
and, in collaboration with Verma, a proof that the algorithm has a kind of
completeness.

We assembled these and other results in a book,Causation, Prediction
and Search, published in 1993, now much cited but never much read.
It is already dated by subsequent developments about feedback models,
Bayesian and other search procedures based on model scores, search pro-
cedures for feedback models, new prediction algorithms, results about
search with sample selection bias, more general graphical representations,
and more.2 None of the work subsequent to 1993 seems to be known
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to philosophers, but the book has been the subject of several criticisms,
including four (counting her forthcoming book) by Cartwright.

We wrote inCausation, Prediction and Search:

The basis for the Causal Markov Condition is, first, that it is necessarily true of popula-
tions of structurally alike pseudoindeterministic systems whose exogenous variables are
distributed independently, and second, it is supported by almost all of our experience with
systems that can be put through repetitive processes and whose fundamental propensities
can be tested. Any persuasive case against the Condition would have to exhibit macro-
scopic systems for which it fails and give some powerful reason why we should think the
macroscopic natural and social systems for which we wish causal explanations also fail to
satisfy the condition. It seems to us that no such case has been made (1993, 64).

(We call a system one gets by marginalizing out some exogenous causes
“pseudo-indeterministic”.) The argument should have had the qualification
that it applies to systems without feedback. The argument is not just by
burden of proof: try to make a system without feedback that violates the
Markov condition When you take account of all causes, including your
own actions. You won’t succeed with hammer and nails, or light bulbs,
batteries and wires, or household chemicals, or your computer. It is easy
to produce apparent but inauthentic counterexamples: collapse the values
of variables into a reduced set, and ignore that you have collapsed them;
marginalize out common causes and ignore that you have done so; mix
together systems with different propensities and average the probabilities
over them, while ignoring that you have mixed and that the systems are of
different kinds; draw a sample by a method that determines membership in
the sample by the values units have for two causally unconnected variables,
and ignore how the sample was obtained. There are, of course, physical
phenomena, such as hysteresis, in which proximate state descriptions do
not screen off prior state descriptions. I think, that these are the very
circumstances in which we ordinarily infer that the state descriptions are
incomplete. Ignorance can easily produce apparent counterexamples to the
Markov condition as a causal principle, and in inquiry we are often in ig-
norance, but the ignorance should not be willful. Genuine counterexamples
may exist, but they are not ready to hand.

Cartwright has risen to the challenge with an example she has repeated
in several places. I quote from the manuscript of her forthcoming book.

Consider a simple example. Two factories compete to produce a certain chemical that is
consumed immediately in a nearby sewage plant. The city is doing a study to decide which
to sue. Some days chemicals are bought from Clean/Green; others from Cheap-but-Dirty.
Cheap-but-Dirty employs a genuinely probabilistic process to produce the chemical. The
probability of getting the desired chemical on any day the factory operates is eighty percent.
So in about one-fifth of the cases where the chemical is bought from Cheap-but-Dirty, the
sewage does not get treated. But the method is so cheap the city is prepared to put up
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with that. Still they do not want to buy from Cheap-but-Dirty because they object to the
pollutants that are emitted as a by-product whenever the chemical is produced.

That is what really is going on, but Cheap-but-Dirty will not admit to it. They suggest
that it must be the use of the chemical in the sewage plant itself that produces the pollution.
Their argument relies on the screening-off condition. If the factorywerea common parent,
C, producing both the chemicalX and the pollutantY , then (assuming all other causes
of X and Y have already been taken into account) conditioning on which factory was
employed should make the chemical probabilistically independent from the pollutant, they
say . . . Cheap-but-Dirty is indeed a cause of the chemicalX, but they cannot be a cause of
the pollutantY as well they maintain since

Prob(X, Y | C) = 0.8 6= 0.8X 0.8 = Prob(X | C) • Prob(Y | C)

(Cartwright, forthcoming)

The story seems incoherent on its face: if, as Cheap-but-Dirty claim, it is
the use of the chemical in the sewage plant itself that produces pollution,
then by the Markov condition assumed in Cheap-but-Dirty’s explanation
(the tool of evildoers everywhere) pollution should be independent of
which factory produced the chemical, but that independence is implicitly
denied at the beginning of the story.

That aside, consider where this factory is:nowhere.Cartwright claims
to refute a hypothesis about nature, the Causal Markov condition, byima-
gining a counterexample. We can refute the special theory of relativity in
the same way – imagine a positive rest mass accelerated from less than the
velocity of light to more than the velocity of light. Our scientific ancestors
could have refuted the impossibility of a perpetual motion machine in the
same way; no need to wait for the discovery of Brownian motion. They say
rabbits don’t have opposable thumbs, well just imagine otherwise. Perhaps
we can catch them by those thumbs.

Cartwright has another argument against the Causal Markov condition.
Given any system of causal relations, all sorts of probability distributions
on the variables, including distributions violating the Markov condition,
are mathematically possible, hence conceivable.

Nothing in the concept of causality, nor of probabilistic causality, constrains how Nature
must proceed. . . Lesson: where causes act probabilisticaily, screening off is not valid
(Cartwright, forthcoming)

Parallel arguments: Nothing in the concepts of light speed, rest mass, ve-
locity and acceleration constrains how Nature must proceed. Lesson: the
special theory of relativity is not valid. Nothing in the concepts of rabbit
or of opposable thumbs constrains how Nature must proceed. Lesson: it is
not true that rabbits do not have opposable thumbs.
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That aside, I don’t know how Cartwright (or anyone else) knows what
is or not in the concept of causality. That seems more a psychological
than a philosophical matter. For all I know (and, I’ll wager, for all anyone
knows), infants may be born with a tacit understanding of causality that
requires the Markov condition, or they may learn about what causes what
so in train with instances of the Markov condition that the two form one
concept in the sense that in simple cases the inference from sequences of
causes to conditional independence is automatic. What is automatic is not
necessarily articulate.

Rabbit thumbs are close to the right example. I think Cartwright’s diffi-
culties with the Causal Markov condition come, on the one side, from the
fact that it is not an explicit theoretical principle, like the limiting velocity
of light, that is part of a general, well tested, exact theory about the struc-
ture of the universe. On the other side, neither does the principle have some
a priori justification that would establish that rationality requires acting
as if it were true. Save that it is far more general, the Markov condition
is more like the proposition that rabbits don’t have opposable thumbs.
Conceivably, by chance, now and then a rabbit does have an opposable
thumb, but its an anomaly. Conceivably, we could do some ugly genetic
work to create a rabbit with opposable thumbs. But trying to catch rabbits
by the thumb would be a very bad strategy because (this time, because),
they almost never have thumbs.

The remainder of Cartwright’s forthcoming objections cannot be use-
fully summarized or quoted. They are a variety of arguments, based in
part on her denial of the Markov condition, that the methods inCausation,
Prediction and Search, and other automated search methods over graph-
ical models, cannot save in exceptional circumstances succeed in finding
causal relations. She kindly says that our theory and methods are “very
beautiful”, while denying they are of much use. She recommends instead
“hypothetico-deductive method” adapted to “individual circumstances”.
Either the Markov condition is false, she argues, or if true, other features of
nature (for example the mixture of causal structures in natural populations)
make the methods uninformative. We have considered her arguments for
the first horn of this supposed dilemma, what about the second?

I believe that Cartwright has never used the program whose theory
Causation, Prediction and Searchdocumented, has never analyzed any
real data with it, and has never read the manual that goes with it. (Given her
views she has little motive.) Else she would not contrast our methods with
those adapted to “individual circumstances”. Applying the program to real
data requires a lot of adaptation to particular circumstances: variables must
often be transformed to better approximate normal distributions, decisions
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made about modeling with discrete or continuous variables, data must be
differenced to remove auto-correlation, and on and on. The program allows
the user to specify a range of assumptions adapted to the “individual cir-
cumstances”: latent variables can be allowed or forbidden, and particular
causal connections can be forbidden or required.

I will give five examples of positive causal information produced by the
procedures, cases where, either by independent interventions or by well es-
tablished independent knowledge not used in the data analysis, predictions
of the procedure were established.

Case 1.Using data from the U.S. News and World Report surveys of
American colleges and universities, Druzdzel and Glymour predicted in
1993 that increasing the average SAT scores of the Freshman class at a
college or university would reduce the dropout rate. The recommenda-
tion was put into practice at Carnegie Mellon by altering the formula for
scholarship support. Average SAT scores of entering Freshmen improved
in each subsequent year, and dropout rates decreased accordingly.

Case 2.Using a small sample (n = 45) of observational data collected
in the 1970s, and published in a recent textbook on regression, I and my
collaborators predicted (retrodicted really) that of 14 measured variables,
only one, pH, directly influenced the biomass of Spartina grass growing
in the Cape Fear estuary. That is, if pH were held constant over the range
of values exhibited in the data, variation in other variables (throughout the
range exhibited in the data) would not influence biomass. The prediction
was contrary to regression analyses, which, as reported in the textbook,
gave a variety of different results depending on the regression technique
used. Our prediction was also contrary to the prediction of the biologist
who collected the data, and who believed that sodium ion concentration –
salinity – also influenced biomass directly.

Subsequent to the prediction, we obtained a copy of the doctoral thesis
which contained the original data. The thesis reported a subsequent ran-
domized block greenhouse experiment with plugs of Spartina grass from
the same estuary. The experimental treatments varied pH, sodium ion
concentration and mechanical aeration, and biomass, measured as in the
observational study, was the outcome. Ph directly influenced biomass, but
the other two variables had no effect when pH was held constant.

Case 3.Data from a Swedish satellite with a mass spectrometer, intended
to measure concentrations of a variety of light and heavy ions in space,
violated well established concentration ratios among the ions, presum-
ably due to a known miscalibration of the instrument before launch and
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miscalibrations resulting from the space environment. Using our program,
physicists at the Swedish Institute for Space Physics concluded that the
instrument reliably measured total concentrations of heavy ions and total
concentrations of light ions, but not concentrations of particular species.
After recalibration of the data interpretation software, the differences from
theory were reduced by half

Case 4.Given data for seven psychometric tests, and a total score (AFQT
score) obtained by averaging some or all of the test scores (we were actu-
ally told by the person who provided us the data that all seven scores were
used in calculating AFQT) together with other test scores not in the data, a
regression analysis predicted that two of the 7 psychometric scores had not
been used in forming the AFQT score for each person in the data set. Our
program predicted that four of the psychometric test scores had not been
used in calculating AFQT, and, of course, which four. Our prediction was
correct.

Case 5.Recently, I have been working with the National Aeronautics and
Space Administration Ames Research Center on software to identify the
composition of rocks and soil from reflectance spectra. The aim is to en-
able future planetary rovers to interpret spectral data themselves. After a
year of investigation using simulated data from libraries of spectra of pure
minerals, we obtained the spectrum of a rock of unknown composition
from the Mojave desert. A variety of regression procedures produced equi-
vocal results about the composition of the rock. Using our programs, and
assuming the minerals composing the rock were from among 135 miner-
als in a library of spectra (an assumption that turned out to be correct),
we predicted the rock was composed of calcite and dolomite. Chemical
and microscopic examination of the rock at Washington University sub-
sequently reported it was dolomite with calcite veins. Whether there are
other minor minerals in the rock is not yet known. In a more extensive
test, a simplied (forthe individual circumstance) version of the PC al-
gorithm described inCausation, Prediction and Search, was tested against
an expert human geological spectroscopist. The test consisted of deciding
whether certain mineral classes were present in 191 rock samples of known
composition, given only the reflectance spectrum of each rock. There were
17 possible mineral classes to be identified, of which 7 did not occur or
occurred in 10 or fewer of the rock samples The human expert had unlim-
ited time (he took about 12 hours), could and did consult reference works,
and had prior knowledge of the number of minerals of each class present
in the 191 samples. For all but one class of minerals (nesosillicates) the
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automated procedure performed comparably to the human expert, in some
respects slightly worse, in other respects slightly better. This is a problem
in which the data are produced by a mixture of different processes, and
almost certainly a non-linear mixture. In subsequent tests in which the task
was specifically to identify carbonaceous rocks and soils, the algorithm
performed substantially better than a human expert.

In many cases, especially with social data sets, the programs give negative
information. Where the programs cannot make reasonable inferences about
causal explanations, they tell the user as much: either a program produces
a spaghetti of connections and tell the user it cannot determine whether the
connections are produced by direct causal influences, or by latent common
causes (or mixtures of structures), or both, or the results vary a great deal
with small variations in the significance levels used in tests of conditional
independence, or the program simply never comes back with a result. In
cases such as these – the data used inThe Bell Curveis a typical example
– the methods we use say that nothing can be inferred from the data about
causal relations. In those cases, the program tells us that an unlimited num-
ber of models can explain the data, consistent with the assumptions given
to the program by the user. Cartwright seems to think this sort of negative
information is useless, presumably because she thinks in such situations
social (and other) scientists can do better, they can somehow find the truth
from the data rather than impose their prejudices upon it. How? Improved
search algorithms or flexibility about the statistical tests used, or the use of
Bayesian scores versus constraints founded on hypothesis tests, all of these
may yield improved methodology. But they are clearly in the spirit of the
work in Causation, Prediction and Search, and indeed are part of the later
research it helped to provoke. One might sometimes do better by guessing
a true structure, unfaithful (or close enough given the sample size) to the
probability distribution estimated, but guessing is not a method. One might
do better by having prior knowledge about the systems under study (as our
geological expert did), but if that knowledge is articulate it can be put into
the machine, and that process was discussed and illustrated inCausation,
Prediction and Search.

3. CONCLUSION

What is Cartwright’s method? Cartwright’s first and second books pro-
posed methods for discovering causal relations that I cannot clearly
describe.Nature’s Capacities and Their Measurementcontrasts her meth-
ods with mine (and my collaborators, in 1987); ours are said to be
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“hypothetico-deductive”, which is in some sense true, but chiefly indicates
the poverty of philosophical vocabulary in talking about search. I do not
have enough of her forthcoming book to know what methods, if any, it
advocates, but the chapter I have read suggests methods of inquiry must
now be “hypothetico deductive”. But hypothetico-deductive method is not
a methodof inquiry; it is at most a cog in a method, and as convention-
ally used in social statistics, where a few guesses are tested and all other
possible guesses ignored, not even that.

The majority of Nature’s Capacities and Their Lawsis really de-
voted to developing a metaphysical conception of probabilistic causation
that I think is perceptive and has proved fruitful. I have not described
Cartwright’s positive metaphysic because, no matter the offence it may
give, this essay is defensive. But I wish to praise her metaphysic. By my
lights, philosophy of science should be largely judged by its contribution
to scientific progress, and by that measureNature’s Capacities and Their
Lawsstands out. Patricia Cheng recently proposed a psychological model
of human judgement, justified by an impressive array of experimental res-
ults. The picture of causation Cheng employs is Cartwright’s, and although
Cartwright is not cited, Cheng tells me she had readNature’s Capacities
and Their Laws, and may have forgotten an influence. Cheng’s empir-
ical work is accompanied by some ingenious algebra that shows, much
as Cartwright might have wished, that what Cheng calls “causal powers”
and Cartwright “capacities” can sometimes be identified from probabilities
given certain sorts of prior knowledge, even when an effect may also have
unobserved causes. In view of Cartwright’s claim that this part of her book
was intended to give the philosophical reasons for a metaphysical mistake
I am supposed to have made, I take a certain pleasure in the fact that
Cheng’s models turn out to be isomorphic to a particular parameterization
of directed graphical models, the very structures for which we search, and
that applying simple formal techniques for graphical models, not least the
Markov condition yields new predictions from her theory.3

NOTES

1 There is a complex sense in which the models are not equivalent. In the model on the
right ρ cv,en.po can be made to vanish by adjusting the dependencies among cv,T , and po
so that cv and po are uncorrelated. That cannot by done in the model on the left.
2 Links to much of this later work can be found on the web pages of David Heckerman, of
Chris Meek, of Judea Pearl, of Thomas Richardson and of Peter Spirtes.
3 See Glymour ‘Psychological and Normative Theories of Causal Power and the Prob-
abilities of Causes’,Proceedings of the 1998 Conference on Uncertainty in Artificial
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Intelligence, and Cheng, P. W.: 1997, ‘From Covariation to Causation: A Causal Power
Theory’,Psychological Review104, 367–405.
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